Fractures with transcurrent and oblique components of motion, parallel and coeval to rift zones, which developed at the surface and in the upper ten kilometers of the crust, have been recently documented in extensional volcano-tectonic contexts through earthquake focal mechanisms and Holocene field data. Their origin and development is still undefined, due to the fact that transcurrent motions both along normal faults and extensional fractures are incompatible with the stress field associated with rift zones and, furthermore, transcurrent movements along planes parallel to normal faults are not compatible with the extension required to form a rift. This anomaly is an issue of international interest for the scientific community: in fact, interpreting correctly geophysical data associated with magma upwelling, which also influences the genesis of faults and extension fractures at the surface, is a key point when monitoring active volcanic zones. The present research focuses on the Yellowstone volcanic plateau, in the western United States, and the Theistareykir and Krafla Fissure Swarms, the westernmost rifts of the Northern Volcanic Zone, in northeast Iceland. Main aim is to define the partition of fault motions at planes with different kinematics, to study the temporal relations between transcurrent/transtensional faults and normal faults, to evaluate the relations between transcurrent/transtensional faults and magmatic intrusions and to analyze the variations of fault kinematics with depth. A multidisciplinary approach has been adopted, that consists in the integration of new geological-structural field data acquired through classical methods, quantitative data collected on Orthomosaics and on Digital Surface Models (DSMs) elaborated through Structure from Motion photogrammetry techniques (SfM) applied to Unmanned Aerial Vehicles (UAVs) surveys, seismic data regarding both earthquakes of magmatic and tectonic origin and numerical models on sill and dyke-induced deformations. The complex geometry and distribution of rift-parallel transcurrent faults is interpreted both considering the possible control of regional tectonics on the orientation of faults and the relation with seismic swarms, magmatic emplacement, that could cause the enlargement of pre-existing fractures or the development of new fractures and small faults, and surficial deformation phases. The predominance of strike-slip motions revealed by focal mechanism solutions during the 2010 Madison Plateau seismic swarm at Yellowstone lead to the development of a geomechanical model that explains the origin of left- or right-lateral kinematics as related to an horizontally-propagating dyke. Such fractures can be located in correspondence of the advancing fluid tip or at the sides of the advancing magmatic body, as confirmed by both field data collected through classical methods and UAV surveys conducted in Iceland and by the numerical models developed to investigate horizontal dyke propagation.
Fratture parallele a zone di rift con componenti di movimento trascorrente e obliquo, sviluppate in superficie e all’interno dei primi dieci chilometri della crosta, sono state documentate in contesti vulcano-tettonici estensionali attraverso il calcolo di meccanismi focali e la raccolta di dati di terreno di età olocenica. L’origine e lo sviluppo di queste strutture sono tuttora indefiniti: la presenza di componenti trascorrenti lungo fratture estensionali e faglie normali è infatti incompatibile con lo stato di stress all’origine di zone di rift, e, inoltre, una cinematica trascorrente lungo piani paralleli a faglie normali, come quella individuata, non risulta compatibile con i processi estensionali all’origine della formazione di un rift. Quest’anomalia è di estremo interesse per la comunità scientifica internazionale: infatti, interpretare correttamente dati geofisici associati alla risalita di magma, che causa la formazione di faglie e fratture estensionali in superficie, è fondamentale per un corretto monitoraggio di aree vulcaniche attive. Questa ricerca di dottorato si focalizza in particolare sul plateau vulcanico di Yellowstone, negli Stati Uniti occidentali, e sui rift del Theistareykir e Krafla, all’interno della Northern Volcanic Zone in Islanda nordorientale. Gli obiettivi principali sono l’individuazione di piani di faglia con diversa cinematica, lo studio delle relazioni temporali tra faglie trascorrenti/transtensive e faglie normali e tra faglie trascorrenti/transtensive ed intrusioni magmatiche, e l’analisi della variazione di cinematica con la profondità. Gli obiettivi sopra descritti sono stati raggiunti attraverso un approccio multidisciplinare, che consiste nell’integrazione tra nuovi dati sismologici e dati geologico-strutturali di terreno raccolti attraverso metodi classici e su ortomosaici e modelli digitali del terreno (DSMs) costruiti tramite tecniche di fotogrammetria applicate a rilievi con droni, e modelli numerici incentrati sulla deformazione indotta da dicchi e sill. I risultati dimostrano che la complessa geometria e distribuzione di strutture trascorrenti parallele ai rift può essere interpretata considerando sia il possibile controllo della tettonica regionale sull’orientazione delle faglie sia la relazione con sciami sismici, la messa in posto di sill e dicchi, che possono causare l’allargamento di fratture pre-esistenti o lo sviluppo di nuove fratture, e con fasi di inflazione e deflazione superficiale. In particolare, la predominanza di movimenti trascorrenti messa in luce dai meccanismi focali durante lo sciame sismico avvenuto a Madison Plateau (Yellowstone) nel 2010 ha portato allo sviluppo di un modello geomeccanico che spiega l’origine di componenti trascorrenti di movimento, destre o sinistre, in relazione alla propagazione orizzontale di un dicco. Queste fratture si originano in corrispondenza della terminazione del dicco stesso, oppure lateralmente, queste ultime con geometria parallela o sub-parallela al corpo intrusivo, come confermato dai dati di terreno raccolti attraverso metodi classici e rilievi da drone in Islanda e dai modelli numerici che investigano la deformazione risultante ad una propagazione magmatica orizzontale.
(2021). The anomaly of rift-parallel transcurrent faults. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).
The anomaly of rift-parallel transcurrent faults
RUSSO, ELENA
2021
Abstract
Fractures with transcurrent and oblique components of motion, parallel and coeval to rift zones, which developed at the surface and in the upper ten kilometers of the crust, have been recently documented in extensional volcano-tectonic contexts through earthquake focal mechanisms and Holocene field data. Their origin and development is still undefined, due to the fact that transcurrent motions both along normal faults and extensional fractures are incompatible with the stress field associated with rift zones and, furthermore, transcurrent movements along planes parallel to normal faults are not compatible with the extension required to form a rift. This anomaly is an issue of international interest for the scientific community: in fact, interpreting correctly geophysical data associated with magma upwelling, which also influences the genesis of faults and extension fractures at the surface, is a key point when monitoring active volcanic zones. The present research focuses on the Yellowstone volcanic plateau, in the western United States, and the Theistareykir and Krafla Fissure Swarms, the westernmost rifts of the Northern Volcanic Zone, in northeast Iceland. Main aim is to define the partition of fault motions at planes with different kinematics, to study the temporal relations between transcurrent/transtensional faults and normal faults, to evaluate the relations between transcurrent/transtensional faults and magmatic intrusions and to analyze the variations of fault kinematics with depth. A multidisciplinary approach has been adopted, that consists in the integration of new geological-structural field data acquired through classical methods, quantitative data collected on Orthomosaics and on Digital Surface Models (DSMs) elaborated through Structure from Motion photogrammetry techniques (SfM) applied to Unmanned Aerial Vehicles (UAVs) surveys, seismic data regarding both earthquakes of magmatic and tectonic origin and numerical models on sill and dyke-induced deformations. The complex geometry and distribution of rift-parallel transcurrent faults is interpreted both considering the possible control of regional tectonics on the orientation of faults and the relation with seismic swarms, magmatic emplacement, that could cause the enlargement of pre-existing fractures or the development of new fractures and small faults, and surficial deformation phases. The predominance of strike-slip motions revealed by focal mechanism solutions during the 2010 Madison Plateau seismic swarm at Yellowstone lead to the development of a geomechanical model that explains the origin of left- or right-lateral kinematics as related to an horizontally-propagating dyke. Such fractures can be located in correspondence of the advancing fluid tip or at the sides of the advancing magmatic body, as confirmed by both field data collected through classical methods and UAV surveys conducted in Iceland and by the numerical models developed to investigate horizontal dyke propagation.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_709319.pdf
accesso aperto
Descrizione: Russo Elena - 709319
Tipologia di allegato:
Doctoral thesis
Dimensione
9.82 MB
Formato
Adobe PDF
|
9.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.