Black holes (BHs) are variegated and fascinating objects in Nature. Their realm extends from the stellar BHs with mass $sim 10-10^2 msun$ to the supermassive BHs of $10^{9-10} msun$ that reside in the center of galaxies. While the former are the expected outcome of stellar evolution, the latter are the results of multiple dark matter halo mergers in the standard $Lambda$CDM scenario. When two BHs are close enough, they form a binary BHs (BHBs) and emit gravitational waves (GWs) that we can detect with our inteferometers. Similarly to BHs, also BHBs can be divided into different sub-populations, each with its unique features and characteristics: stellar BHBs (SBHBs) form from the co-evolution of binary stars or in dense region, while massive BHBs (MBHBs) are the result of galaxy mergers. The challenges of GW astronomy are still numerous and require different knowledge and expertise to be solved. For this reason, I start this Thesis presenting result for SBHBs in the initial chapters and moving to MBHBs in the end. Each chapter has its own brief introduction and discussion of the main results and conclusions. In Chapter 1 I introduce some basic General Relativity (GR) concepts related to the emission of GWs. I summarise the current status of GW astronomy. I explain how GWs from BHBs can be easily modeled under some reasonable assumptions and report some formulas useful to understand the concepts of the following chapters. In Chapter 2 I study the minimum Post-Newtonian (PN) order necessary to accurately track SBHBs in LISA and perform an unbiased parameter estimation. SBHBs are expected to spend a large number of cycles in band, therefore an accurate waveform is necessary to avoid biases in the binary parameters. I show that the main factor affecting the PN accuracy is the time to coalescence with systems closer to merger requiring higher PN contributions. I apply the previous result to a realistic population of SBHBs in LISA in order to draw more realistic estimates: I find that most of the sources can be modeled with just 2PN corrections while systems merging during LISA time mission require up to 2.5PN and 3PN contributions. The topic of Chapter 3 is a model to describe SBHBs above the pair-instability mass gap, i.e. BHs with mass $> 120 msun$. I build a simple approach and, under the assumption that the binary formation does not change beyond the mass gap, I estimate the detected rate for current detectors, ET and LISA. Finally I also suggest the possibility that the undetected sources form a new source of stochastic background in LISA. In Chapter 4 I move to MBHBs, detectable only from space by LISA. I provide an introduction on MBHBs formation and evolution and the multimessenger possibilities. I also explain how we estimate source information with the so-called Fisher matrix formalism. In Chapter 5 I present a work I contributed where we explore the possibility to detect a Doppler modulated X-ray emission during the inspiral of MBHBs. In the last stage of merger, X-ray emission is expected as the result of gas accretion on each BHs and the orbital motion of the binary might imprint a Doppler modulation on the electromagnetic (EM) emission in phase with the GW signal. The detection of this modulation would allow to pinpoint the exact source location in the relatively large error area provided by LISA. From our analysis, we estimate few modulation detections over LISA time mission. Finally in Chapter 6 I report the results for the parameter estimation of MBHBs on the fly, i.e. as function of time before coalescence. In particular I focus on sky position, luminosity distance, chirp mass and mass ratio and how their errors decrease as the system approaches merger. For the benefit of the community, I release also the complete set of data and analytical fits to describe the time evolution in the aforementioned parameters. Finally I discuss the multimessenger prospects.
I buchi neri (BHs) sono oggetti variegati ed affascinanti in Natura. Il loro regno si estende dai buchi neri stellari con masse $sim 10-10^2 msun$ fino a BH supermassivi di $10^{9-10} msun$ al centro delle galassie. Mentre i primi sono il lascito dell'evoluzione stellare, i secondi sono il risultato di multipli merger di aloni di dark matter nella cosmologia $Lambda$CDM. Quando due BHs sono abbastanza vicini, formano una binaria (BHBs) ed emettono onde gravitazionali (GWs) che possiamo rilevare con i nostri interferometri. Come i BHs, anche le BHBs possono dividersi in diverse sottopopolazioni, ognuna con le proprie proprietà e caratteristiche: BHBs stellari (SBHBs) si formano dalla co-evoluzione di una binaria di stelle o in ambienti densi, mentre BHBs massicce (MBHBs) sono il risultato di merger di galassie. Le sfide nell'astronomia delle GW sono ancora numerose e richiedono varie conoscenze ed abilità per essere risolte. Per questa ragione, incomincio questa Tesi presentando dei risultati per SBHBs nei primi capitoli e virando verso MBHBs sul finale. Ogni capitolo ha la sua breve introduzione e discussione dei risultati. Nel capitolo 1 introduco alcuni concetti base della Relatività Generale (GR) legati all'emissione delle GWs. Riassumo lo stato corrente dell'astronomia delle GW. Spiego inoltre come GWs da BHBs possono essere modellizzate sotto alcune assunzioni ragionevoli e riporto alcune formule utili a capire i concetti dei paragrafi successivi. Nel capitolo 2 studio il minimo ordine Post-Newtonian (PN) necessario per seguire il segnale di SBHBs in LISA e realizzare una stima dei parametri corretta. Infatti gli SBHBs compiono numerosi cicli in LISA e quindi una descrizione accurata del segnale d'onda è necessaria per evitare bias nella stima dei parametri. Mostro come il fattore che determina il minimo ordine PN è il tempo alla coalescenza e che sistemi più vicini al merger richiedono più contributi PN. Applico questo risultato ad una popolazione di SBHBs in LISA per ottenere delle stime più realistiche, trovando che la maggior parte delle srogenti può essere descritta con correzzioni fino al 2PN, mentre i sistemi che mergono durante il tempo di missione richiedono contributi PN fino al 2.5PN o 3PN. L'argomento del capitolo 3 è un modello per descrivere BHs al di sopra del pair-instability mass gap, cioè BHs con massa $> 120 msun$. Presento un semplice modello e, sotto l'assuzione che la formazione della binaria non cambi oltre il gap, stimo il numero di eventi per i detector attuali, ET e LISA. Inoltre, suggerisco che le binarie non risolte possano formare un background casuale in LISA. Nel capitolo 4, mi muovo verso i MBHBs, osservabili solo dallo spazio con LISA. Introduco i concetti legati alla formazione ed evoluzione di MBHBs e le possibilità dell'astronomia multimessaggera. Descrivo anche come possiamo stimare i parametri della sorgente con il formalismo della Fisher matrix. Nle capitolo 5 presento un lavoro a cui ho contribuito sulla possibilità di osservare un modulazione Doppler in banda X durante l'inspiral di MBHBs. Prima del merger, emissione in banda X può essere prodotto dal gas che accresce sui BHs e il moto orbitale della binaria può imprimere una modulazione al segnale elettromagnetico in fase con il segnale di GWs. Osservare questa modulazione permetterebbe di determinare l'esatta posizione della sorgente nell'area di cielo stimata da LISA. Dalla nostra analisi, stimiamo di poter osservare qualche modulazione durante tutta la missione. Nel capitolo 6 riporto la stime dei parametri per MBHBs in funzione del tempo alla coalescenza. In particolare, mi concentro su posizione in cielo, distanza di luminosità, chirp mass e mass ratio e come i loro errori si riduciono mentre il sistema si avvicina al merger. A beneficio della community, rilascio i dati e delle formule analitiche per descrivere l'evoluzione di questi parametri. Discuto infine le prospettive multimessangere.
(2021). The astrophysics of black hole binaries in the era of gravitational wave astronomy. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2021).
The astrophysics of black hole binaries in the era of gravitational wave astronomy
MANGIAGLI, ALBERTO
2021
Abstract
Black holes (BHs) are variegated and fascinating objects in Nature. Their realm extends from the stellar BHs with mass $sim 10-10^2 msun$ to the supermassive BHs of $10^{9-10} msun$ that reside in the center of galaxies. While the former are the expected outcome of stellar evolution, the latter are the results of multiple dark matter halo mergers in the standard $Lambda$CDM scenario. When two BHs are close enough, they form a binary BHs (BHBs) and emit gravitational waves (GWs) that we can detect with our inteferometers. Similarly to BHs, also BHBs can be divided into different sub-populations, each with its unique features and characteristics: stellar BHBs (SBHBs) form from the co-evolution of binary stars or in dense region, while massive BHBs (MBHBs) are the result of galaxy mergers. The challenges of GW astronomy are still numerous and require different knowledge and expertise to be solved. For this reason, I start this Thesis presenting result for SBHBs in the initial chapters and moving to MBHBs in the end. Each chapter has its own brief introduction and discussion of the main results and conclusions. In Chapter 1 I introduce some basic General Relativity (GR) concepts related to the emission of GWs. I summarise the current status of GW astronomy. I explain how GWs from BHBs can be easily modeled under some reasonable assumptions and report some formulas useful to understand the concepts of the following chapters. In Chapter 2 I study the minimum Post-Newtonian (PN) order necessary to accurately track SBHBs in LISA and perform an unbiased parameter estimation. SBHBs are expected to spend a large number of cycles in band, therefore an accurate waveform is necessary to avoid biases in the binary parameters. I show that the main factor affecting the PN accuracy is the time to coalescence with systems closer to merger requiring higher PN contributions. I apply the previous result to a realistic population of SBHBs in LISA in order to draw more realistic estimates: I find that most of the sources can be modeled with just 2PN corrections while systems merging during LISA time mission require up to 2.5PN and 3PN contributions. The topic of Chapter 3 is a model to describe SBHBs above the pair-instability mass gap, i.e. BHs with mass $> 120 msun$. I build a simple approach and, under the assumption that the binary formation does not change beyond the mass gap, I estimate the detected rate for current detectors, ET and LISA. Finally I also suggest the possibility that the undetected sources form a new source of stochastic background in LISA. In Chapter 4 I move to MBHBs, detectable only from space by LISA. I provide an introduction on MBHBs formation and evolution and the multimessenger possibilities. I also explain how we estimate source information with the so-called Fisher matrix formalism. In Chapter 5 I present a work I contributed where we explore the possibility to detect a Doppler modulated X-ray emission during the inspiral of MBHBs. In the last stage of merger, X-ray emission is expected as the result of gas accretion on each BHs and the orbital motion of the binary might imprint a Doppler modulation on the electromagnetic (EM) emission in phase with the GW signal. The detection of this modulation would allow to pinpoint the exact source location in the relatively large error area provided by LISA. From our analysis, we estimate few modulation detections over LISA time mission. Finally in Chapter 6 I report the results for the parameter estimation of MBHBs on the fly, i.e. as function of time before coalescence. In particular I focus on sky position, luminosity distance, chirp mass and mass ratio and how their errors decrease as the system approaches merger. For the benefit of the community, I release also the complete set of data and analytical fits to describe the time evolution in the aforementioned parameters. Finally I discuss the multimessenger prospects.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_763573.pdf
accesso aperto
Descrizione: Tesi di Mangiagli Alberto - 763573
Tipologia di allegato:
Doctoral thesis
Dimensione
5.48 MB
Formato
Adobe PDF
|
5.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.