A system of partial differential equations models the magneto-hydrodynamics of an ideal fluid in a bounded domain $Q= (0, au) imes B_R[ec 0]$ endowed with extsc{Euclid}ean metric and having extit{M}=3 space dimensions. The equations describe conservation of mass and momentum, and magnetic induction. The {mass, momentum} equations correspond to the {time, space} divergence (${ m Div}[cdot]$) of a $4 imes 4$ tensor denoted ${f A}_{ m{ extsc{Euler}}}$, which is real valued, symmetric and positive definite, provided the terms depending on the magnetic field, $ec H$, are moved to the right side. By assuming the existence of a solution to some initial-boundary value problem, a property known as the ``higher integrability'' of ${ m det}[{f A}_{ m{ extsc{Euler}}}]$ is investigated. Articles by extsc{D. Serre} from 2018 onwards [Divergence-free positive symmetric tensors and fluid dynamics. extit{Ann. I. H. Poincar'e - Analyse Non-lin.}. 2018; extbf{AN 35}:1209-1234] motivated this work. Letting $Phi:= p + ho_f arphi$, with $p$ pressure, $ ho_f$ density and $arphi (>$0) the potential of external forces, one has ${ m det}[{f A}_{ m{ extsc{Euler}}}] = Phi^M ho_f$. If the entries of ${f A}_{ m{ extsc{Euler}}}$ are in $L^1(Q)$, then higher integrability consists of $ ho_f ^{1/M}Phi in L^1(Q)$ and holds provided ${ m Div}[{f A}_{ m{ extsc{Euler}}}]$ has finite total mass in $Q$. Higher integrability affects $p$ and $ ho_f$. If a solution ${ ho_f, p, ec u, ec H}$ were known to exist, then higher integrability would mean continuous dependence of $ ho_f ^{1/M}Phi$ on $ec H$. In the absence of information about existence, the $L^1(Q)$-estimate is a qualitative result about the dynamical system. Some open problems are stated.

Crosta, G. (2022). Higher integrability of a determinant related to a system of magneto-hydrodynamic equations [Working paper].

Higher integrability of a determinant related to a system of magneto-hydrodynamic equations

Crosta, GFF
2022

Abstract

A system of partial differential equations models the magneto-hydrodynamics of an ideal fluid in a bounded domain $Q= (0, au) imes B_R[ec 0]$ endowed with extsc{Euclid}ean metric and having extit{M}=3 space dimensions. The equations describe conservation of mass and momentum, and magnetic induction. The {mass, momentum} equations correspond to the {time, space} divergence (${ m Div}[cdot]$) of a $4 imes 4$ tensor denoted ${f A}_{ m{ extsc{Euler}}}$, which is real valued, symmetric and positive definite, provided the terms depending on the magnetic field, $ec H$, are moved to the right side. By assuming the existence of a solution to some initial-boundary value problem, a property known as the ``higher integrability'' of ${ m det}[{f A}_{ m{ extsc{Euler}}}]$ is investigated. Articles by extsc{D. Serre} from 2018 onwards [Divergence-free positive symmetric tensors and fluid dynamics. extit{Ann. I. H. Poincar'e - Analyse Non-lin.}. 2018; extbf{AN 35}:1209-1234] motivated this work. Letting $Phi:= p + ho_f arphi$, with $p$ pressure, $ ho_f$ density and $arphi (>$0) the potential of external forces, one has ${ m det}[{f A}_{ m{ extsc{Euler}}}] = Phi^M ho_f$. If the entries of ${f A}_{ m{ extsc{Euler}}}$ are in $L^1(Q)$, then higher integrability consists of $ ho_f ^{1/M}Phi in L^1(Q)$ and holds provided ${ m Div}[{f A}_{ m{ extsc{Euler}}}]$ has finite total mass in $Q$. Higher integrability affects $p$ and $ ho_f$. If a solution ${ ho_f, p, ec u, ec H}$ were known to exist, then higher integrability would mean continuous dependence of $ ho_f ^{1/M}Phi$ on $ec H$. In the absence of information about existence, the $L^1(Q)$-estimate is a qualitative result about the dynamical system. Some open problems are stated.
Working paper
Scientifica
Capitolo accettato per la pubblicazione. Bozze di stampa prodotte dalla Casa Editrice non soddisfacenti e non ancora approvate dall'autore.
positive definite symmetric tensors, tensor divergence, determinant, integrability gain, magnetohydrodynamics, extsc{Euclid}ean metric, ideal fluid, quasi-neutral fluid, induction equation, conservation laws
English
sorgente: Integrabili04.tex ; classe: Palatino_Crosta.cls ; compilato con TeXShop Versione 4.01 (4.01), opzione LaTeX ; prodotto: Integrabili04.pdf ; Versione di PDF: 1.5; risoluzione: 595 × 841 ; creatore del contenuto: TeX ; programma di codifica: pdfTeX-1.40.13
Crosta, G. (2022). Higher integrability of a determinant related to a system of magneto-hydrodynamic equations [Working paper].
Crosta, G
File in questo prodotto:
File Dimensione Formato  
Integrabili04.pdf

Solo gestori archivio

Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 212.89 kB
Formato Adobe PDF
212.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2022-0313_Reliability.pdf

Solo gestori archivio

Descrizione: Lettera dell'autore al Curatore del volume ed alla Casa Editrice.
Tipologia di allegato: Other attachments
Dimensione 147.17 kB
Formato Adobe PDF
147.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/360678
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact