Bioeconomy involves processes based on renewable biomasses: in this scenario, the development of second-generation processes, based on residual biomasses such as industrial by-products (e.g. form the food, agriculture, forestry sectors), can accomplish all the principles of sustainability. Since microorganisms have the potential to transform these biomasses into products of industrial interest, the work focused on the valorization of residual biomasses (i.e. Camelina meal and cinnamon waste materials, manure), and on the identification and possible modification of microbial cell factories (i.e. Rhodosporidium toruloides, Saccharomyces cerevisiae, anaerobic consortia) for the synthesis of molecules of industrial relevance (i.e. carotenoids, folates). Following the logic of cascading, high added value compounds can be obtained in relatively low amounts and using increasingly expensive raw materials, whereas bulk chemicals (i.e. biogas) must be obtained from low value feedstocks (i.e. manure). The first substrate studied as feedstock was the Camelina sativa meal, which, despite its potential, had never been considered as a raw material for the development of a bioprocess. Different concentrations of Camelina sativa meal were tested for enzymatic hydrolysis by different concentrations of the industrial cocktail NS22119, to release sugars for the growth of the microorganism. The process was optimized in terms of enzymes added and total solid loadings, identifying the use of 9% w/v of Camelina meal and 0.56% w/wCamelina meal of enzymatic cocktail as able to increase the specific productivity of carotenoids by R. toruloides. The hydrolyzate of Camelina sativa meal was then provided to the microorganism by a separate hydrolysis and fermentation (SHF) or a simultaneous saccharification and fermentation (SSF) process. In all the cases R. toruloides was able to grow and accumulate carotenoids, at a concentration comparable with those reported in the literature from other residual biomasses. SHF production was further tested in bioreactor to acquire quantitative data under industrially relevant conditions. Overall, we demonstrated the potential use of the Camelina sativa meal as raw material for bioprocesses based on R. toruloides, an oily yeast naturally able of accumulating carotenoids. A second activity concerned the exploitation of cinnamon (Cinnamomum verum): since its cellulose content, we applied the principles exposed for the Camelina meal to the waste deriving from the extraction of polyphenols from cinnamon as well. The hydrolysis via enzymatic cocktail was tested at different operating pH, successfully resulting in released sugars available for the growth of microorganisms. Since cinnamon possess antimicrobial properties, an on-plate testing of different yeast species was carried out: in the presence of cinnamon extract waste hydrolysate, all the tested species proved to be able to grow, meaning that the initial extraction diminishes the levels of antimicrobial species in the residues. In the case of R. toruloides, it was able to produce carotenoids both on plate and in liquid media derived from cinnamon waste. Another class of high added-value molecules we focused on were folates: the yeast S. cerevisiae was engineered in order to increase the production of these molecules of pharmacological relevance. Modulation of the shikimate and folate pathways were proposed to assess their effect on the different forms of folates produced from glucose. Finally, the production of biomethane from manure by microbial consortia was evaluated using a computational model: we updated existing equations to better describe microbial conversion of sugars into biomethane and modified specific process parameters to simulate and predict possible increases in production. Overall, this work explored different aspects of the concept of cascading applied to several biomasses, microbial cell factories and products.

La bioeconomia coinvolge processi basati su biomasse rinnovabili: lo sviluppo di processi di seconda generazione, basati su biomasse residuali quali sottoprodotti industriali (es. dal settore alimentare, agricolo, forestale), può incontrare i principi della sostenibilità. Poiché i microrganismi hanno il potenziale per trasformare queste biomasse in prodotti di interesse industriale, il lavoro si è concentrato sulla valorizzazione di biomasse residuali (es. panello di Camelina e scarto di cannella, letame), e sull'identificazione e possibile modificazione di cell factory microbiche (es. Rhodosporidium toruloides, Saccharomyces cerevisiae, consorzi anaerobici) per la sintesi di molecole di rilevanza industriale (es. carotenoidi, folati). Seguendo la logica del cascading, i composti ad alto valore aggiunto possono essere ottenuti in quantità relativamente basse usando materie prime sempre più costose, mentre prodotti chimici bulk (es. biogas) devono essere ottenuti da materie prime di basso valore (es. letame). Il primo substrato studiato come materia prima è stato il panello di Camelina sativa, che, nonostante le sue potenzialità, non è mai stato considerato per lo sviluppo di un bioprocesso. Diverse concentrazioni di panello di Camelina sono state testate per l'idrolisi enzimatica da varie concentrazioni del un cocktail industriale, per rilasciare zuccheri utili alla crescita microbica. Il processo è stato ottimizzato in termini di enzimi aggiunti e carichi solidi totali, individuando 9% p/v di panello di Camelina e dello 0,56% p/ppanello di Camelina di cocktail enzimatico come in grado di aumentare la produttività specifica dei carotenoidi in R. toruloides. L'idrolizzato di panello di Camelina è stato quindi fornito al microrganismo mediante un processo di idrolisi e fermentazione separate (SHF) o di saccarificazione e fermentazione simultanea (SSF). In tutti i casi R. toruloides è stato in grado di crescere e accumulare carotenoidi, a concentrazioni confrontabili con quelle riportate in letteratura da altre biomasse residuali. La produzione è stata testata anche in bioreattore per acquisire dati quantitativi in condizioni di rilevanza industriale. Nel complesso, abbiamo dimostrato il potenziale utilizzo del panello di Camelina come materia prima per bioprocessi basati su R. toruloides, lievito oleaginoso in grado di accumulare carotenoidi. Una seconda attività ha riguardato lo sfruttamento della cannella (Cinnamomum verum): dato il contenuto di cellulosa, abbiamo applicato i principi già esposti anche agli scarti derivanti dall'estrazione dei polifenoli dalla cannella. L'idrolisi enzimatica è stata testata a diversi pH operativi, ottenendo zuccheri disponibili per la crescita microbica. Poiché la cannella possiede proprietà antimicrobiche, è stato effettuato un test su piastra di diverse specie di lievito: in presenza di idrolizzato di scarto di cannella, tutte le specie testate hanno dimostrato di poter crescere. Nel caso di R. toruloides, è stato in grado di produrre carotenoidi sia su piastra che in terreni liquidi derivati dagli scarti di cannella. Un'altra classe di molecole ad alto valore aggiunto su cui ci siamo concentrati sono stati i folati: il lievito S. cerevisiae è stato ingegnerizzato per aumentare la produzione di queste molecole di rilevanza farmacologica. La modulazione della vie dello shikimato e del folato è stata proposta per valutare gli effetti sulle diverse forme di folati prodotti da glucosio. Infine, la produzione di biometano da letame da parte di consorzi microbici è stata valutata con un modello computazionale: abbiamo aggiornato le equazioni esistenti per descrivere meglio la conversione microbica degli zuccheri in biometano e modificato specifici parametri di processo per simulare possibili aumenti della produzione. Nel complesso, questo lavoro ha esplorato diversi aspetti del concetto di cascading applicato a diverse biomasse, cell factory microbiche e bioprodotti.

(2021). Microbial cell factories for biobased processes: the concept of cascading applied to different biomasses and bioproducts in the context of bioeconomy. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).

Microbial cell factories for biobased processes: the concept of cascading applied to different biomasses and bioproducts in the context of bioeconomy

BERTACCHI, STEFANO
2021

Abstract

Bioeconomy involves processes based on renewable biomasses: in this scenario, the development of second-generation processes, based on residual biomasses such as industrial by-products (e.g. form the food, agriculture, forestry sectors), can accomplish all the principles of sustainability. Since microorganisms have the potential to transform these biomasses into products of industrial interest, the work focused on the valorization of residual biomasses (i.e. Camelina meal and cinnamon waste materials, manure), and on the identification and possible modification of microbial cell factories (i.e. Rhodosporidium toruloides, Saccharomyces cerevisiae, anaerobic consortia) for the synthesis of molecules of industrial relevance (i.e. carotenoids, folates). Following the logic of cascading, high added value compounds can be obtained in relatively low amounts and using increasingly expensive raw materials, whereas bulk chemicals (i.e. biogas) must be obtained from low value feedstocks (i.e. manure). The first substrate studied as feedstock was the Camelina sativa meal, which, despite its potential, had never been considered as a raw material for the development of a bioprocess. Different concentrations of Camelina sativa meal were tested for enzymatic hydrolysis by different concentrations of the industrial cocktail NS22119, to release sugars for the growth of the microorganism. The process was optimized in terms of enzymes added and total solid loadings, identifying the use of 9% w/v of Camelina meal and 0.56% w/wCamelina meal of enzymatic cocktail as able to increase the specific productivity of carotenoids by R. toruloides. The hydrolyzate of Camelina sativa meal was then provided to the microorganism by a separate hydrolysis and fermentation (SHF) or a simultaneous saccharification and fermentation (SSF) process. In all the cases R. toruloides was able to grow and accumulate carotenoids, at a concentration comparable with those reported in the literature from other residual biomasses. SHF production was further tested in bioreactor to acquire quantitative data under industrially relevant conditions. Overall, we demonstrated the potential use of the Camelina sativa meal as raw material for bioprocesses based on R. toruloides, an oily yeast naturally able of accumulating carotenoids. A second activity concerned the exploitation of cinnamon (Cinnamomum verum): since its cellulose content, we applied the principles exposed for the Camelina meal to the waste deriving from the extraction of polyphenols from cinnamon as well. The hydrolysis via enzymatic cocktail was tested at different operating pH, successfully resulting in released sugars available for the growth of microorganisms. Since cinnamon possess antimicrobial properties, an on-plate testing of different yeast species was carried out: in the presence of cinnamon extract waste hydrolysate, all the tested species proved to be able to grow, meaning that the initial extraction diminishes the levels of antimicrobial species in the residues. In the case of R. toruloides, it was able to produce carotenoids both on plate and in liquid media derived from cinnamon waste. Another class of high added-value molecules we focused on were folates: the yeast S. cerevisiae was engineered in order to increase the production of these molecules of pharmacological relevance. Modulation of the shikimate and folate pathways were proposed to assess their effect on the different forms of folates produced from glucose. Finally, the production of biomethane from manure by microbial consortia was evaluated using a computational model: we updated existing equations to better describe microbial conversion of sugars into biomethane and modified specific process parameters to simulate and predict possible increases in production. Overall, this work explored different aspects of the concept of cascading applied to several biomasses, microbial cell factories and products.
BRANDUARDI, PAOLA
bioeconomia; cascading; biomasse; bioraffineria; biotecnologie
bioeconomy; cascading; biomass; biorefinery; biotecnologie
CHIM/11 - CHIMICA E BIOTECNOLOGIA DELLE FERMENTAZIONI
English
7-apr-2021
TECNOLOGIE CONVERGENTI PER I SISTEMI BIOMOLECOLARI (TeCSBi)
33
2019/2020
open
(2021). Microbial cell factories for biobased processes: the concept of cascading applied to different biomasses and bioproducts in the context of bioeconomy. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_725932.pdf

Accesso Aperto

Descrizione: Microbial cell factories for biobased processes: the concept of cascading applied to different biomasses and bioproducts in the context of bioeconomy
Tipologia di allegato: Doctoral thesis
Dimensione 7.4 MB
Formato Adobe PDF
7.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/310476
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact