The field of spatial omics defines the gathering of different techniques that allow the detection of significant alterations of biomolecules in the context of their native tissue or cellular structures. As such, they extend the landscape of biological changes occurring in complex and heterogeneous pathological tissues, such as cancer. However, additional molecular levels, such as lipids and glycans, must be studied to define a more comprehensive molecular snapshot of disease and fully understand the complexity and dynamics beyond pathological condition. Among the spatial-omics techniques, matrix-assisted laser desorption/ionisation (MALDI)-mass spectrometry imaging (MSI) offers a powerful insight into the chemical biology of pathological tissues in a multiplexed approach where several hundreds of biomolecules can be examined within a single experiment. Thus, MALDI-MSI has been readily employed for spatial omics studies of proteins, peptides and N-Glycans on clinical formalin-fixed paraffin-embedded (FFPE) tissue samples. Conversely, MALDI-MSI analysis of lipids has always been considered not feasible on FFPE samples due to the loss of a great amount of lipid content during washing steps with organic solvents, with the remaining solvent-resistant lipids being involved in the formalin cross-links. In this three-year thesis work, novel MALDI-MSI approaches for spatial multi-omics analysis on clinical FFPE tissue samples were developed. The first three publications reported in this thesis focused on the development of protocols for MALDI-MSI of lipids in FFPE samples. In particular, two of them describe a sample preparation method for the detection of positively charged phospholipids ions, mainly phosphatidylcholines (PCs), in clinical clear cell Renal Cell Carcinoma (ccRCC) samples and in a xenograft model of breast cancer. The third publication reports the possibility to use negatively charged phospholipids ions, mainly phosphatidylinositols (PIs), to define lipid signatures able to distinguish colorectal cancers with different amount of tumour infiltrating lymphocytes (TILs). The final work proposes a unique multi-omic MALDI-MSI method for the sequential analysis of lipids, N-Glycans and tryptic peptides on a single FFPE section. Specifically, the method feasibility was first established on murine brain technical replicates. The method was consequently used on ccRCC samples, as a proof of concept, assessing a more comprehensive characterisation of the tumour tissue when combining the multi-level molecular information. Altogether, these findings pave the way for new MSI-based spatial multi-omics approach aiming at an extensive and more precise molecular portrait of disease.

Con il termine di –omica spaziale si intende l’insieme di diverse tecniche che consentono di rilevare alterazioni significative delle biomolecole all’interno dei loro tessuti d’origine o delle strutture cellulari, permettendo quindi di integrare ed ampliare la comprensione dei cambiamenti biologici che si verificano in tessuti patologici complessi ed eterogenei, come il cancro. Tuttavia, per comprendere appieno la complessità e le dinamiche al di là delle condizioni patologiche, è necessario studiare e integrare diverse analisi molecolari, come quelle di lipidi e glicani, in modo da ottenere un’istantanea molecolare il più completa ed estesa possibile della malattia. Tra le tecniche di -omica spaziale, quella di desorbimento e ionizzazione laser assistiti da matrice (MALDI) abbinata alla spettrometria di massa imaging (MSI), permette lo studio della componente molecolare del tessuto patologico tramite un approccio multiplex, che permette di esaminare diverse centinaia di biomolecole in una singola analisi. Pertanto, l’analisi MALDI-MSI viene utilizzata per studi -omici spaziali di proteine, peptidi e N-glicani su campioni di tessuti clinici fissati in formalina e inclusi in paraffina (FFPE). Per quanto riguarda i lipidi, invece, questo tipo di analisi è sempre stato considerato poco efficace su campioni FFPE a causa della perdita di una grande quantità di contenuto lipidico durante le fasi di lavaggio con solventi organici, mentre i restanti lipidi resistenti ai solventi sono inaccessibili poiché trattenuti nei legami incrociati della formalina. In questi tre anni di dottorato, abbiamo sviluppato nuovi approcci MALDI-MSI per l'analisi spaziale multi-omica su campioni di tessuto clinico FFPE. Le prime tre pubblicazioni riportate in questa tesi si sono concentrate sullo sviluppo di protocolli MALDI-MSI per lipidi in campioni FFPE. In particolare, due di essi descrivono il metodo di preparazione del campione per la rilevazione di ioni di fosfolipidi carichi positivamente, principalmente fosfatidilcoline (PC), in campioni clinici di carcinoma renale a cellule chiare (ccRCC) e in un modello di xenotrapianto di cancro al seno. La terza pubblicazione riporta la possibilità di utilizzare ioni di fosfolipidi carichi negativamente, principalmente fosfatidilinositoli (PI), per definire firme lipidiche in grado di distinguere i gradi di tumore del colon-retto che presentano diverse quantità di linfociti infiltranti il tumore (TIL). Il lavoro finale propone un originale metodo MALDI-MSI multi-omico per l'analisi sequenziale di lipidi, N-glicani e peptidi triptici su una singola sezione FFPE. In particolare, il metodo è stato inizialmente implementato su replicati tecnici di cervello murino e successivamente utilizzato su campioni di ccRCC, come ulteriore prova, ottenendo una caratterizzazione più completa del tessuto tumorale grazie alla combinazione delle informazioni molecolari. Complessivamente, questi risultati aprono la strada a un nuovo approccio multi-omico spaziale basato sulla spettrometria di massa imaging (MSI) che è in grado di restituire un ritratto molecolare più ampio e più preciso della malattia.

(2022). Development of multi-omic mass spectrometry imaging approaches to assist clinical investigations. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).

Development of multi-omic mass spectrometry imaging approaches to assist clinical investigations

DENTI, VANNA
2022

Abstract

The field of spatial omics defines the gathering of different techniques that allow the detection of significant alterations of biomolecules in the context of their native tissue or cellular structures. As such, they extend the landscape of biological changes occurring in complex and heterogeneous pathological tissues, such as cancer. However, additional molecular levels, such as lipids and glycans, must be studied to define a more comprehensive molecular snapshot of disease and fully understand the complexity and dynamics beyond pathological condition. Among the spatial-omics techniques, matrix-assisted laser desorption/ionisation (MALDI)-mass spectrometry imaging (MSI) offers a powerful insight into the chemical biology of pathological tissues in a multiplexed approach where several hundreds of biomolecules can be examined within a single experiment. Thus, MALDI-MSI has been readily employed for spatial omics studies of proteins, peptides and N-Glycans on clinical formalin-fixed paraffin-embedded (FFPE) tissue samples. Conversely, MALDI-MSI analysis of lipids has always been considered not feasible on FFPE samples due to the loss of a great amount of lipid content during washing steps with organic solvents, with the remaining solvent-resistant lipids being involved in the formalin cross-links. In this three-year thesis work, novel MALDI-MSI approaches for spatial multi-omics analysis on clinical FFPE tissue samples were developed. The first three publications reported in this thesis focused on the development of protocols for MALDI-MSI of lipids in FFPE samples. In particular, two of them describe a sample preparation method for the detection of positively charged phospholipids ions, mainly phosphatidylcholines (PCs), in clinical clear cell Renal Cell Carcinoma (ccRCC) samples and in a xenograft model of breast cancer. The third publication reports the possibility to use negatively charged phospholipids ions, mainly phosphatidylinositols (PIs), to define lipid signatures able to distinguish colorectal cancers with different amount of tumour infiltrating lymphocytes (TILs). The final work proposes a unique multi-omic MALDI-MSI method for the sequential analysis of lipids, N-Glycans and tryptic peptides on a single FFPE section. Specifically, the method feasibility was first established on murine brain technical replicates. The method was consequently used on ccRCC samples, as a proof of concept, assessing a more comprehensive characterisation of the tumour tissue when combining the multi-level molecular information. Altogether, these findings pave the way for new MSI-based spatial multi-omics approach aiming at an extensive and more precise molecular portrait of disease.
MAGNI, FULVIO
PIGA, ISABELLA
Spatial omics; MALDI-MSI; Multi-omica; Lipidomica; FFPE
Spatial omics; MALDI-MSI; Multi-omic; Lipidomics; FFPE
BIO/10 - BIOCHIMICA
English
15-feb-2022
MEDICINA TRASLAZIONALE E MOLECOLARE - DIMET
34
2020/2021
embargoed_20250215
(2022). Development of multi-omic mass spectrometry imaging approaches to assist clinical investigations. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_810616.pdf

embargo fino al 15/02/2025

Descrizione: Development of multi-omic mass spectrometry imaging approaches to assist clinical investigations
Tipologia di allegato: Doctoral thesis
Dimensione 5.77 MB
Formato Adobe PDF
5.77 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/365169
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact