Excess glucose is stored as glycogen in skeletal muscle and liver as an energy substrate readily available through the glycolytic pathway. Perturbation of glycolytic enzymes results in glycogen storage disorders such as Pompe disease (PD) or glycogenosis type II. PD is an autosomal recessive metabolic disease with an estimated incidence of 1:40000 live births. PD is due to a defect of the lysosomal enzyme acid α-glucosidase (GAA), or acid maltase, necessary for glycogen degradation. The spectrum of disease severity encompasses a broad continuum of clinical phenotypes ranging from the most severe “classic” form, characterized by early childhood onset, severe cardiomyopathy, rapidly progressive course and fatal outcome before two years of age, to an “intermediate” infantile form expressing a milder phenotype, and to juvenile and adult forms characterized by prevalent involvement of skeletal muscle. The almost total deficiency of the GAA enzyme results in the severe infantile form, while partial deficiency is responsible for the intermediate and mild forms. Enzyme replacement therapy (ERT), where GAA is provided via intravenous infusion is the only therapy available since 2006. While ERT represented a major milestone in the treatment of patients with Pompe disease and it has been shown to be efficacious in infantile severe PD, not all late onset cases respond equally well to this treatment. Therefore, the correction of the skeletal muscle phenotype in late onset cases is still challenging, revealing a need for more effective therapies. GAA difficulties in restoring muscle function have been ascribed to a concomitant altered autophagy, a key molecular mechanism that maintains cellular homeostasis and ensures correct macromolecule turnover in the cell. However, it remains unclear how autophagy is disrupted in PD, since it is yet unknown if an excessive acceleration or reduction of this process is present. Notably, this recent defective autophagy finding in PD has stimulated both a reassessment of the pathogenic mechanisms as well as the investigation of new therapeutic approaches, including search for adjunctive and alternative therapies addressing both glycogen accumulation and autophagy. Among the small molecules to be explored for interfering with glycogen accumulation we have selected the Acid-3-Bromopyruvic (3-BrPA), an inhibitor of hexokinase (HK), which is a key glycolytic enzyme. In vitro and in vivo studies have reported this molecule to be an efficacious anti-tumor drug, in those tumor phenotypes in which cancer cells preferentially depend on glycolysis to produce adenosine triphosphate (ATP) for growth and proliferation. The anti-cancer property of this particular compound is due to its ability to inhibit glycolysis, by abolishing cell ATP production and consequently impeding the transformation by hexokinase of glucose into glucose-6- phosphate, and to trigger modulation of the autophagic process. Among the different hexokinase isoforms HKI, HKII, HKIII, and HKIV found in mammals, HKII is expressed at relatively high level only in skeletal muscle, adipose tissue, and heart. The aim of this project was to use this molecule, as an inhibitor of the key glycolytic enzyme hexokinase-II, to modulate glycogen incorporation into cells. We used zebrafish as in vivo model, in order to evaluate the effect of this specific molecule on the muscular system at subcellular detail. The demonstration of its role as HKII inhibitor and as an autophagy modulator, has created the basis for developing a new strategy to improve muscle function in PD patients.

Il glucosio in eccesso viene immagazzinato come glicogeno nel muscolo scheletrico e nel fegato come substrato energetico facilmente disponibile attraverso la via glicolitica. Il malfunzionamento degli enzimi glicolitici provoca disturbi da accumulo di glicogeno come la malattia di Pompe (PD) o glicogenosi di tipo II. PD è una malattia metabolica autosomica recessiva con un'incidenza stimata di 1 su 40000 nati vivi. La malattia di Pompe è causata da difetti a carico dell'enzima lisosomiale acid α-glucosidasi (GAA) o maltasi acida, necessario per la degradazione del glicogeno. Lo spettro di gravità della malattia comprende diversi fenotipi clinici. Essi vanno dalla forma "classica" più grave, caratterizzata da insorgenza durante la prima infanzia, cardiomiopatia grave, decorso progressivo rapido ed esito fatale prima dei due anni, fino ad una forma infantile "intermedia" esprimendo un fenotipo più mite e forme giovanili e adulte caratterizzate dal coinvolgimento prevalente del muscolo scheletrico. La quasi totale carenza dell'enzima GAA causa la forma infantile grave della malattia, mentre la carenza parziale è responsabile delle forme intermedie e lievi. La terapia sostitutiva enzimatica (ERT), in cui l’enzima GAA viene fornito tramite infusione endovenosa è l'unica terapia disponibile dal 2006. Nonostante l'ERT abbia rappresentato una pietra miliare nel trattamento dei pazienti con malattia di Pompe, e abbia dimostrato di essere efficace nella forma infantile grave, non tutti i casi ad esordio tardivo rispondono ugualmente bene a questo trattamento. Pertanto, la correzione del fenotipo muscolare nei casi ad esordio tardivo è ancora ostica, mettendo in luce la necessità di trovare terapie più efficaci. Le difficoltà nel ripristino della funzione muscolare da parte della GAA esogena sono state attribuite ad una concomitante alterazione dell’autofagia. Il processo autofagico è un meccanismo molecolare chiave nel mantenimento dell’omeostasi cellulare, e assicura il corretto turnover delle macromolecole nella cellula. Tuttavia, non è chiaro quali siano le modificazioni dell'autofagia nella malattia di Pompe, poiché non è ancora noto se sia presente un'accelerazione o una riduzione eccessiva di questo processo. In particolare, la recente scoperta di un processo autofagico difettoso nella malattia di Pompe, ha stimolato sia una rivalutazione dei meccanismi patogeni della patologia, sia lo studio di nuovi approcci terapeutici, compresa la ricerca di terapie alternative mirate sia all'accumulo di glicogeno che all'autofagia. Tra le numerose molecole interessanti per il loro effetto di interferire con l'accumulo di glicogeno, abbiamo selezionato l'Acido-3-Bromopiruvico (3-BrPA), un inibitore dell'esochinasi (HK), il quale riveste un ruolo molto importante, essendo un enzima glicolitico. Studi in vitro e in vivo hanno riportato che il 3-BrPA è un efficace farmaco antitumorale, in particolare in quei tipi di tumori in cui le cellule, per crescere e proliferare, dipendono preferibilmente dalla glicolisi per produrre adenosina trifosfato (ATP). La proprietà anticancro di questo particolare composto è dovuta alla sua capacità di inibire la glicolisi. Essa abolisce la produzione di ATP da parte della cellula, impedendo di conseguenza la trasformazione da parte dell’HK del glucosio in glucosio-6-fosfato, e innescando successivamente la modulazione del processo autofagico. Tra le 4 diverse isoforme di esochinasi presenti nei mammiferi (HKI, HKII, HKIII e HKIV), si è visto che l’isoforma HKII è espressa a livello relativamente alto solo nel muscolo scheletrico, nel tessuto adiposo e nel cuore. Lo scopo di questo progetto è quello di testare l’azione del 3-BrPA, valutandone gli effetti sia sul sistema muscolare sia a livello subcellulare, e per fare questo, è stato generato un modello malattia in zebrafish.

(2021). Generation and characterization of a zebrafish Pompe disease model to test the efficacy of 3-BrPA as a new therapeutic molecule.. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).

Generation and characterization of a zebrafish Pompe disease model to test the efficacy of 3-BrPA as a new therapeutic molecule.

BRAGATO, CINZIA
2021

Abstract

Excess glucose is stored as glycogen in skeletal muscle and liver as an energy substrate readily available through the glycolytic pathway. Perturbation of glycolytic enzymes results in glycogen storage disorders such as Pompe disease (PD) or glycogenosis type II. PD is an autosomal recessive metabolic disease with an estimated incidence of 1:40000 live births. PD is due to a defect of the lysosomal enzyme acid α-glucosidase (GAA), or acid maltase, necessary for glycogen degradation. The spectrum of disease severity encompasses a broad continuum of clinical phenotypes ranging from the most severe “classic” form, characterized by early childhood onset, severe cardiomyopathy, rapidly progressive course and fatal outcome before two years of age, to an “intermediate” infantile form expressing a milder phenotype, and to juvenile and adult forms characterized by prevalent involvement of skeletal muscle. The almost total deficiency of the GAA enzyme results in the severe infantile form, while partial deficiency is responsible for the intermediate and mild forms. Enzyme replacement therapy (ERT), where GAA is provided via intravenous infusion is the only therapy available since 2006. While ERT represented a major milestone in the treatment of patients with Pompe disease and it has been shown to be efficacious in infantile severe PD, not all late onset cases respond equally well to this treatment. Therefore, the correction of the skeletal muscle phenotype in late onset cases is still challenging, revealing a need for more effective therapies. GAA difficulties in restoring muscle function have been ascribed to a concomitant altered autophagy, a key molecular mechanism that maintains cellular homeostasis and ensures correct macromolecule turnover in the cell. However, it remains unclear how autophagy is disrupted in PD, since it is yet unknown if an excessive acceleration or reduction of this process is present. Notably, this recent defective autophagy finding in PD has stimulated both a reassessment of the pathogenic mechanisms as well as the investigation of new therapeutic approaches, including search for adjunctive and alternative therapies addressing both glycogen accumulation and autophagy. Among the small molecules to be explored for interfering with glycogen accumulation we have selected the Acid-3-Bromopyruvic (3-BrPA), an inhibitor of hexokinase (HK), which is a key glycolytic enzyme. In vitro and in vivo studies have reported this molecule to be an efficacious anti-tumor drug, in those tumor phenotypes in which cancer cells preferentially depend on glycolysis to produce adenosine triphosphate (ATP) for growth and proliferation. The anti-cancer property of this particular compound is due to its ability to inhibit glycolysis, by abolishing cell ATP production and consequently impeding the transformation by hexokinase of glucose into glucose-6- phosphate, and to trigger modulation of the autophagic process. Among the different hexokinase isoforms HKI, HKII, HKIII, and HKIV found in mammals, HKII is expressed at relatively high level only in skeletal muscle, adipose tissue, and heart. The aim of this project was to use this molecule, as an inhibitor of the key glycolytic enzyme hexokinase-II, to modulate glycogen incorporation into cells. We used zebrafish as in vivo model, in order to evaluate the effect of this specific molecule on the muscular system at subcellular detail. The demonstration of its role as HKII inhibitor and as an autophagy modulator, has created the basis for developing a new strategy to improve muscle function in PD patients.
MANTEGAZZA, RENATO
Malattia di Pompe; a-glucosidasi acida; zebrafish; Glicogeno; Acido3-Bromopiruvico
Pompe disease; Acid α-glucosidase; zebrafish; Glycogen; Acido3-Bromopiruvico
BIO/12 - BIOCHIMICA CLINICA E BIOLOGIA MOLECOLARE CLINICA
English
20-gen-2021
NEUROSCIENZE
33
2019/2020
open
(2021). Generation and characterization of a zebrafish Pompe disease model to test the efficacy of 3-BrPA as a new therapeutic molecule.. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_759520.pdf

accesso aperto

Descrizione: Generation and characterization of a zebrafish Pompe disease model to test the efficacy of 3-BrPA as a new therapeutic molecule.
Tipologia di allegato: Doctoral thesis
Dimensione 3.76 MB
Formato Adobe PDF
3.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/306482
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact