Dravet syndrome (DS) is a catastrophic developmental and epileptic encephalopathy characterized by severe, pharmaco-resistant seizures and a high risk of Sudden Unexpected Death in Epilepsy (SUDEP). To date, no cure is effective in controlling seizures. 80% of the patients present heterozygous loss-of-function mutations in the SCN1A gene, indicating that a haploinsufficient mechanism underlies the onset of the pathology. SCN1A encodes for the voltage-gated sodium channel alpha-subunit Nav1.1, essential to initiate action potentials (APs) in gabaergic interneurons (GINs). The analysis of different animal models pointed out that seizure development is due to a reduction of excitability of GINs, particularly of parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP) subtypes, ultimately resulting in an over-excitation of neuronal network. However, other works also reported hyperexcitability in excitatory neurons (ExNs) during all stages of the pathology or only in the pre-epileptic stage, suggesting the involvement of this neuronal subtype in DS. Heterozygous loss-of-function mutations result from quantitative reduction of gene expression to 50% of normal levels. For this reason, we decided to employ a new strategy based on the activatory CRISPR-dCas9 to specifically raise the Nav1.1 protein levels by stimulating the transcription of the Scn1a gene in a DS mouse model. We demonstrated the efficiency of this system in upregulating Scn1a gene expression in cell line and primary WT neurons. Then, we also assessed the therapeutic potential of this system to increase Nav1.1 levels in DS primary neurons, letting them to reach protein levels comparable to WT neurons, and to rescue their ability to fire APs. Furthermore, by packaging Scn1a-dCas9 system into an AAV vector, we showed the therapeutical relevance of this tool by injecting DS pups, reporting a rescue of adult PV+ interneurons functionality, together with attenuation of febrile seizures. Then, encouraged from these data, we moved to a human setting to verify if also SCN1A gene was responsive to dCas9 treatment. For this reason, we firstly optimized a neuronal differentiation protocol already published, which allows generating human GINs from induced pluripotent stem cells (iPSCs). Then, we generated iPSCs from fibroblasts of two DS patients carrying different point mutations on SCN1A gene. By using the CRISPR-Cas9 gene-editing tool we isolated isogenic clones, and we differentiated all iPSC lines into GINs and ExNs trying to establish a proper human model. Only a trend of hypoexcitability was reported in patient GINs by analysing the mean of maximal APs. Following with ExNs functional studies, we only highlighted a mild hyperexcitable phenotype in patient 1 neurons, while no alteration was revealed analysing the second pair of iPSCs. Assuming that the mild phenotype we assessed could be associated with a not proper state of maturation of our neurons, we performed pilot experiments to set the basis to analyse other maturation conditions. We introduced a specific medium enhancing neuronal activity and maturation in our protocol, and we tried to inject our human cells into immunodeficient mouse brain, to possibly test with future experiments the functional properties of neurons migrated and integrated into the mouse cortex. At the same time, we finally explored the activatory CRISPR-dCas9 in SHSY-5Y cell line, by performing an sgRNAs screening of three different regions placed in proximity of the three SCN1A transcription start sites. We identified three sgRNAs able to increase SCN1A gene expression levels, whose efficiency was also demonstrated in control iPSC-derived GINs. Indeed, dCas9-treated neurons, not only demonstrated to express a higher level of SCN1A, but also, they showed an increase in the sodium current. With these results, we demonstrated that also the human SCN1A gene promoter is responsive to the activatory CRISPR-dCas9 treatment.

La sindrome di Dravet (SD) è una encefalopatia epilettica dello sviluppo, caratterizzata da crisi convulsive farmaco-resistenti e un alto rischio di morte improvvisa durante le crisi. L'80% dei pazienti presenta mutazioni eterozigoti sul gene SCN1A, con conseguente perdita della sua funzionalità, indicando che un meccanismo di aploinsufficienza sia alla base dell'insorgenza della patologia. SCN1A codifica per la subunità alfa del canale del sodio voltaggio-dipendente Nav1.1, essenziale per la generazione del potenziale d'azione (PA) negli interneuroni gabaergici (ING).Analisi di modelli animali hanno evidenziato che lo sviluppo delle crisi è dovuto a una riduzione dell'eccitabilità degli ING, in particolare dei sottotipi esprimenti i markers parvalbumina (PV), somatostatina (SST) e peptide intestinale vasoattivo (VIP), con conseguente sovraeccitazione della rete neuronale. Altri lavori hanno anche riportato ipereccitabilità nei neuroni eccitatori (NE) durante tutte le fasi della patologia o solo nella fase pre-epilettica, suggerendo il coinvolgimento di questo sottotipo neuronale nella SD.Le mutazioni eterozigoti con perdita della funzionalità conducono ad una riduzione quantitativa dell'espressione genica del 50%. Per questo motivo, abbiamo deciso di impiegare una nuova strategia basata sull'attivatore trascrizionale CRISPR-dCas9 per aumentare specificamente i livelli della proteina Nav1.1 stimolando la trascrizione del gene Scn1a.Abbiamo quindi dimostrato l'efficienza di questo sistema nell’indurre aumento dell’espressione di Scn1a in una linea cellulare e in neuroni primari di topo WT.Quindi abbiamo anche valutato il potenziale terapeutico di questo sistema nei neuroni primari di topo SD, i quali, una volta trattati, hanno raggiunto livelli di proteina paragonabili ai neuroni WT e hanno riacquisito la loro capacità di generare PA. Inoltre, inserendo il sistema Scn1a-dCas9 in un vettore AAV, abbiamo dimostrato la rilevanza terapeutica di questo strumento iniettandolo in cuccioli di topo SD, riportando un recupero della funzionalità degli interneuroni PV+ adulti, con l'attenuazione delle crisi febbrili. Quindi, incoraggiati da questi dati, siamo passati al modello umano per verificare se anche il gene umano SCN1A fosse responsivo al trattamento con dCas9. Per questo motivo, abbiamo innanzitutto ottimizzato un protocollo di differenziamento neuronale già pubblicato, che consente di generare ING umani da cellule staminali pluripotenti indotte. Poi, abbiamo generato staminali da fibroblasti di due pazienti con SD recanti diverse mutazioni puntiformi sul gene SCN1A. Utilizzando il CRISPR-Cas9 abbiamo isolato cloni isogenici e abbiamo differenziato tutte le linee cellulari in ING e NE cercando di stabilire un modello umano appropriato della malattia. Tuttavia, abbiamo riportato un trend di ipoeccitabilità negli ING dei pazienti analizzando la media dei PA massimi. Analizzando poi i NE, abbiamo evidenziato solo un lieve fenotipo ipereccitabile nei neuroni del paziente 1.Supponendo che il fenotipo lieve che abbiamo rivelato fosse associato ad uno stato neuronale immaturo, abbiamo cercato di porre le basi per analizzare altre condizioni di maturazione. Abbiamo introdotto un terreno specifico nelle nostre colture neuronali in modo da migliorne l'attività e la maturazione e poi abbiamo iniettato cellule umane nel cervello di topi immunodepressi, per verificarne la capacità di integrazione nella corteccia murina, in modo da poter testare con esperimenti futuri le proprietà funzionali dei neuroni migrati e integrati.Allo stesso tempo, abbiamo testato il CRISPR-dCas9 su una linea cellulare umana, e abbiamo identificato tre sgRNA in grado di aumentare l’espressione di SCN1A. L’efficienza di questi sgRNAs è stata dimostrata anche in ING di controllo derivati da staminali, i quali hanno mostrato aumento nei livelli di espressione di SCN1A e nella densità di correnta al sodio.

(2022). Activatory CRISPR/dCa9 as a therapeutic strategy in Dravet Syndrome. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).

Activatory CRISPR/dCa9 as a therapeutic strategy in Dravet Syndrome

RICCI, RAFFAELE
2022

Abstract

Dravet syndrome (DS) is a catastrophic developmental and epileptic encephalopathy characterized by severe, pharmaco-resistant seizures and a high risk of Sudden Unexpected Death in Epilepsy (SUDEP). To date, no cure is effective in controlling seizures. 80% of the patients present heterozygous loss-of-function mutations in the SCN1A gene, indicating that a haploinsufficient mechanism underlies the onset of the pathology. SCN1A encodes for the voltage-gated sodium channel alpha-subunit Nav1.1, essential to initiate action potentials (APs) in gabaergic interneurons (GINs). The analysis of different animal models pointed out that seizure development is due to a reduction of excitability of GINs, particularly of parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP) subtypes, ultimately resulting in an over-excitation of neuronal network. However, other works also reported hyperexcitability in excitatory neurons (ExNs) during all stages of the pathology or only in the pre-epileptic stage, suggesting the involvement of this neuronal subtype in DS. Heterozygous loss-of-function mutations result from quantitative reduction of gene expression to 50% of normal levels. For this reason, we decided to employ a new strategy based on the activatory CRISPR-dCas9 to specifically raise the Nav1.1 protein levels by stimulating the transcription of the Scn1a gene in a DS mouse model. We demonstrated the efficiency of this system in upregulating Scn1a gene expression in cell line and primary WT neurons. Then, we also assessed the therapeutic potential of this system to increase Nav1.1 levels in DS primary neurons, letting them to reach protein levels comparable to WT neurons, and to rescue their ability to fire APs. Furthermore, by packaging Scn1a-dCas9 system into an AAV vector, we showed the therapeutical relevance of this tool by injecting DS pups, reporting a rescue of adult PV+ interneurons functionality, together with attenuation of febrile seizures. Then, encouraged from these data, we moved to a human setting to verify if also SCN1A gene was responsive to dCas9 treatment. For this reason, we firstly optimized a neuronal differentiation protocol already published, which allows generating human GINs from induced pluripotent stem cells (iPSCs). Then, we generated iPSCs from fibroblasts of two DS patients carrying different point mutations on SCN1A gene. By using the CRISPR-Cas9 gene-editing tool we isolated isogenic clones, and we differentiated all iPSC lines into GINs and ExNs trying to establish a proper human model. Only a trend of hypoexcitability was reported in patient GINs by analysing the mean of maximal APs. Following with ExNs functional studies, we only highlighted a mild hyperexcitable phenotype in patient 1 neurons, while no alteration was revealed analysing the second pair of iPSCs. Assuming that the mild phenotype we assessed could be associated with a not proper state of maturation of our neurons, we performed pilot experiments to set the basis to analyse other maturation conditions. We introduced a specific medium enhancing neuronal activity and maturation in our protocol, and we tried to inject our human cells into immunodeficient mouse brain, to possibly test with future experiments the functional properties of neurons migrated and integrated into the mouse cortex. At the same time, we finally explored the activatory CRISPR-dCas9 in SHSY-5Y cell line, by performing an sgRNAs screening of three different regions placed in proximity of the three SCN1A transcription start sites. We identified three sgRNAs able to increase SCN1A gene expression levels, whose efficiency was also demonstrated in control iPSC-derived GINs. Indeed, dCas9-treated neurons, not only demonstrated to express a higher level of SCN1A, but also, they showed an increase in the sodium current. With these results, we demonstrated that also the human SCN1A gene promoter is responsive to the activatory CRISPR-dCas9 treatment.
BROCCOLI, VANIA
COLASANTE, GAIA
Sindrome di Dravet; CRISPR-dCas9; cellule staminali; epilessia; terapia genica
Dravet Syndrome; CRISPR-dCas9; iPSCs; epilepsy; terapia genica
BIO/13 - BIOLOGIA APPLICATA
English
18-gen-2022
MEDICINA TRASLAZIONALE E MOLECOLARE - DIMET
34
2020/2021
open
(2022). Activatory CRISPR/dCa9 as a therapeutic strategy in Dravet Syndrome. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_849618.pdf

accesso aperto

Descrizione: Activatory CRISPR/dCas9 as a therapeutic strategy in Dravet Syndrome
Tipologia di allegato: Doctoral thesis
Dimensione 7.1 MB
Formato Adobe PDF
7.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/365223
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact