Advances in the field of quantum computation could disclose powerful means applicable in many areas of research such as life sciences and metrology among others. However, concerning the field of telecommunication, the so-called “quantum supremacy” in computational power provided by quantum computers poses a huge threat to classical encryption schemes making the transmission of sensitive data unsafe. Progress in Quantum Key Distribution has demonstrated to solve the issue of eavesdropping by using photon qubits but only in short-range transfer. In order to enhance the reliability and range of the quantum communication protocols, the source of photons have to comply with stringent requirements like high single-photon purity, near-to-perfect entanglement, high brightness and high operation rate. With this thesis we have presented and confirmed a model that predicts consistently the entanglement evolution for an AlGaAs quantum dot. This system seems not to suffer from any dephasing mechanism if pumped with two-photon resonant excitation. The experimental results point out that the behavior of these solid-state emitters only depend on the exciton precession, especially considering that AlGaAs Qdots do possess significant nuclear spin. Thus, we could infer that the interaction between the charge carriers involved in the emission and the nuclei is not a relevant dephasing mechanism within the time of the exciton radiative decay. We show that, although no dephasing mechanism occurs for the quantum dot under investigation, reaching a steady concurrence level of one during the whole radiative decay, that indicates perfect entanglement, does still remain a challenge. In light of these findings, we present here two possible workarounds. First, by improving the time resolution of the detection system we aimed at increasing the measurable degree of entanglement, because, according to the theoretical model, the concurrence is lowered by the timing jitter of the detection system. To this end, we have reported the realization of a new generation of cryogenic amplifiers coupled to superconducting nanowire single photon detectors that greatly improve the jitter performance of the detection system. However, since the physical time resolution will always be finite and never reach zero, an entanglement measurement can never yield a steady value of one for the concurrence over the whole radiative lifetime of the quantum dot. This is why we introduce a second research direction which consists of engineering the properties of the exciton and biexciton emission by acting on their frequencies. This has the major benefit to avoid difficult post-growth fine-structure splitting compensation techniques. Here we present the idea of engineering single photons through sawtooth phase modulation and stress on the point that this technique is a valuable alternative to achieve fine-structure compensation. The thesis gives a preliminary evidence of feasible compensation with current commercial phase modulation technology by performing frequency translation experiments on a laser source. The measured spectra show that sawtooth phase modulation can reach the target despite the technological limitations, but further improvements are needed. We explain one method to boost sawtooth phase modulation, namely with the use of the well-established phase-locked loop technology which, through signals synchronization, avoids the rise of undesired spurious components. Despite the necessary development in quantum repeater technology, with this work we foresee the feasibility in the realization of a quantum photonic infrastructure where the photons are fully entangled enabling the exchange of photon qubits in long-range quantum communication.

I progressi nel campo del calcolo quantistico potrebbero fornire rilevanti applicazioni in molte aree di ricerca come la biologia e la metrologia su tutte. Tuttavia, per quanto riguarda il campo delle telecomunicazioni, la cosiddetta "supremazia quantistica" nella potenza di calcolo del computer quantistico rappresenta un’enorme minaccia per gli schemi di crittografia classici, mettendo a rischio la riservatezza di dati sensibili. I progressi nella distribuzione delle chiavi quantistiche hanno dimostrato di poter risolvere il problema dell’eavesdropping utilizzando qubit di fotoni ma nel solo caso di trasferimento a corto raggio. Per migliorare l’affidabilità e il raggio dei protocolli di comunicazione quantistica, la sorgente dei fotoni deve soddisfare requisiti rigorosi come l’elevata purezza di singolo fotone, l’entanglement quasi perfetto, l’elevata luminosità e l’elevata velocità di funzionamento. Con questa tesi abbiamo presentato e confermato un modello che predice in maniera consistente l’evoluzione dell’entanglement per un quantum dot di AlGaAs che sembra non soffrire di alcun meccanismo di sfasamento se pompato con un’eccitazione risonante a due fotoni. I risultati sperimentali sottolineano che il comportamento di questi emettitori a stato solido dipende solo dalla precessione degli eccitoni, soprattutto considerando che i quantum dots di AlGaAs possiedono uno spin nucleare significativo. Pertanto, si potrebbe dedurre che l’interazione tra i portatori di carica coinvolti nell’emissione e i nuclei non sia un meccanismo di sfasamento rilevante entro il tempo di decadimento radiativo dell’eccitone. Inoltre, in questo manoscritto si dimostra che, sebbene non si verifichi alcun meccanismo di sfasamento nel quantum dot in esame, il raggiungimento di un livello di concorrenza pari a uno, sinonimo di entanglement perfetto, rimane un compito difficile. Alla luce di questi risultati, presentiamo due possibili soluzioni. Innanzitutto, il miglioramento della risoluzione temporale del sistema di rilevamento che è volto ad aumentare il grado di entanglement. Questo perchè, secondo il modello teorico, il valore della concorrenza è degradato dalla risoluzione temporale del sistema di rilevamento. A tal proposito riportiamo la realizzazione di una nuova generazione di amplificatori criogenici accoppiati a rivelatori a singolo fotone di nanofili superconduttori che migliorano notevolmente le prestazioni di risoluzione temporale del sistema di rilevamento. Tuttavia, poiché la risoluzione temporale dello strumento sarà sempre finita e non raggiungerà mai lo zero, una misurazione di entanglement non potrà mai produrre un valore costante di concorrenza pari a uno durante l’intero decadimento radiativo del quantum dot. Per questo motivo, si introduce una seconda direzione di ricerca che consiste nell’ingegnerizzare le proprietà dell’emissione eccitonica e bieccitonica agendo sulle frequenze dei fotoni. Tale approccio consente di evitare difficili tecniche di compensazione post-crescita. L’idea centrale è di ingegnerizzare i singoli fotoni attraverso la modulazione di fase a dente di sega per compensare lo splitting di struttura fine. La tesi fornisce una prova preliminare della possibile compensazione con la tecnologia di modulazione di fase già disponibile a livello commerciale riportando esperimenti di traslazione di frequenza su una sorgente laser. Gli spettri misurati mostrano che la modulazione di fase a dente di sega può raggiungere l’obiettivo nonostante i limiti tecnologici che necessitano di ulteriori miglioramenti. A tal fine si presenta un metodo per migliorare modulazione di fase utilizzando la consolidata tecnologia di phase-locked loop, che attraverso la sincronizzazione dei segnali, può evitare il sorgere di contributi spuri.

(2021). QUANTUM ENGINEERING AT THE SINGLE PHOTON LEVEL. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).

QUANTUM ENGINEERING AT THE SINGLE PHOTON LEVEL

GUARDIANI, ANTONIO
2021

Abstract

Advances in the field of quantum computation could disclose powerful means applicable in many areas of research such as life sciences and metrology among others. However, concerning the field of telecommunication, the so-called “quantum supremacy” in computational power provided by quantum computers poses a huge threat to classical encryption schemes making the transmission of sensitive data unsafe. Progress in Quantum Key Distribution has demonstrated to solve the issue of eavesdropping by using photon qubits but only in short-range transfer. In order to enhance the reliability and range of the quantum communication protocols, the source of photons have to comply with stringent requirements like high single-photon purity, near-to-perfect entanglement, high brightness and high operation rate. With this thesis we have presented and confirmed a model that predicts consistently the entanglement evolution for an AlGaAs quantum dot. This system seems not to suffer from any dephasing mechanism if pumped with two-photon resonant excitation. The experimental results point out that the behavior of these solid-state emitters only depend on the exciton precession, especially considering that AlGaAs Qdots do possess significant nuclear spin. Thus, we could infer that the interaction between the charge carriers involved in the emission and the nuclei is not a relevant dephasing mechanism within the time of the exciton radiative decay. We show that, although no dephasing mechanism occurs for the quantum dot under investigation, reaching a steady concurrence level of one during the whole radiative decay, that indicates perfect entanglement, does still remain a challenge. In light of these findings, we present here two possible workarounds. First, by improving the time resolution of the detection system we aimed at increasing the measurable degree of entanglement, because, according to the theoretical model, the concurrence is lowered by the timing jitter of the detection system. To this end, we have reported the realization of a new generation of cryogenic amplifiers coupled to superconducting nanowire single photon detectors that greatly improve the jitter performance of the detection system. However, since the physical time resolution will always be finite and never reach zero, an entanglement measurement can never yield a steady value of one for the concurrence over the whole radiative lifetime of the quantum dot. This is why we introduce a second research direction which consists of engineering the properties of the exciton and biexciton emission by acting on their frequencies. This has the major benefit to avoid difficult post-growth fine-structure splitting compensation techniques. Here we present the idea of engineering single photons through sawtooth phase modulation and stress on the point that this technique is a valuable alternative to achieve fine-structure compensation. The thesis gives a preliminary evidence of feasible compensation with current commercial phase modulation technology by performing frequency translation experiments on a laser source. The measured spectra show that sawtooth phase modulation can reach the target despite the technological limitations, but further improvements are needed. We explain one method to boost sawtooth phase modulation, namely with the use of the well-established phase-locked loop technology which, through signals synchronization, avoids the rise of undesired spurious components. Despite the necessary development in quantum repeater technology, with this work we foresee the feasibility in the realization of a quantum photonic infrastructure where the photons are fully entangled enabling the exchange of photon qubits in long-range quantum communication.
SANGUINETTI, STEFANO
FOGNINI, ANDREAS WALTER
punti quantici; singoli fotoni; SNSPD; modulazione di fase; entanglement
quantum dots; single-photons; SNSPD; phase modulation; entanglement
FIS/01 - FISICA SPERIMENTALE
English
15-apr-2021
SCIENZA E NANOTECNOLOGIA DEI MATERIALI
33
2019/2020
open
(2021). QUANTUM ENGINEERING AT THE SINGLE PHOTON LEVEL. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_835461.pdf

accesso aperto

Descrizione: Tesi di Guardiani Antonio - 835461
Tipologia di allegato: Doctoral thesis
Dimensione 9.18 MB
Formato Adobe PDF
9.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/311352
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact