Colloidal semiconductor nanocrystals (NCs), owing to their size-tuneable electronic properties and solution processability, have long been proposed as versatile chemically synthesized alternatives for many photonic, optoelectronic, and quantum computational technologies as well as super-atomic functional building blocks for bottom-up assembled artificial metamaterials. Since their original discovery over 30 years ago, tremendous advancements in colloidal and surface chemistry, NC physics, and device application have brought this vision closer to reality. In this work I explore these photophysical phenomena in four different NC systems diversified by chemical composition and shapes. I studied the most favorable intrinsic ternary CuInS2 NCs which inherently offers heavy metal free, non-toxic alternatives to the existing Cd and Pb based materials with a large Stokes shift and long photoluminescence decay time. The origin of these optical properties in CuInS2 NCs were however not fully understood with conflicting theories describing its characteristic aforementioned properties. Here, subsequential to experimentally confirming the valence band fine structure origin of luminescence in these nanostructures, we utilized the optimized NCs and fabricated a large area Luminescent solar concentrator of 30ˣ30 cm2 area with record Optical Power Efficiency of 6.8% to the date. Then, I discuss the effects of electronic impurity doping in binary chalcogenide NCs synthesized by a novel seeded growth procedure resulting in quantized dopants in each NC thus overcoming the Poissionian bottleneck for their diluted magnetic semiconductor properties. Structural, spectroscopic, and magneto-optical investigations trace a comprehensive picture of the physical processes involved, resulting from the exact doping level of the NCs. Gold atoms, doped here for the first time through the reaction protocol into II−VI NCs, are found to incorporate as non-magnetic Au+ species activating intense size-tuneable intragap photoluminescence and artificially offsetting the hole occupancy of valence band states. Fundamentally, the transient conversion of Au+ to paramagnetic Au2+ (5d9 configuration) under optical excitation results in strong photoinduced magnetism and diluted magnetic semiconductor behaviour revealing the contribution of individual paramagnetic impurities to the macroscopic magnetism of the NCs unlocking their potential to be exploited for applications in quantum and spintronic devices. Moreover, I communicate the effects of substitutional doping with paramagnetic atoms in Manganese doped CsPbCl3 perovskite NCs and reveal a peculiar energy transfer mechanism involving shallow defects states subsequently resulting in dual emission and inducing Stokes shift desirable for photon management technologies. Finally, I conclude by talking about the effect of shape anisotropy in colloidal NC systems by synthesizing and studying two-dimensional colloidal CdTe nanoplatelets. Moreover, I report some very interesting preliminary spectroscopic data that presents these NC systems at great heed with respect to their application in lasing technology and in Ultrafast radiation detection applications. Through the course of my PhD, I worked on the colloidal synthesis of nanostructures, and studied the aforementioned NC systems using structural characterization techniques like X-Ray diffractions and transmission electron microscopy. Spectroscopic techniques including ultrafast transient absorption, steady state and time resolved photoluminescence spectroscopy at cryogenic temperatures, magnetic circular dichroism and electron paramagnetic resonance were used to study and report these nanostructures, thus elucidating their fundamental photophysics and exploit their applicative potential in modern, next generation technologies.

I nanocristalli colloidali a semiconduttore (NC), grazie alle loro proprietà ottiche regolabili tramite la dimensione ed alla processabilità in soluzione, sono state a lungo proposte come alternative versatili e sintetizzate chimicamente per numerose tecnologie fotoniche, optoelettroniche e quanto-computazionali, nonché come building-blocks funzionali e superatomici per metamateriali artificiali assemblati con approcci bottom-up. Dalla loro scoperta oltre 30 anni fa, enormi progressi nella chimica colloidale e superficiale, nella fisica dei NC e nelle applicazioni nei dispostivi, hanno portato queste proposte sempre più vicine alla realtà. In questo lavoro esploro i fenomeni fotofisici di quattro diversi sistemi di NC, differenziati dalla composizione chimica e dalla loro forma. Ho studiato i più promettenti NC ternari intrinseci di CuInS2 che in modo innato offrono alternative senza metalli pesanti e non tossiche ai materiali esistenti a base di Cd e Pb, caratterizzate da un ampio Stokes shift e lunghi tempi di decadimento di fotoluminescenza. L’origine di queste proprietà ottiche nei NC di CuInS2 non era però stata compresa, con teorie contrastanti che le descrivono. Qui, dopo aver confermato sperimentalmente l’origine della PL dovuta alla struttura fine della banda di valenza, abbiamo ottimizzato i NC per fabbricare un concentratore solare luminescente ad ampia area (30x30 cm2) con una efficienza di potenza ottica record del 6.8%. In seguito, discuto gli effetti del drogaggio ad impurezza elettronica in NC di calcogenuri binari sintetizzati tramite una innovativa procedura di crescita “a seme” che risulta in un numero preciso di droganti in ogni NC, quindi superando il limite poissoniano per le loro proprietà di semiconduttori magnetici diluiti (DMS). Studi strutturali, spettroscopici e magneto-ottici descrivono in dettaglio i processi fisici coinvolti, dovuti al livello di drogaggio esatto dei NC. Gli atomi d’oro, inseriti come droganti per la prima volta all’interno di NC II-VI, sono incorporati come specie non magnetica Au+ ed attivano una PL intensa e variabile con la dimensione all’interno del gap del semiconduttore, modificando artificialmente l’occupazione della banda di valenza. Fondamentalmente, la conversione transiente degli Au+ in Au2+ paramagnetici (configurazione 5d9) sotto eccitazione ottica genera sia un forte magnetismo che un comportamento da DMS che dimostrano il contributo delle singole impurezze paramagnetiche al magnetismo macroscopico dei NC, sbloccando il loro potenziale applicativo in dispositivi quantici e di spintronica. Inoltre, riporto gli effetti del drogaggio sostituzionale con atomi paramagnetici in NC di perovskite CsPbCl3 drogati con Mn2+ e rivelo il meccanismo di trasferimento di energia specifico che coinvolge stati di difetto poco profondi che risultano nella duplice emissione di PL e inducono uno Stokes shift vantaggioso per tecnologie di gestione fotonica. Infine, concludo mostrando gli effetti della anisotropia di forma in sistemi di NC colloidali con la sintesi e lo studio di nanoplateles bidimensionali di CdTe. Inoltre, mostro alcuni dati spettroscopici preliminari che rendono questi sistemi molto attraenti per applicazioni nella tecnologia laser e di rilevamento di radiazione ultraveloce. Nel corso di questo lavoro, ho lavorato sulla sintesi colloidale delle nanostrutture e studiato i sistemi nanocristallini menzionati usando tecniche di caratterizzazione strutturale come la diffrazione di raggi X e la microscopia a trasmissione elettronica. Tecniche spettroscopiche tra cui l’assorbimento transiente ultraveloce, la PL a stato stazionario e risolta in tempo a temperature criogeniche, il dicroismo circolare magnetico e la risonanza paramagnetica di elettroni sono state usate per investigare queste nanostrutture, chiarendo la loro fotofisica fondamentale e sfruttando i loro potenziali applicativi in tecnologie moderne e di nuova generazione.

(2021). Spectroscopic avenues and photophysical phenomena in Colloidal Nanocrystals. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).

Spectroscopic avenues and photophysical phenomena in Colloidal Nanocrystals

ANAND, ABHINAV
2021

Abstract

Colloidal semiconductor nanocrystals (NCs), owing to their size-tuneable electronic properties and solution processability, have long been proposed as versatile chemically synthesized alternatives for many photonic, optoelectronic, and quantum computational technologies as well as super-atomic functional building blocks for bottom-up assembled artificial metamaterials. Since their original discovery over 30 years ago, tremendous advancements in colloidal and surface chemistry, NC physics, and device application have brought this vision closer to reality. In this work I explore these photophysical phenomena in four different NC systems diversified by chemical composition and shapes. I studied the most favorable intrinsic ternary CuInS2 NCs which inherently offers heavy metal free, non-toxic alternatives to the existing Cd and Pb based materials with a large Stokes shift and long photoluminescence decay time. The origin of these optical properties in CuInS2 NCs were however not fully understood with conflicting theories describing its characteristic aforementioned properties. Here, subsequential to experimentally confirming the valence band fine structure origin of luminescence in these nanostructures, we utilized the optimized NCs and fabricated a large area Luminescent solar concentrator of 30ˣ30 cm2 area with record Optical Power Efficiency of 6.8% to the date. Then, I discuss the effects of electronic impurity doping in binary chalcogenide NCs synthesized by a novel seeded growth procedure resulting in quantized dopants in each NC thus overcoming the Poissionian bottleneck for their diluted magnetic semiconductor properties. Structural, spectroscopic, and magneto-optical investigations trace a comprehensive picture of the physical processes involved, resulting from the exact doping level of the NCs. Gold atoms, doped here for the first time through the reaction protocol into II−VI NCs, are found to incorporate as non-magnetic Au+ species activating intense size-tuneable intragap photoluminescence and artificially offsetting the hole occupancy of valence band states. Fundamentally, the transient conversion of Au+ to paramagnetic Au2+ (5d9 configuration) under optical excitation results in strong photoinduced magnetism and diluted magnetic semiconductor behaviour revealing the contribution of individual paramagnetic impurities to the macroscopic magnetism of the NCs unlocking their potential to be exploited for applications in quantum and spintronic devices. Moreover, I communicate the effects of substitutional doping with paramagnetic atoms in Manganese doped CsPbCl3 perovskite NCs and reveal a peculiar energy transfer mechanism involving shallow defects states subsequently resulting in dual emission and inducing Stokes shift desirable for photon management technologies. Finally, I conclude by talking about the effect of shape anisotropy in colloidal NC systems by synthesizing and studying two-dimensional colloidal CdTe nanoplatelets. Moreover, I report some very interesting preliminary spectroscopic data that presents these NC systems at great heed with respect to their application in lasing technology and in Ultrafast radiation detection applications. Through the course of my PhD, I worked on the colloidal synthesis of nanostructures, and studied the aforementioned NC systems using structural characterization techniques like X-Ray diffractions and transmission electron microscopy. Spectroscopic techniques including ultrafast transient absorption, steady state and time resolved photoluminescence spectroscopy at cryogenic temperatures, magnetic circular dichroism and electron paramagnetic resonance were used to study and report these nanostructures, thus elucidating their fundamental photophysics and exploit their applicative potential in modern, next generation technologies.
MEINARDI, FRANCESCO
BROVELLI, SERGIO
Nanocristalli; Spettroscopia; Fotofisica; Impurità; sensibilizzazione
Colloidal NCs; Spectroscopy; photophysics; Impurity doping; sensibilizzazione
FIS/03 - FISICA DELLA MATERIA
English
13-apr-2021
SCIENZA E NANOTECNOLOGIA DEI MATERIALI
33
2019/2020
open
(2021). Spectroscopic avenues and photophysical phenomena in Colloidal Nanocrystals. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_835017.pdf

accesso aperto

Descrizione: Spectroscopic avenues and photophysical phenomena in Colloidal Nanocrystals
Tipologia di allegato: Doctoral thesis
Dimensione 4.96 MB
Formato Adobe PDF
4.96 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/311084
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact