In this thesis, three independent projects were addressed, sharing the computational approach based on molecular modeling and in particular molecular dynamics. In the first project, the Sec14-PH domain of neurofibromin (NF1) was investigated. The Sec14 domains have been identified in many different proteins, from prokaryotes to humans, serving as exchangers of lipid molecules between membranes, by means of a pocket whose opening is allowed by the motion of a specific alpha-helix (called lid helix). The crystal structure of the NF1-Sec14 domain (of both the wild type and some mutants associated with the onset of neurofibromatosis pathology) has revealed its peculiarity of being structurally coupled to a PH domain that strongly interacts with the lid helix through a long loop (called lid-lock loop). On this basis, a mechanism for the opening of the Sec14 lipid pocket was formulated which would involve a concerted movement of the lid-lock loop, but this movement has actually never been shown. Guided by available experimental data on the thermal denaturation of Sec14-PH domain of NF1, both on the wild type and some neurofibromin-related mutants, several simulations at high temperature were carried out to compare the dynamics of the wild type domain with a pathological mutant associated with the onset of neurofibromatosis. Our simulations lead us to suggest an opening mechanism for the lid helix and provide a hypothesis for the structural and dynamic basis of the onset of the disease in the case of the specific mutant. The second project addressed the study of a protein called EtfAB which catalyzes a recently discovered process known as Flavin-Based Electron Bifurcation (FBEB). This mechanism is only exploited by some anaerobic microorganisms as a third way of energy coupling. So far, four unrelated protein families are known that are able to catalyze FBEB. Among these, EtfAB, catalyzes the electron transfer between the two FAD molecules bound to it. Surprisingly, the distance between these two FADs, as observed in the crystal structure of EtfAB, is 18 Å, whereas biological electron transfer is considered more likely to occur at a maximal distance of 14 Å. To explain this, a possible mechanism has been suggested that could bring the two FAD molecules closer together. Using molecular dynamics, it was possible to test, and discard, the proposed mechanism. Furthermore, with the Density Functional Theory (DFT), it was possible to provide an interpretation to some spectroscopic data regarding the possible electron transfer between the two FAD molecules. In the third project, I collaborated with Prof. Luca Bertini on a project on the production and propagation of some reactive oxygen species (ROS) in the context of the amyloid-beta peptide involved in the pathogenesis of Alzheimer's. In the amyloid hypothesis on the onset of Alzheimer's disease, an important role has been attributed to the damage caused by ROS, produced by a metal ion coordinated to the amyloid peptide itself, in particular by the hydroxyl radical (OH.-). However, the details of how these radicals propagate and react have not yet been clarified. While Prof. Bertini's DFT calculations addressed the oxidative capacities of the hydroxyl radical and the possible reaction products in the context of the amyloid-beta peptide, my molecular dynamics simulations provided an overview on which possible targets of the hydroxyl radical, coordinated to the ion Cu of the complex, could actually react with the hydroxyl radical due to the dynamic motions of the peptide.

In questa tesi sono stati affrontati tre progetti indipendenti, accomunati dall’uso della modellistica molecolare e in particolare della dinamica molecolare. Nel primo progetto è stato studiato il dominio Sec14-PH della neurofibromina (NF1). I domini sec14 sono stati scoperti in numerose proteine dai procarioti all’uomo come scambiatori di lipidi tra membrane, per mezzo di una tasca la cui apertura è legata al movimento di una specifica alpha-elica (elica lid). La struttura cristallina del dominio Sec14 di NF1 (sia del wild type sia di mutanti associati all’insorgenza della patologia neurofibromatosi) ha rivelato la sua particolarità di essere strutturalmente accoppiato ad un dominio PH che interagisce fortemente con l’elica lid tramite un suo loop (detto lid-lock loop). Su questa base è stato formulato un meccanismo di apertura della tasca del Sec14 che coinvolgerebbe un movimento concertato del lid-lock loop, ma questo movimento non è mai stato osservato o dimostrato. Guidati da dati sperimentali sulla denaturazione termica del Sec14-PH di NF1, sia del wild type sia di alcuni mutanti, diverse simulazioni ad alta temperatura sono state effettuare per comparare la dinamica del dominio wild type con un mutante patologico associato all’insorgenza della patologia neurofibromatosi. Con le nostre simulazioni è stato possibile proporre un meccanismo di funzionamento dell’apertura dell’elica lid e fornire delle basi strutturali e dinamiche dell’insorgenza della patologia nel caso del mutante specifico studiato. Nel secondo progetto è stato affrontato lo studio di una proteina chiamata EtfAB che catalizza un processo recentemente scoperto noto come biforcazione elettronica basata sulle flavine. Questo meccanismo è sfruttato solo da alcuni microrganismi anerobici come terza via di accoppiamento energetico e finora si conoscono quattro famiglie di proteine, evolutivamente non correlate, in grado di catalizzarlo. Una di queste è EtfAB, della quale non è chiaro come possa avvenire il trasferimento elettronico tra le due molecole di FAD ad essa legate. Infatti, la distanza tra questi due FAD osservata nella struttura cristalline di EtfAB è di 18 Å, mentre si ritiene più plausibile che i trasferimenti elettronici in biologia non avvengano a distanze maggiori di 14 Å. Per questo è stato suggerito un possibile meccanismo che potrebbe avvicinare le due molecole di FAD. Usando la dinamica molecolare è stato possibile testare, e smentire, il meccanismo proposto. Inoltre, con il Density Functional Theory (DFT), è stato possibile fornire un’interpretazione ad alcuni dati spettroscopici riguardo il possibile trasferimento elettronico tra le due molecole di FAD. Nel terzo progetto, ho collaborato con il Prof. Luca Bertini ad un progetto sulla produzione e propagazione di alcune specie reattive dell’ossigeno (ROS) nel contesto del peptide amiloide beta coinvolto nella patogenesi dell’Alzheimer. Nell’ambito dell’ipotesi amiloide sull’insorgenza della patologia di Alzheimer, un ruolo importante è stato attribuito ai danni causati dai ROS, prodotti da un complesso metallico all’interno del peptide amiloide stesso, in particolare dal radicale ossidrilico (OH.-). Tuttavia, i dettagli su come questi radicali propaghino e reagiscano non sono ancora stati chiariti. Mentre i calcoli DFT del Prof. Bertini affrontavano le capacità ossidative del radicale ossidrilico e i possibili prodotti di reazione nel contesto del peptide amiloide beta, con i miei calcoli di dinamica molecolari è stata fornita una panoramica su quali possibili bersagli del radicale ossidrilico, coordinato allo ione Cu del complesso, possano effettivamente reagire entrando in contatto con il radicale ossidrilico a causa dei moti dinamici del peptide.

(2021). Structural modelling of biological macromolecules: the cases of neurofibromin, bifurcating Electron Transferring Flavoprotein and Amyloid-β (1-16) peptide. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).

Structural modelling of biological macromolecules: the cases of neurofibromin, bifurcating Electron Transferring Flavoprotein and Amyloid-β (1-16) peptide

RIZZA, FABIO
2021-04-07T00:00:00+02:00

Abstract

In questa tesi sono stati affrontati tre progetti indipendenti, accomunati dall’uso della modellistica molecolare e in particolare della dinamica molecolare. Nel primo progetto è stato studiato il dominio Sec14-PH della neurofibromina (NF1). I domini sec14 sono stati scoperti in numerose proteine dai procarioti all’uomo come scambiatori di lipidi tra membrane, per mezzo di una tasca la cui apertura è legata al movimento di una specifica alpha-elica (elica lid). La struttura cristallina del dominio Sec14 di NF1 (sia del wild type sia di mutanti associati all’insorgenza della patologia neurofibromatosi) ha rivelato la sua particolarità di essere strutturalmente accoppiato ad un dominio PH che interagisce fortemente con l’elica lid tramite un suo loop (detto lid-lock loop). Su questa base è stato formulato un meccanismo di apertura della tasca del Sec14 che coinvolgerebbe un movimento concertato del lid-lock loop, ma questo movimento non è mai stato osservato o dimostrato. Guidati da dati sperimentali sulla denaturazione termica del Sec14-PH di NF1, sia del wild type sia di alcuni mutanti, diverse simulazioni ad alta temperatura sono state effettuare per comparare la dinamica del dominio wild type con un mutante patologico associato all’insorgenza della patologia neurofibromatosi. Con le nostre simulazioni è stato possibile proporre un meccanismo di funzionamento dell’apertura dell’elica lid e fornire delle basi strutturali e dinamiche dell’insorgenza della patologia nel caso del mutante specifico studiato. Nel secondo progetto è stato affrontato lo studio di una proteina chiamata EtfAB che catalizza un processo recentemente scoperto noto come biforcazione elettronica basata sulle flavine. Questo meccanismo è sfruttato solo da alcuni microrganismi anerobici come terza via di accoppiamento energetico e finora si conoscono quattro famiglie di proteine, evolutivamente non correlate, in grado di catalizzarlo. Una di queste è EtfAB, della quale non è chiaro come possa avvenire il trasferimento elettronico tra le due molecole di FAD ad essa legate. Infatti, la distanza tra questi due FAD osservata nella struttura cristalline di EtfAB è di 18 Å, mentre si ritiene più plausibile che i trasferimenti elettronici in biologia non avvengano a distanze maggiori di 14 Å. Per questo è stato suggerito un possibile meccanismo che potrebbe avvicinare le due molecole di FAD. Usando la dinamica molecolare è stato possibile testare, e smentire, il meccanismo proposto. Inoltre, con il Density Functional Theory (DFT), è stato possibile fornire un’interpretazione ad alcuni dati spettroscopici riguardo il possibile trasferimento elettronico tra le due molecole di FAD. Nel terzo progetto, ho collaborato con il Prof. Luca Bertini ad un progetto sulla produzione e propagazione di alcune specie reattive dell’ossigeno (ROS) nel contesto del peptide amiloide beta coinvolto nella patogenesi dell’Alzheimer. Nell’ambito dell’ipotesi amiloide sull’insorgenza della patologia di Alzheimer, un ruolo importante è stato attribuito ai danni causati dai ROS, prodotti da un complesso metallico all’interno del peptide amiloide stesso, in particolare dal radicale ossidrilico (OH.-). Tuttavia, i dettagli su come questi radicali propaghino e reagiscano non sono ancora stati chiariti. Mentre i calcoli DFT del Prof. Bertini affrontavano le capacità ossidative del radicale ossidrilico e i possibili prodotti di reazione nel contesto del peptide amiloide beta, con i miei calcoli di dinamica molecolari è stata fornita una panoramica su quali possibili bersagli del radicale ossidrilico, coordinato allo ione Cu del complesso, possano effettivamente reagire entrando in contatto con il radicale ossidrilico a causa dei moti dinamici del peptide.
TISI, RENATA ANITA
DE GIOIA, LUCA
In this thesis, three independent projects were addressed, sharing the computational approach based on molecular modeling and in particular molecular dynamics. In the first project, the Sec14-PH domain of neurofibromin (NF1) was investigated. The Sec14 domains have been identified in many different proteins, from prokaryotes to humans, serving as exchangers of lipid molecules between membranes, by means of a pocket whose opening is allowed by the motion of a specific alpha-helix (called lid helix). The crystal structure of the NF1-Sec14 domain (of both the wild type and some mutants associated with the onset of neurofibromatosis pathology) has revealed its peculiarity of being structurally coupled to a PH domain that strongly interacts with the lid helix through a long loop (called lid-lock loop). On this basis, a mechanism for the opening of the Sec14 lipid pocket was formulated which would involve a concerted movement of the lid-lock loop, but this movement has actually never been shown. Guided by available experimental data on the thermal denaturation of Sec14-PH domain of NF1, both on the wild type and some neurofibromin-related mutants, several simulations at high temperature were carried out to compare the dynamics of the wild type domain with a pathological mutant associated with the onset of neurofibromatosis. Our simulations lead us to suggest an opening mechanism for the lid helix and provide a hypothesis for the structural and dynamic basis of the onset of the disease in the case of the specific mutant. The second project addressed the study of a protein called EtfAB which catalyzes a recently discovered process known as Flavin-Based Electron Bifurcation (FBEB). This mechanism is only exploited by some anaerobic microorganisms as a third way of energy coupling. So far, four unrelated protein families are known that are able to catalyze FBEB. Among these, EtfAB, catalyzes the electron transfer between the two FAD molecules bound to it. Surprisingly, the distance between these two FADs, as observed in the crystal structure of EtfAB, is 18 Å, whereas biological electron transfer is considered more likely to occur at a maximal distance of 14 Å. To explain this, a possible mechanism has been suggested that could bring the two FAD molecules closer together. Using molecular dynamics, it was possible to test, and discard, the proposed mechanism. Furthermore, with the Density Functional Theory (DFT), it was possible to provide an interpretation to some spectroscopic data regarding the possible electron transfer between the two FAD molecules. In the third project, I collaborated with Prof. Luca Bertini on a project on the production and propagation of some reactive oxygen species (ROS) in the context of the amyloid-beta peptide involved in the pathogenesis of Alzheimer's. In the amyloid hypothesis on the onset of Alzheimer's disease, an important role has been attributed to the damage caused by ROS, produced by a metal ion coordinated to the amyloid peptide itself, in particular by the hydroxyl radical (OH.-). However, the details of how these radicals propagate and react have not yet been clarified. While Prof. Bertini's DFT calculations addressed the oxidative capacities of the hydroxyl radical and the possible reaction products in the context of the amyloid-beta peptide, my molecular dynamics simulations provided an overview on which possible targets of the hydroxyl radical, coordinated to the ion Cu of the complex, could actually react with the hydroxyl radical due to the dynamic motions of the peptide.
Dinamica molecolare; Bioinformatica; Neurofibromina; Etf; Peptide amiloide-β
Molecular dynamics; Bioinformatics; Neurofibromin; Etf; Peptide amiloide-β
BIO/11 - BIOLOGIA MOLECOLARE
English
33
2019/2020
(2021). Structural modelling of biological macromolecules: the cases of neurofibromin, bifurcating Electron Transferring Flavoprotein and Amyloid-β (1-16) peptide. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_823672.pdf

accesso aperto

Descrizione: Tesi revisionata
Tipologia di allegato: Doctoral thesis
Dimensione 3.7 MB
Formato Adobe PDF
3.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10281/310480
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact