The nature of the GRB prompt emission is still uncertain, preventing us from constraining the sources' physical properties, which are strictly connected to fundamental open issues such as jet composition and energy dissipation. The typical observed prompt emission spectrum consists of two power-laws with slopes α and β smoothly connected at a peak energy Epeak. Synchrotron from fast cooling electrons is the most natural radiative process, given the non-thermal shape of the observed spectrum and the strong magnetic fields expected in the emitting region. However, the observed spectra of thousands of GRBs being harder than synchrotron predictions represented a major issue for decades. Oganesyan et al. 2017 recently discovered in the soft X-rays the presence of an additional spectral break, which has been identified as the synchrotron cooling frequency. Motivated by this result, I searched for the presence of a break at higher energies, using Fermi/GBM data. The time-resolved analysis of the 10 long brightest GRBs has revealed in the ~70% of the spectra the presence of a break energy Ebreak, located between ~20 and 500 keV. The slopes of the power-laws below and above the break are remarkably consistent with the predicted values for synchrotron emission in fast cooling regime (-2/3 and -3/2, respectively). Spectral simulations suggest that the separation of Ebreak from Epeak and the photon statistics of the spectrum can hamper the identification of the break, which might explain why this fundamental feature has not been identified before. The consistency with synchrotron emission has been tested also fitting a physical synchrotron model to the spectrum of the long GRB 180720B, confirming the results obtained with the empirical function. In addition, I investigated, for the first time, the presence of the break in 10 short GRBs: contrary to long ones, short GRBs do not show the break, but the low-energy photon index is consistent with -2/3. The results presented in this thesis imply a set of physical parameters that challenges the GRB standard model. The relative small ratio of the synchrotron frequencies (closer to unity for short GRBs) implies that the emitting particles do not cool completely. In turn this requires a low magnetic field (B’≲10 G) implying a distant emission region (R~1016cm), at odds with the typical ~ms variability timescale of GRBs. A possible solution may come from the proton-synchrotron scenario: thanks to the longer cooling timescale of the protons, this scenario can explain the observed spectral shape assuming standard values both for the magnetic field (B’~106 G) and for the radius of the emitting region (R~1013cm). Moreover, I expanded my study of the prompt emission spectrum by including its characterization at higher energies. The addition of LAT data in the spectral analysis revealed in 10 out of 22 bursts the presence of a spectral cutoff at high energies (~100 MeV): interpreted as due to pair-production opacity, they provide estimates of the bulk Lorentz factor Γof the jet in the range 100-400. The extension at high energies allowed me also to study the high-energy power-law slope β, which is a key parameter to constrain the corresponding slopes p of the underlying energy distribution of non-thermal accelerated particles. Assuming the emission as due to synchrotron, I found a broad distribution of p, centered around p=2.86 (with a tail up to p~5-7). Given the theoretical uncertainties on the energy distribution of accelerated particles in mildly-relativistic shocks, these results provide useful observational benchmarks for the development of the theory of particle acceleration applied to the prompt emission case. My PhD project also included the study of the emission at lower frequencies of the first 3 GRBs detected at ~TeV energies (GRB 180720B, GRB 190114C, GRB 190829A), which allowed me to find interesting constraints on the macro- and micro-physical parameters of GRBs.

La natura dell'emissione prompt dei GRBs è ancora incerta, impedendoci di studiare le loro proprietà fisiche strettamente connesse a fondamentali questioni aperte come la composizione del getto e la dissipazione dell'energia. Il tipico spettro osservato di emissione prompt è modellato da due leggi di potenza con pendenze α e β collegate in modo uniforme a un picco di energia Epeak. Il raffreddamento rapido di elettroni per emissione di sincrotrone è il processo radiativo più naturale, data la forma non termica dello spettro osservato e i forti campi magnetici previsti nella regione emittente. Tuttavia, gli spettri osservati di migliaia di GRBs sono più ripidi delle previsioni di sincrotrone. Oganesyan et al.2017 ha recentemente scoperto nei raggi X la presenza di un ulteriore break spettrale, identificato come la frequenza di raffreddamento del sincrotrone. Motivata da questo risultato, ho cercato la presenza di un break ad energie più alte, utilizzando i dati Fermi/GBM. L'analisi dei 10 GRBs più lunghi e luminosi ha rivelato nel ~70% degli spettri la presenza di una energia Ebreak, situata tra ~20 e 500 keV. Le pendenze spettrali al di sotto e al di sopra del break sono consistenti con i valori previsti per l'emissione di sincrotrone in regime di raffreddamento rapido (-2/3 e -3/2, rispettivamente). Le simulazioni spettrali suggeriscono che la separazione di Ebreak da Epeak e la statistica dello spettro ostacolano l'identificazione del break, il che potrebbe spiegare perché questa energia fondamentale non è stata identificata prima. La consistenza con l'emissione di sincrotrone è stata testata anche adattando un modello di sincrotrone allo spettro di GRB 180720B, confermando i risultati ottenuti con la funzione empirica. Inoltre, ho studiato, per la prima volta, la presenza del break in 10 GRB corti: contrariamente a quelli lunghi, i GRB corti non mostrano il break, ma la pendenza spettrale a bassa energia è consistente con -2/3. Questi risultati implicano dei parametri fisici che sfidano il modello standard dei GRBs. Il rapporto piccolo delle frequenze di sincrotrone (vicino all'unità per i GRB corti) implica che le particelle che emettono non si raffreddano completamente. Ciò richiede un basso campo magnetico (B'≲10 G) che implica una regione di emissione distante (R~1016 cm), in contrasto con la tipica variabilità di ~ms dei GRB. Una possibile soluzione può venire dallo scenario protone-sincrotrone: grazie al tempo di raffreddamento più lungo dei protoni, questo scenario può spiegare lo spettro osservato assumendo valori standard sia per il campo magnetico (B'~106 G) che per la distanza (R~1013 cm). Inoltre, ho ampliato il mio studio dello spettro di emissione prompt includendo la sua caratterizzazione a energie più elevate. L'aggiunta dei dati LAT nell'analisi spettrale ha rivelato in 10 burst su 22 la presenza di un cutoff ad alte energie (~100 MeV), che, interpretati come dovuti all'opacità di produzione di coppie, forniscono stime del fattore di Lorentz Γ del getto nell'intervallo 100-400. L'estensione alle alte energie mi ha permesso anche di studiare la pendenza β dello spettro, che è un parametro chiave per vincolare le corrispondenti pendenze p della distribuzione energetica delle particelle accelerate. Assumendo emissione di sincrotrone, ho trovato un'ampia distribuzione di p, centrata intorno a p=2,86 (con una coda fino a p~5-7). Date le incertezze teoriche sulla distribuzione dell'energia delle particelle accelerate in shock lievemente relativistici, questi risultati forniscono utili punti di riferimento osservativi per lo sviluppo della teoria dell'accelerazione delle particelle applicata al caso di emissione prompt. Il mio progetto di dottorato ha compreso anche lo studio dell'emissione a frequenze più basse dei primi 3 GRB rilevati ad energie ~TeV (GRB 180720B, GRB 190114C, GRB 190829A), che mi ha permesso di trovare interessanti vincoli sui parametri macro e micro-fisici dei GRBs.

(2022). New insights into the physics of Gamma-Ray Burst prompt emission. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).

New insights into the physics of Gamma-Ray Burst prompt emission

RAVASIO, MARIA EDVIGE
2022

Abstract

La natura dell'emissione prompt dei GRBs è ancora incerta, impedendoci di studiare le loro proprietà fisiche strettamente connesse a fondamentali questioni aperte come la composizione del getto e la dissipazione dell'energia. Il tipico spettro osservato di emissione prompt è modellato da due leggi di potenza con pendenze α e β collegate in modo uniforme a un picco di energia Epeak. Il raffreddamento rapido di elettroni per emissione di sincrotrone è il processo radiativo più naturale, data la forma non termica dello spettro osservato e i forti campi magnetici previsti nella regione emittente. Tuttavia, gli spettri osservati di migliaia di GRBs sono più ripidi delle previsioni di sincrotrone. Oganesyan et al.2017 ha recentemente scoperto nei raggi X la presenza di un ulteriore break spettrale, identificato come la frequenza di raffreddamento del sincrotrone. Motivata da questo risultato, ho cercato la presenza di un break ad energie più alte, utilizzando i dati Fermi/GBM. L'analisi dei 10 GRBs più lunghi e luminosi ha rivelato nel ~70% degli spettri la presenza di una energia Ebreak, situata tra ~20 e 500 keV. Le pendenze spettrali al di sotto e al di sopra del break sono consistenti con i valori previsti per l'emissione di sincrotrone in regime di raffreddamento rapido (-2/3 e -3/2, rispettivamente). Le simulazioni spettrali suggeriscono che la separazione di Ebreak da Epeak e la statistica dello spettro ostacolano l'identificazione del break, il che potrebbe spiegare perché questa energia fondamentale non è stata identificata prima. La consistenza con l'emissione di sincrotrone è stata testata anche adattando un modello di sincrotrone allo spettro di GRB 180720B, confermando i risultati ottenuti con la funzione empirica. Inoltre, ho studiato, per la prima volta, la presenza del break in 10 GRB corti: contrariamente a quelli lunghi, i GRB corti non mostrano il break, ma la pendenza spettrale a bassa energia è consistente con -2/3. Questi risultati implicano dei parametri fisici che sfidano il modello standard dei GRBs. Il rapporto piccolo delle frequenze di sincrotrone (vicino all'unità per i GRB corti) implica che le particelle che emettono non si raffreddano completamente. Ciò richiede un basso campo magnetico (B'≲10 G) che implica una regione di emissione distante (R~1016 cm), in contrasto con la tipica variabilità di ~ms dei GRB. Una possibile soluzione può venire dallo scenario protone-sincrotrone: grazie al tempo di raffreddamento più lungo dei protoni, questo scenario può spiegare lo spettro osservato assumendo valori standard sia per il campo magnetico (B'~106 G) che per la distanza (R~1013 cm). Inoltre, ho ampliato il mio studio dello spettro di emissione prompt includendo la sua caratterizzazione a energie più elevate. L'aggiunta dei dati LAT nell'analisi spettrale ha rivelato in 10 burst su 22 la presenza di un cutoff ad alte energie (~100 MeV), che, interpretati come dovuti all'opacità di produzione di coppie, forniscono stime del fattore di Lorentz Γ del getto nell'intervallo 100-400. L'estensione alle alte energie mi ha permesso anche di studiare la pendenza β dello spettro, che è un parametro chiave per vincolare le corrispondenti pendenze p della distribuzione energetica delle particelle accelerate. Assumendo emissione di sincrotrone, ho trovato un'ampia distribuzione di p, centrata intorno a p=2,86 (con una coda fino a p~5-7). Date le incertezze teoriche sulla distribuzione dell'energia delle particelle accelerate in shock lievemente relativistici, questi risultati forniscono utili punti di riferimento osservativi per lo sviluppo della teoria dell'accelerazione delle particelle applicata al caso di emissione prompt. Il mio progetto di dottorato ha compreso anche lo studio dell'emissione a frequenze più basse dei primi 3 GRB rilevati ad energie ~TeV (GRB 180720B, GRB 190114C, GRB 190829A), che mi ha permesso di trovare interessanti vincoli sui parametri macro e micro-fisici dei GRBs.
GHISELLINI, GABRIELE
GHIRLANDA, GIANCARLO
NAVA, LARA
The nature of the GRB prompt emission is still uncertain, preventing us from constraining the sources' physical properties, which are strictly connected to fundamental open issues such as jet composition and energy dissipation. The typical observed prompt emission spectrum consists of two power-laws with slopes α and β smoothly connected at a peak energy Epeak. Synchrotron from fast cooling electrons is the most natural radiative process, given the non-thermal shape of the observed spectrum and the strong magnetic fields expected in the emitting region. However, the observed spectra of thousands of GRBs being harder than synchrotron predictions represented a major issue for decades. Oganesyan et al. 2017 recently discovered in the soft X-rays the presence of an additional spectral break, which has been identified as the synchrotron cooling frequency. Motivated by this result, I searched for the presence of a break at higher energies, using Fermi/GBM data. The time-resolved analysis of the 10 long brightest GRBs has revealed in the ~70% of the spectra the presence of a break energy Ebreak, located between ~20 and 500 keV. The slopes of the power-laws below and above the break are remarkably consistent with the predicted values for synchrotron emission in fast cooling regime (-2/3 and -3/2, respectively). Spectral simulations suggest that the separation of Ebreak from Epeak and the photon statistics of the spectrum can hamper the identification of the break, which might explain why this fundamental feature has not been identified before. The consistency with synchrotron emission has been tested also fitting a physical synchrotron model to the spectrum of the long GRB 180720B, confirming the results obtained with the empirical function. In addition, I investigated, for the first time, the presence of the break in 10 short GRBs: contrary to long ones, short GRBs do not show the break, but the low-energy photon index is consistent with -2/3. The results presented in this thesis imply a set of physical parameters that challenges the GRB standard model. The relative small ratio of the synchrotron frequencies (closer to unity for short GRBs) implies that the emitting particles do not cool completely. In turn this requires a low magnetic field (B’≲10 G) implying a distant emission region (R~1016cm), at odds with the typical ~ms variability timescale of GRBs. A possible solution may come from the proton-synchrotron scenario: thanks to the longer cooling timescale of the protons, this scenario can explain the observed spectral shape assuming standard values both for the magnetic field (B’~106 G) and for the radius of the emitting region (R~1013cm). Moreover, I expanded my study of the prompt emission spectrum by including its characterization at higher energies. The addition of LAT data in the spectral analysis revealed in 10 out of 22 bursts the presence of a spectral cutoff at high energies (~100 MeV): interpreted as due to pair-production opacity, they provide estimates of the bulk Lorentz factor Γof the jet in the range 100-400. The extension at high energies allowed me also to study the high-energy power-law slope β, which is a key parameter to constrain the corresponding slopes p of the underlying energy distribution of non-thermal accelerated particles. Assuming the emission as due to synchrotron, I found a broad distribution of p, centered around p=2.86 (with a tail up to p~5-7). Given the theoretical uncertainties on the energy distribution of accelerated particles in mildly-relativistic shocks, these results provide useful observational benchmarks for the development of the theory of particle acceleration applied to the prompt emission case. My PhD project also included the study of the emission at lower frequencies of the first 3 GRBs detected at ~TeV energies (GRB 180720B, GRB 190114C, GRB 190829A), which allowed me to find interesting constraints on the macro- and micro-physical parameters of GRBs.
GRB; alte energie; sincrotrone; raggi gamma; processi radiativi
radiative process; high energy; gamma-ray burst; prompt emission; processi radiativi
FIS/05 - ASTRONOMIA E ASTROFISICA
English
FISICA E ASTRONOMIA
34
2020/2021
(2022). New insights into the physics of Gamma-Ray Burst prompt emission. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_748103.pdf

accesso aperto

Descrizione: New insights into the physics of Gamma-Ray Burst prompt emission
Tipologia di allegato: Doctoral thesis
Dimensione 17.05 MB
Formato Adobe PDF
17.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/350073
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact