Chemotherapy-induced peripheral neurotoxicity is one of the most common and often dose limiting side effects of anticancer drugs. Among others, oxaliplatin (OHP) is a third generation platinum compound used in combination with 5-fluorouracil and leucovorin as an efficient treatment for metastatic colorectal cancer. Unlike other compounds of the same class, oxaliplatin may also cause an acute syndrome characterized by transient cold-induced dysesthesias and paresthesias located at limb extremities and at perioral area. The severity of these symptoms is predictive of the development of chronic and cumulative sensory neuropathy. Hence, unraveling the mechanisms underlying the acute syndrome should not be considered a secondary aim. Since Adelsberger et al. (Eur J Pharmacol 406:25-32, 2000) first described the effects of OHP on voltage-dependent sodium channels, many in vitro studies on different animal models supported the hypothesis of a major involvement of these channels in the acute syndrome. However, all of these works used very high OHP concentrations and focused on single aspects of the overall electrophysiological cellular response to OHP administration and gave controversial results. For these reasons, our aim was to study the effects of an OHP concentration comparable to the one estimated in patients’ blood on the electrical properties of different models of sensory neurons. We thus investigated the possible alterations produced by the drug on membrane resting potential (Vrest), on the main action potential (AP) features and on the biophysical properties of voltage-dependent sodium and potassium channels. Since dorsal root ganglion (DRG) neurons represent the main pharmacological target of platinum compounds, we incubated differentiated F-11 cells (rat DRG neurons x mouse neuroblastoma N18TG-2 cell line) for 24 or 48 h with 7.5 µM OHP. Their electrophysiological properties were investigated by the patch-clamp technique in the whole-cell configuration. Cisplatin (CDDP 15 µM) was used as reference compound to verify the exclusivity of OHP-induced effects. Finally, in order to validate the results collected with the differentiated F-11 cells, our experiments were reproduced on primary sensory neurons deriving from the dissociation of isolated embryonic and adult rat DRGs. Compared to untreated cells, treated F-11 cells displayed depolarized Vrest, decreased firing frequency, increased sodium current density and reduced ERG (ether-à-go-go-related gene) potassium current density. However, OHP administration did not affect the delayed rectifying potassium channels and the duration of induced APs. In TTX-sensitive sodium currents, OHP shifted both steady-state activation and inactivation curves towards more negative potentials and caused an expansion of the window current. A similar shift of both activation and inactivation curves was observed for ERG channels. In contrast, CDDP caused no effect on Vrest, decreased firing frequency, increased AP duration, and reduced sodium, ERG and delayed rectifier potassium current densities. In embryonic primary DRG neuron cultures, OHP incubation induced a significant increase of the fraction of sensory neurons able to generate multiple evoked APs and of voltage-dependent sodium and potassium current densities. Vrest and the firing frequency were not affected by the treatment. Lastly, data collected on primary DRG neuron cultures derived from adult rats showed that administration of OHP for 24h significantly increased sodium current density while no effects were produced on the other parameters of interest. In conclusion, the collected data indicate that OHP has different targets on DRG neurons, acting on both sodium and potassium channels, and suggest that differentiated F-11 cells represent a good cellular model for the development of pharmacological strategies aimed at preventing the onset of neurotoxicity caused by sodium channel dysfunction.
L’oxaliplatino (OHP) è un composto del platino di terza generazione, usato in combinazione con 5-fluorouracile e leucovorin per il trattamento del tumore al colon-retto metastatico. L’assunzione di OHP è in grado di indurre l’insorgenza di due fenomeni di tossicità, acuto e cronico. La tossicità acuta è caratterizzata da disestesie e parestesie transitorie esacerbate dal contatto col freddo. La gravità di questi sintomi è predittiva per lo sviluppo della neuropatia sensoriale cronica. Sebbene i meccanismi patogenetici alla base della tossicità acuta non siano stati del tutto chiariti, l’ipotesi più accreditata supporta un maggiore coinvolgimento dei canali del sodio voltaggio-dipendenti. Tuttavia, gli studi sino ad ora condotti si sono focalizzati solo su aspetti specifici della risposta elettrofisiologica cellulare ed hanno utilizzato concentrazioni di OHP molto elevate producendo risultati a volte controversi. Per questi motivi, il nostro obiettivo è stato quello di valutare gli effetti di una concentrazione di OHP più fisiologica sulle proprietà elettriche di diversi modelli di neuroni sensoriali. Poiché i neuroni dei gangli della radice dorsale (DRG) rappresentano il principale bersaglio farmacologico dei composti del platino, i nostri studi sono stati condotti incubando con OHP (7.5 μM) cellule F-11 differenziate. Abbiamo quindi studiato le possibili alterazioni prodotte dal farmaco sul potenziale di riposo (Vrest), sulle caratteristiche del potenziale d’azione (AP) e sulle proprietà biofisiche dei canali voltaggio-dipendenti di sodio e potassio. Le loro proprietà elettrofisiologiche sono state studiate con la tecnica del patch-clamp in configurazione whole-cell. Il cisplatino (CDDP 15 μM) è stato usato come composto di controllo per verificare l'esclusività degli effetti indotti da OHP. Inoltre, al fine di convalidare i risultati raccolti sulle cellule F-11 differenziate, i nostri esperimenti sono stati riprodotti su culture primarie di neuroni sensoriali derivati da DRG di embrioni di ratto o di ratti adulti. Rispetto alle cellule non trattate, l’incubazione con OHP ha determinato una depolarizzazione del Vrest, una riduzione della frequenza di scarica di AP, un aumento della densità di corrente di sodio e una riduzione della densità di corrente dei canali del potassio ERG. Tuttavia, la somministrazione di OHP non ha avuto alcuna influenza sui canali del potassio delayed-rectifier e sulla durata di AP indotti. Inoltre, OHP ha determinato uno spostamento delle curve di attivazione e di inattivazione delle correnti di sodio TTX-sensibili verso potenziali più negativi ed un aumento della risultante corrente finestra. Un comportamento simile è stato osservato anche per i canali ERG. Al contrario, il trattamento con CDDP non ha determinato variazioni del Vrest ed ha causato una riduzione della frequenza di scarica, un aumentato della durata di PA ed una riduzione della densità di corrente di potassio delayed-rectifier, di ERG e di sodio. Nelle colture primarie di neuroni sensoriali embrionali, l'incubazione con OHP ha indotto un aumento della frazione di neuroni in grado di generare PA multipli evocati ed un aumento delle densità di corrente di sodio e di potassio. Infine, i dati raccolti dalle colture primarie di neuroni derivati da ratti adulti hanno mostrato che la somministrazione di OHP per 24 ore aumenta la densità di corrente di sodio, mentre non ha alcun effetto sugli altri parametri studiati. In conclusione, i nostri risultati hanno messo in luce diversi target di OHP a livello dei neuroni sensoriali, agendo sia sui canali del sodio che del potassio. Inoltre i dati raccolti, suggeriscono che le cellule F-11 differenziate rappresentano un buon modello cellulare per lo sviluppo di strategie farmacologiche volte a prevenire l'insorgenza di neurotossicità causata da un’alterazione della funzionalità dei canali del sodio.
(2019). In vitro models for studying oxaliplatin neurotoxic effects. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).
In vitro models for studying oxaliplatin neurotoxic effects
MONZA, LAURA
2019
Abstract
Chemotherapy-induced peripheral neurotoxicity is one of the most common and often dose limiting side effects of anticancer drugs. Among others, oxaliplatin (OHP) is a third generation platinum compound used in combination with 5-fluorouracil and leucovorin as an efficient treatment for metastatic colorectal cancer. Unlike other compounds of the same class, oxaliplatin may also cause an acute syndrome characterized by transient cold-induced dysesthesias and paresthesias located at limb extremities and at perioral area. The severity of these symptoms is predictive of the development of chronic and cumulative sensory neuropathy. Hence, unraveling the mechanisms underlying the acute syndrome should not be considered a secondary aim. Since Adelsberger et al. (Eur J Pharmacol 406:25-32, 2000) first described the effects of OHP on voltage-dependent sodium channels, many in vitro studies on different animal models supported the hypothesis of a major involvement of these channels in the acute syndrome. However, all of these works used very high OHP concentrations and focused on single aspects of the overall electrophysiological cellular response to OHP administration and gave controversial results. For these reasons, our aim was to study the effects of an OHP concentration comparable to the one estimated in patients’ blood on the electrical properties of different models of sensory neurons. We thus investigated the possible alterations produced by the drug on membrane resting potential (Vrest), on the main action potential (AP) features and on the biophysical properties of voltage-dependent sodium and potassium channels. Since dorsal root ganglion (DRG) neurons represent the main pharmacological target of platinum compounds, we incubated differentiated F-11 cells (rat DRG neurons x mouse neuroblastoma N18TG-2 cell line) for 24 or 48 h with 7.5 µM OHP. Their electrophysiological properties were investigated by the patch-clamp technique in the whole-cell configuration. Cisplatin (CDDP 15 µM) was used as reference compound to verify the exclusivity of OHP-induced effects. Finally, in order to validate the results collected with the differentiated F-11 cells, our experiments were reproduced on primary sensory neurons deriving from the dissociation of isolated embryonic and adult rat DRGs. Compared to untreated cells, treated F-11 cells displayed depolarized Vrest, decreased firing frequency, increased sodium current density and reduced ERG (ether-à-go-go-related gene) potassium current density. However, OHP administration did not affect the delayed rectifying potassium channels and the duration of induced APs. In TTX-sensitive sodium currents, OHP shifted both steady-state activation and inactivation curves towards more negative potentials and caused an expansion of the window current. A similar shift of both activation and inactivation curves was observed for ERG channels. In contrast, CDDP caused no effect on Vrest, decreased firing frequency, increased AP duration, and reduced sodium, ERG and delayed rectifier potassium current densities. In embryonic primary DRG neuron cultures, OHP incubation induced a significant increase of the fraction of sensory neurons able to generate multiple evoked APs and of voltage-dependent sodium and potassium current densities. Vrest and the firing frequency were not affected by the treatment. Lastly, data collected on primary DRG neuron cultures derived from adult rats showed that administration of OHP for 24h significantly increased sodium current density while no effects were produced on the other parameters of interest. In conclusion, the collected data indicate that OHP has different targets on DRG neurons, acting on both sodium and potassium channels, and suggest that differentiated F-11 cells represent a good cellular model for the development of pharmacological strategies aimed at preventing the onset of neurotoxicity caused by sodium channel dysfunction.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_710555.pdf
accesso aperto
Descrizione: tesi di dottorato
Dimensione
2.38 MB
Formato
Adobe PDF
|
2.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.