Phosphorus and silicon two-dimensional (2D) allotropes have been the forerunners among the post-graphene monoelemental 2D materials. The scientific and technological advantages of these materials require the development of processing methods to guarantee their effective integration in new devices for nanoelectronics. In the present thesis work, some of the unresolved bottlenecks along the device integration path of 2D elemental phosphorus allotropes have been examined considering specifically the case of the α-P (single-layer black phosphorus or phosphorene) and β-P (blue phosphorene) 2D polymorphs. The integration of the 2D α-P phase in devices has been the subject of extensive investigations and nowadays relies on an almost consolidated path that has led to applications spanning a wide range of fields. One of the few remaining obstacles on this path is the lack of a scalable method to produce 2D α-P layers on large areas and with accurate control of the thickness. In particular, such control is difficult to achieve in the exfoliation of layered black phosphorus (BP) crystals. In this respect, micro-Raman spectroscopy has been used both as a metrological tool to determine the thickness of the exfoliated flakes and as method to achieve their controllable thickness reduction employing the laser thinning technique. However, thickness determination methods based on the calibration of the intensity of the Raman bands have been poorly investigated in the case of multilayer BP flakes due to difficulties caused by optical interferences and anisotropy effects. In this thesis work, we have proposed a novel Raman spectroscopy approach that, carefully accounting for these effects, allowed the quick discrimination of the thickness of exfoliated BP flakes between 5 nm and 100 nm. Moreover, in order to achieve a better control of the laser thinning process down to the ultimate 2D limit, we have also investigated the effects of the substrate on the laser heating and ablation of multilayer BP flakes. Raman thermometry experiments and numerical calculations of the heat diffusion problem have elucidated that optical, thermal, and mechanical effects caused by the substrate may act differently on the laser heating and ablation of the flakes depending on their thickness. An effective device integration route for the 2D β-P phase, instead, is still missing due to more stringent requirements in its synthesis, based on epitaxial techniques, and to the instability issue outside the UHV growth environment. These obstacles are commonly shared with other members of the family of 2D epitaxial Xenes and, in this work, have been investigated considering the case of β-P epitaxially grown on Au(111)/mica substrates. The details of its atomic structure and the chemical reactivity to ex-situ and in-situ oxygen exposure have been analyzed with the aid of Scanning Tunneling Microscopy (STM) and X-Ray Photoelectron Spectroscopy (XPS). The air-instability issues have been tackled by developing a suitable encapsulation strategy based on the in-situ growth of an Al2O3 capping layer that, in turn, allowed the handling of epitaxial phosphorus along the preliminary steps of a device integration process. In this respect, two novel approaches for the transfer of the epitaxial membrane from the growth substrate towards target substrates have been surveyed. Both the transfer methods can be suitably generalized to the whole class of 2D epitaxial Xenes grown on metal/mica paving the way for the establishment of methodological standards for their manipulation. In particular, the universality of such approaches has been exploited for the successful fabrication of back-gated FET and MIM devices on Al2O3/multilayer silicene/Ag(111) and Al2O3/epitaxial phosphorus/Au(111) mica-delaminated membranes, respectively. The epitaxial phosphorus MIM devices may open intriguing perspectives in the study of the non-volatile resistive switching in monoelemental epitaxial 2D materials.
Gli allotropi bidimensionali (2D) del silicio e del fosforo sono stati i predecessori fra i materiali monoelementali 2D dopo il grafene. I vantaggi scientifici e tecnologici di questi materiali richiedono lo sviluppo di schemi di processo che possano garantire la loro effettiva integrazione in nuovi dispositivi per la nanoelettronica. In questo lavoro di tesi, sono stati investigati alcuni degli ostacoli ancora irrisolti lungo la strada per l’integrazione in dispositivo degli allotropi 2D del fosforo considerando specificatamente il caso delle fasi 2D α-P (corrispondente a un singolo strato di fosforo nero o fosforene) e \ β -P (fosforene-blu). L’integrazione della fase 2D α-P nell’architettura di un dispositivo è stata oggetto di ampie ricerche e si basa su un percorso abbastanza consolidato che ha portato ad applicazioni che spaziano in un’ampia gamma di campi. Uno dei pochi ostacoli rimanenti su questo percorso è la mancanza di un metodo scalabile per produrre 2D α-P su grandi aree e con un accurato controllo dello spessore. In particolare, tale controllo è difficile da raggiungere nell’esfoliazione di cristalli stratificati di fosforo nero (BP). A questo proposito, la spettroscopia micro-Raman è stata usata sia come uno strumento metrologico per determinare lo spessore delle scaglie cristalline esfoliate che come metodo per raggiungere una controllata riduzione del loro spessore sfruttando la tecnica di assottigliamento laser. Tuttavia, i metodi di determinazione dello spessore basati sulla calibrazione delle intensità delle bande Raman sono stati investigati poco nel caso di scaglie cristalline multistrato. In questo lavoro di tesi abbiamo proposto un nuovo approccio basato sulla spettroscopia Raman che ha permesso di discriminare velocemente lo spessore di scaglie cristalline esfoliate di BP tra i 5 nm e i 100 nm. Inoltre, al fine di raggiungere un controllo migliore nel processo di assottigliamento laser, abbiamo anche investigato gli effetti dovuti al substrato sul riscaldamento e ablazione laser in scaglie multistrato di BP. Esperimenti di termometria Raman e calcoli numerici sul problema della diffusione del calore hanno chiarito che effetti ottici, termici e meccanici causati dalla presenza del substrato possono agire differentemente sul riscaldamento e sull’ablazione laser a seconda dello spessore delle scaglie cristalline. Il percorso di integrazione in dispositivo per la fase 2D β -P, invece, è ancora assente a causa delle richieste più stringenti nella sintesi, basata su tecniche epitassiali, e dei problemi di instabilità fuori dall’ambiente di crescita in UHV. Questi ostacoli sono comunemente condivisi con gli altri membri della famiglia degli Xeni 2D e, in questo lavoro, sono stati studiati considerando il caso di β -P cresciuto epitassialmente su substrati di Au(111)/mica. I dettagli della sua struttura atomica e la reattività chimica all’esposizione in-situ ed ex-situ all’ossigeno sono stati analizzati con l’aiuto della microscopia a scansione ad effetto tunnel (STM) e spettroscopia fotoelettronica a raggi X (XPS). I problemi di instabilità in aria sono stati affrontati sviluppando una opportuna strategia di incapsulamento basata sulla crescita in-situ di un film protettivo di Al2O3 che, a sua volta, ha permesso di maneggiare il fosforo epitassiale lungo i primi passi di un processo di integrazione in dispositivo. Da questo punto di vista, sono stati esaminati due nuovi approcci per il trasferimento di un materiale epitassiale da un substrato di crescita verso substrati target. Ambedue questi metodi di trasferimento possono essere adeguatamente generalizzati all’intera classe degli Xeni epitassiali 2D cresciuti su metallo/mica. In particolare, l’universalità di questi approcci è stata impiegata per la fabbricazione di dispositivi FET e MIM sia su membrane di Al2O3/silicene multistrato/Ag(111) che su Al2O3/fosforo epitassiale/Au(111).
(2021). Two-Dimensional Phosphorus: From the Synthesis Towards the Device Integration. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).
Two-Dimensional Phosphorus: From the Synthesis Towards the Device Integration
FARAONE, GABRIELE
2021
Abstract
Phosphorus and silicon two-dimensional (2D) allotropes have been the forerunners among the post-graphene monoelemental 2D materials. The scientific and technological advantages of these materials require the development of processing methods to guarantee their effective integration in new devices for nanoelectronics. In the present thesis work, some of the unresolved bottlenecks along the device integration path of 2D elemental phosphorus allotropes have been examined considering specifically the case of the α-P (single-layer black phosphorus or phosphorene) and β-P (blue phosphorene) 2D polymorphs. The integration of the 2D α-P phase in devices has been the subject of extensive investigations and nowadays relies on an almost consolidated path that has led to applications spanning a wide range of fields. One of the few remaining obstacles on this path is the lack of a scalable method to produce 2D α-P layers on large areas and with accurate control of the thickness. In particular, such control is difficult to achieve in the exfoliation of layered black phosphorus (BP) crystals. In this respect, micro-Raman spectroscopy has been used both as a metrological tool to determine the thickness of the exfoliated flakes and as method to achieve their controllable thickness reduction employing the laser thinning technique. However, thickness determination methods based on the calibration of the intensity of the Raman bands have been poorly investigated in the case of multilayer BP flakes due to difficulties caused by optical interferences and anisotropy effects. In this thesis work, we have proposed a novel Raman spectroscopy approach that, carefully accounting for these effects, allowed the quick discrimination of the thickness of exfoliated BP flakes between 5 nm and 100 nm. Moreover, in order to achieve a better control of the laser thinning process down to the ultimate 2D limit, we have also investigated the effects of the substrate on the laser heating and ablation of multilayer BP flakes. Raman thermometry experiments and numerical calculations of the heat diffusion problem have elucidated that optical, thermal, and mechanical effects caused by the substrate may act differently on the laser heating and ablation of the flakes depending on their thickness. An effective device integration route for the 2D β-P phase, instead, is still missing due to more stringent requirements in its synthesis, based on epitaxial techniques, and to the instability issue outside the UHV growth environment. These obstacles are commonly shared with other members of the family of 2D epitaxial Xenes and, in this work, have been investigated considering the case of β-P epitaxially grown on Au(111)/mica substrates. The details of its atomic structure and the chemical reactivity to ex-situ and in-situ oxygen exposure have been analyzed with the aid of Scanning Tunneling Microscopy (STM) and X-Ray Photoelectron Spectroscopy (XPS). The air-instability issues have been tackled by developing a suitable encapsulation strategy based on the in-situ growth of an Al2O3 capping layer that, in turn, allowed the handling of epitaxial phosphorus along the preliminary steps of a device integration process. In this respect, two novel approaches for the transfer of the epitaxial membrane from the growth substrate towards target substrates have been surveyed. Both the transfer methods can be suitably generalized to the whole class of 2D epitaxial Xenes grown on metal/mica paving the way for the establishment of methodological standards for their manipulation. In particular, the universality of such approaches has been exploited for the successful fabrication of back-gated FET and MIM devices on Al2O3/multilayer silicene/Ag(111) and Al2O3/epitaxial phosphorus/Au(111) mica-delaminated membranes, respectively. The epitaxial phosphorus MIM devices may open intriguing perspectives in the study of the non-volatile resistive switching in monoelemental epitaxial 2D materials.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_833030.pdf
accesso aperto
Descrizione: Tesi di Faraone Gabriele - 833030
Tipologia di allegato:
Doctoral thesis
Dimensione
7.34 MB
Formato
Adobe PDF
|
7.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.