This thesis is part of PerFORM WATER 2030 (Platform for Integrated Operation Research and Management of Public Water towards 2030), a project financed by the Lombardy region and the European Regional Development Fund. The objective is to produce laboratory-scale zero valent iron nanoparticles encapsulated in a carbonaceous matrix (ME-nFe), a material with reducing properties and high adsorption capacity that can be used in wastewater treatment. The synthesis of the nanoparticles is achieved through hydrothermal carbonization (HTC) starting from microalgal biomass grown in the pilot plant located at the Bresso-Niguarda (MI) treatment plant. Specifically, the first phases of work focused on collecting biomass directly from the plant and on its characterization in terms of elemental composition and polyphenol content. Subsequently, the conditions that could influence the synthesis of ME-nFe were studied: two types of salt were tested as an iron source (ammonium iron sulphate and iron nitrate), four Fe/C ratios to be put in the reactor (0.02, 0.05, 0.1, 0.2) and three different temperatures of the synthesis process (180°C, 200°C and 225°C). The characterization of the produced nanoparticles in terms of zero-valent and total iron content, specific surface area and nanoscale morphological structure, allowed the selection of the prototypes with the best properties. Once the best operating conditions were identified, the ME-nFe were tested in the removal of five heavy metals (Zn, Cu, Ni, Cd, Cr), first under ideal conditions and then in more realistic ones. At the end of the treatment, the possibility of recovering the CE-nZVI and reusing it them for multiple removal cycles was also assessed. The best results were achieve using a sorbent concentration of 3 gL-1 on a starting solution of the five heavy metals with a starting concentration of 1 mg L-1. The removal for Zn, Cu, Ni e Cd were higher than 96%. However, Cr was never affected during the tests. Hereafter, the toxicity of the liquid by-product of the HTC process was studied, both towards Aliivibrio fischeri, a luminescent bacterium used as an indicator in ecotoxicology, and towards the microalgae themselves. Microtox Basic tests were performed on the raw liquid by-product, showing a very strong effect even on very diluted samples (EC50= 1.8% after 15 min). The test was than repeated after a pretreatment step (precipitation of dissolved iron after pH adjustment) but the final toxicity was still very high, proving that the problem was not the dissolved iron but probably the presence of some toxic organic compounds (EC50= 6.8% after 15 min). Adsorption with activated carbons (using two different adsorbent doses of 2 and 3gL-1) was then performed as an alternative pretreatment. Both concentrations were able to sensibly reduce the wastewater toxicity, with the best result achieved using the 3gL-1 dose (EC50= 60% after 15 min). Finally, the possibility of cultivating microalgae on a dilution of the HTC wastewater was assessed, in order to study their decontamination capacity and simultaneously evaluating the possibility of closing the cycle, enhancing the by-product and obtaining new biomass for other syntheses of CE-nZVI. Microalgae were grown on a 20% dilution of the liquid by-product using the centrate as the diluent, both in batch and continuous mode, making the process to produce the microalgal base nanoparticles more sustainable.
Il presente lavoro di tesi si inserisce all’interno del progetto PerFORM WATER 2030 (Platform for Integrated Operation Research and Management of Public Water towards 2030), un progetto finanziato da regione Lombardia e dal Fondo Europeo di Sviluppo Regionale. L’elaborato ha l’obiettivo di produrre a scala di laboratorio delle nanoparticelle di ferro zero valente incapsulate in una matrice carboniosa (ME-nFe), un materiale con proprietà riducente ed elevato potere adsorbente da applicare nella depurazione delle acque. La sintesi delle nanoparticelle è avvenuta attraverso la carbonizzazione idrotermica (HTC) a partire da biomassa microalgale coltivata nell’impianto pilota situato presso il depuratore di Bresso-Niguarda (MI). Nello specifico, le prime fasi di lavoro si sono focalizzate sulla raccolta della biomassa direttamente in impianto e sulla sua caratterizzazione in termini di composizione elementare e contenuto di polifenoli. Successivamente si è passati allo studio delle condizioni che potessero influenzare la sintesi di CE-nZVI. Sono stati testati due tipi di sale da utilizzare quale fonte di ferro (solfato di ferro ammonico e nitrato di ferro), 4 rapporti Fe/C da inserire nel reattore (0.02, 0.05, 0.1, 0.2) e 3 temperature del processo di sintesi (180°C, 200°C e 225°C). Attraverso la caratterizzazione delle nanoparticelle ottenute in termini di contenuto di ferro zero-valente e ferro totale, di area superficiale specifica e di struttura morfologica a livello nanometrico, sono stati selezionati i prototipi dalle caratteristiche migliori. Le ME-nFE sono state testate nella rimozione di cinque metalli pesanti (Zn, Cu, Ni, Cd, Cr), prima in condizioni ideali e poi in condizioni più aderenti alla realtà. I migliori risultati sono stati ottenuti con una concentrazione di 3 gL-1 di adsorbente a partire da una concentrazione iniziale di ciascun metallo pari a 1 mgL-1. In queste condizioni si sono ottenute rimozioni per Zn, Cu, Ni e Cd superiori al 96%. Il Cr non è mai stato adeguatamente rimosso nei vari esprimenti. È stata inoltre valutata, a fine trattamento, la possibilità di recupero delle CE-nZVI e di un loro riutilizzo per più cicli di rimozione. In seguito, ci si è occupati della valutazione della tossicità del sottoprodotto liquido del processo HTC, sia nei confronti di Vibrio fisherii un batterio luminescente utilizzato come indicatore in ecotossicologia sia nei confronti delle stesse microalghe. Il test Microtox è stato effettuato sul refluo tal quale, individuando una forte tossicità anche su campioni assai diluiti (EC50= 1.8% dopo 15 minuti). Il test è stato ripetuto dopo strategie di pretrattamento (precipitazione del ferro attraverso modifica del pH) ma la tossicità era comunque elevata (EC50= 6.8%). Si è quindi valutato l’adsorbimento tramite carbone attivo (testando due concentrazioni 2 e 3gL-1). Entrambe le concentrazioni sono state in grado di ridurre sensibilmente la tossicità, con il risultato migliore portato dalla dose maggiore (EC50= 60% after 15 min). Infine, è stata valutata la possibilità di coltivazione delle microalghe su una diluizione del refluo HTC, al fine di studiare eventuali loro capacità di decontaminazione e al tempo stesso capire se fosse possibile chiudere il ciclo, valorizzando il sottoprodotto e ottenendo nuova biomassa per altre sintesi di CE-nZVI. Le microalghe sono state coltivate con successo su una miscela al 20% di centrato e sottoprodotto liquido, sia in batch che in continuo, aprendo scenari interessanti per rendere il processo di produzione della nanoparticelle più sostenibile.
(2021). Nanoparticles for the removal of contaminants from wastewaters. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).
Nanoparticles for the removal of contaminants from wastewaters
MANTOVANI, MARCO
2021
Abstract
This thesis is part of PerFORM WATER 2030 (Platform for Integrated Operation Research and Management of Public Water towards 2030), a project financed by the Lombardy region and the European Regional Development Fund. The objective is to produce laboratory-scale zero valent iron nanoparticles encapsulated in a carbonaceous matrix (ME-nFe), a material with reducing properties and high adsorption capacity that can be used in wastewater treatment. The synthesis of the nanoparticles is achieved through hydrothermal carbonization (HTC) starting from microalgal biomass grown in the pilot plant located at the Bresso-Niguarda (MI) treatment plant. Specifically, the first phases of work focused on collecting biomass directly from the plant and on its characterization in terms of elemental composition and polyphenol content. Subsequently, the conditions that could influence the synthesis of ME-nFe were studied: two types of salt were tested as an iron source (ammonium iron sulphate and iron nitrate), four Fe/C ratios to be put in the reactor (0.02, 0.05, 0.1, 0.2) and three different temperatures of the synthesis process (180°C, 200°C and 225°C). The characterization of the produced nanoparticles in terms of zero-valent and total iron content, specific surface area and nanoscale morphological structure, allowed the selection of the prototypes with the best properties. Once the best operating conditions were identified, the ME-nFe were tested in the removal of five heavy metals (Zn, Cu, Ni, Cd, Cr), first under ideal conditions and then in more realistic ones. At the end of the treatment, the possibility of recovering the CE-nZVI and reusing it them for multiple removal cycles was also assessed. The best results were achieve using a sorbent concentration of 3 gL-1 on a starting solution of the five heavy metals with a starting concentration of 1 mg L-1. The removal for Zn, Cu, Ni e Cd were higher than 96%. However, Cr was never affected during the tests. Hereafter, the toxicity of the liquid by-product of the HTC process was studied, both towards Aliivibrio fischeri, a luminescent bacterium used as an indicator in ecotoxicology, and towards the microalgae themselves. Microtox Basic tests were performed on the raw liquid by-product, showing a very strong effect even on very diluted samples (EC50= 1.8% after 15 min). The test was than repeated after a pretreatment step (precipitation of dissolved iron after pH adjustment) but the final toxicity was still very high, proving that the problem was not the dissolved iron but probably the presence of some toxic organic compounds (EC50= 6.8% after 15 min). Adsorption with activated carbons (using two different adsorbent doses of 2 and 3gL-1) was then performed as an alternative pretreatment. Both concentrations were able to sensibly reduce the wastewater toxicity, with the best result achieved using the 3gL-1 dose (EC50= 60% after 15 min). Finally, the possibility of cultivating microalgae on a dilution of the HTC wastewater was assessed, in order to study their decontamination capacity and simultaneously evaluating the possibility of closing the cycle, enhancing the by-product and obtaining new biomass for other syntheses of CE-nZVI. Microalgae were grown on a 20% dilution of the liquid by-product using the centrate as the diluent, both in batch and continuous mode, making the process to produce the microalgal base nanoparticles more sustainable.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_750959.pdf
accesso aperto
Tipologia di allegato:
Doctoral thesis
Dimensione
3.34 MB
Formato
Adobe PDF
|
3.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.