A notable class of 3d N=4 superconformal field theories admits a string theoretic realization and can be engineered using brane configurations of D3, D5 and NS5 branes, usually called Hanany-Witten (HW) configurations. The low energy dynamics of such theories have been extensively studied in the past year: a prominent role is played by mirror symmetry, a duality between theories having the same conformal fixed point in the infrared. Mirror symmetry can be thought as inherited from string theory S-duality. As observed by Gaiotto and Witten, HW setups can be generalized by adding new objects, SL(2,Z) duality walls, also called S-folds. When passing through this interface, the system undergoes a local SL(2,Z) transformation. HW setups where an S-fold inserted also admit a holographic description in Type-IIB supergravity as recently shown by Assel and Tomasiello. From a QFT side, the insertion of an S-fold manifests itself as a T[U(N)] theory where each U(N) factor in the global symmetry U(N)xU(N) is commonly gauged, thus generating a non-trivial coupling between two vector multiplets. In this sense, T[U(N)] plays the role of unconventional matter. We refer to theories where a T[U(N)]-link (or simply T-link) has been inserted as S-fold theories: they can be thought of as a generalization of usual N=4 circular quivers. It is worth to stress that only one U(N) factor of the global symmetry is manifest in the Lagrangian description of T[U(N)], whereas the other is emergent at the infrared fixed point. In this sense, a T-link adds a non-Lagrangian ingredient and studying S-fold theories turns out to be an intriguing challenge from a quantum field theory point of view. The aim of this thesis is to gain insight about S-fold SCFTs. We mainly focus on their vacuum moduli spaces, dualities and infrared supersymmetry. We study the moduli space of S-fold SCFTs using mirror symmetry as main tool. When all Chern-Simons (CS) levels are turned off, we propose that the Higgs branch of such theories can be computed performing an hyper-Kahler quotient. Moreover, we conjecture that the Coulomb branch is the same of the Coulomb branch of an effective quiver where the T-linked gauge nodes get frozen. We name this phenomenon freezing rule and we interpret as the fact impossibility of D3 branes to move in some directions when intersecting an S-duality wall. We also generalize S-fold SCFTs to more general cases where a T[G] theory appears, with G being orthogonal, symplectic as well as exceptional groups. For G a classical group, we propose that such theories are dual to HW configurations where an S-fold coexists with orientifold planes. In all these cases, we check our proposals computing the Hilbert series associated to each moduli space and checking it against mirror symmetry.  When G is non-Abelian and the CS levels are turned on, we are not able to provide a unique prescription in order to compute the moduli space in presence of a T-link. Nevertheless, we study in full details a sub-class consisting of Abelian models. Since in this case T[U(1)] is an almost empty theory with only a mixed CS term, we are able to compute the moduli space, trying to infer how a T[U(N)] theory should enter the dynamics. Finally, we study the superconformal indices of S-fold theories. Such a quantity is useful for two purposes.  The first one is to study the duality between S-fold theories with different quiver descriptions. In this context the index reveals how operators get mapped to each other under the duality.  The second purpose is to study the amount of supersymmetry possessed by the S-fold theory at low energies. In principle, the gauging of the global symmetries of a T[U(N)] theory generically breaks supersymmetry down to N=3. However, in many examples with finite N, the index showed that supersymmetry gets enhanced in the infrared.  This is also consistent with the supergravity duals, which suggest the enhancement of supersymmetry in the large N limit.

Un’importante classe di teorie 3d superconformi ammette una realizzazione in teoria delle stringhe e può essere ingegnerizzata usando configurazioni di D3, D5 ed NS5 brane, chiamate configurazioni di Hanany-Witten (HW). La dinamica a basse energie di queste teorie sono state ampiamente studiate in passato: un ruolo prominente è giocato dalla mirror symmetry, una dualità tra teorie che possiedono uguale punto fisso nell’infrarosso. Mirror symmetry può essere pensata come un’eredità dell’S-dualità in teoria di stringa. Come osservato da Gaiotto e Witten, le configurazioni di HW possono essere generalizzate aggiungendo nuovi oggetti, chiamati SL(2,Z) duality walls o S-fold. Passando attraverso questa interfaccia, il sistema subisce localmente una trasformazione SL(2,Z). Setup di HW con l’inserzione di un S-fold ammettono anche una descrizione olografica in supergravità di tipo IIB, come mostrato recentemente da Assel e Tomasiello. Da un punto di vista di teoria di campo, l’inserzione di un S-fold si manifesta come una teoria T[U(N)] in cui ogni fattore U(N) nel gruppo di simmetria U(N)x U(N) è gaugiato allo stesso tempo, generando un accoppiamento non banale tra due multipletti vettoriali. In questo senso, T[U(N)] gioca il ruolo di materia non convenzionale. Chiameremo S-fold SCFT una teoria con un accoppiamento T[U(N)] (T-link): queste teorie possono essere pensate come una generalizzazione degli usuali quiver circolari N=4. È importante sottolineare che solo un fattore U(N) del gruppo di simmetria è manifesto nella descrizione Lagrangiana di T[U(N)], mentre l’altro è emergete nell’infrarosso. Per tale motivo, un T-link aggiunge un elemento non-lagrangiano e lo studio delle teorie con S-fold risulta essere un’intrigante sfida da un punto di vista di QFT. Lo scopo di questa tesi è studiare in più dettaglio le S-fold SCFT. Ci concentreremo prevalentemente sullo spazio dei moduli, dualità e la supersimmetria preservata nell’infrarosso. Lo strumento principale per studiare lo spazio dei moduli è la mirror symmetry. Quando tutti i livelli di Chern-Simons (CS) sono spenti, proponiamo che l’Higgs branch di queste teorie può essere calcolato effettuando un hyperKahler quotient. Inoltre, congetturiamo che il Coulomb branch coincide con il Coulomb branch di un quiver effettivo dove i nodi accoppiati dal T-link sono congelati. Chiamiamo questo fenomeno freezing rule e possiamo interpretarlo come l’impossibilità di una D3 brana di muoversi in certe direzioni nel caso in cui intersechi un S-fold. Generalizziamo anche le S-fold SCFT a casi più generali dove appare una teoria T[G], con G gruppo ortogonale, simplettico o eccezionale. Nel caso di G gruppo classico, proponiamo queste teorie essere duali a configurazioni di HW in cui un S-fold convive con O-piani. In tutti i casi descritti, verifichiamo la consistenza delle nostre proposte con mirror symmetry, calcolando la serie di Hilbert dei moduli space. Nel caso di G non-abeliano e livelli di CS accesi, non siamo in grado di fornire un’unica prescrizione per calcolare il moduli space. Tuttavia, studiamo dettagliatamente i modelli abeliani. Poiché in questo caso T[U(1)] è una teoria quasi vuota contente solo un termine di CS misto, siamo in grado di calcolare il moduli space, provando così a dedurre il modo di contribuire alla dinamica di T[U(N)]. Infine, studiamo l’indice superconforme delle teorie con S-fold. Tale quantità è utile per due scopi. Il primo è studiare dualità tra teorie con S-fold descritte da quiver differenti. In tale contesto, l’indice rivela come gli operatori sono mappati tra loro sotto la dualità. Il secondo scopo è studiare la quantità di supersimmetria preservata da una teoria con S-fold nel IR. Il gauging delle simmetrie globali di T[U(N)] rompe la supersimmetria a N=3. Tuttavia, in molti esempi con N finito, l’indice mostra che la supersimmetria aumenta nell’infrarosso.

(2020). Duality walls and three-dimensional superconformal field theories. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2020).

Duality walls and three-dimensional superconformal field theories

LO MONACO, GABRIELE
2020

Abstract

A notable class of 3d N=4 superconformal field theories admits a string theoretic realization and can be engineered using brane configurations of D3, D5 and NS5 branes, usually called Hanany-Witten (HW) configurations. The low energy dynamics of such theories have been extensively studied in the past year: a prominent role is played by mirror symmetry, a duality between theories having the same conformal fixed point in the infrared. Mirror symmetry can be thought as inherited from string theory S-duality. As observed by Gaiotto and Witten, HW setups can be generalized by adding new objects, SL(2,Z) duality walls, also called S-folds. When passing through this interface, the system undergoes a local SL(2,Z) transformation. HW setups where an S-fold inserted also admit a holographic description in Type-IIB supergravity as recently shown by Assel and Tomasiello. From a QFT side, the insertion of an S-fold manifests itself as a T[U(N)] theory where each U(N) factor in the global symmetry U(N)xU(N) is commonly gauged, thus generating a non-trivial coupling between two vector multiplets. In this sense, T[U(N)] plays the role of unconventional matter. We refer to theories where a T[U(N)]-link (or simply T-link) has been inserted as S-fold theories: they can be thought of as a generalization of usual N=4 circular quivers. It is worth to stress that only one U(N) factor of the global symmetry is manifest in the Lagrangian description of T[U(N)], whereas the other is emergent at the infrared fixed point. In this sense, a T-link adds a non-Lagrangian ingredient and studying S-fold theories turns out to be an intriguing challenge from a quantum field theory point of view. The aim of this thesis is to gain insight about S-fold SCFTs. We mainly focus on their vacuum moduli spaces, dualities and infrared supersymmetry. We study the moduli space of S-fold SCFTs using mirror symmetry as main tool. When all Chern-Simons (CS) levels are turned off, we propose that the Higgs branch of such theories can be computed performing an hyper-Kahler quotient. Moreover, we conjecture that the Coulomb branch is the same of the Coulomb branch of an effective quiver where the T-linked gauge nodes get frozen. We name this phenomenon freezing rule and we interpret as the fact impossibility of D3 branes to move in some directions when intersecting an S-duality wall. We also generalize S-fold SCFTs to more general cases where a T[G] theory appears, with G being orthogonal, symplectic as well as exceptional groups. For G a classical group, we propose that such theories are dual to HW configurations where an S-fold coexists with orientifold planes. In all these cases, we check our proposals computing the Hilbert series associated to each moduli space and checking it against mirror symmetry.  When G is non-Abelian and the CS levels are turned on, we are not able to provide a unique prescription in order to compute the moduli space in presence of a T-link. Nevertheless, we study in full details a sub-class consisting of Abelian models. Since in this case T[U(1)] is an almost empty theory with only a mixed CS term, we are able to compute the moduli space, trying to infer how a T[U(N)] theory should enter the dynamics. Finally, we study the superconformal indices of S-fold theories. Such a quantity is useful for two purposes.  The first one is to study the duality between S-fold theories with different quiver descriptions. In this context the index reveals how operators get mapped to each other under the duality.  The second purpose is to study the amount of supersymmetry possessed by the S-fold theory at low energies. In principle, the gauging of the global symmetries of a T[U(N)] theory generically breaks supersymmetry down to N=3. However, in many examples with finite N, the index showed that supersymmetry gets enhanced in the infrared.  This is also consistent with the supergravity duals, which suggest the enhancement of supersymmetry in the large N limit.
TOMASIELLO, ALESSANDRO
Dualità; Domain wall; Supersimmetria; Simmetria conforme; Brane configuration
Duality; Domain wall; Supersymmetry; Conformal Symmetry; Brane configuration
FIS/02 - FISICA TEORICA, MODELLI E METODI MATEMATICI
English
15-gen-2020
FISICA E ASTRONOMIA - 86R
32
2018/2019
open
(2020). Duality walls and three-dimensional superconformal field theories. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2020).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_814586.pdf

accesso aperto

Descrizione: tesi di dottorato
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/257786
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact