Sustainability has become a field of great interest in the world industry. For the scientific community the challenge lies in the identification of green synthetic approaches and new alternatives to petroleum-based materials. In the case of the tyre industry, the challenge is to identify possible design strategies and alternatives to reduce the environmental impact throughout the life cycle of tyres, by means of both the use of environmentally friendly materials and the development of innovative products, having reduced energy consumption and CO2 emissions. In this context, this PhD thesis is focused on the preparation of eco-friendly silica-based nanocomposites by using a colloidal approach to increase the dispersion of hydrophilic fillers in line with the new requirements of sustainability from the EU policies. The colloidal approach aims at compounding nanocomposites with hydrophilic fillers, whose efficient dispersion through traditional mixing still remains a challenging issue, due to their poor compatibility with the organic matrix. This technique aims at increasing the filler dispersion without any expensive surface modification, with the elimination of the volatile component released during mixing, producing significant benefits for environment and workers. Two different colloidal approaches were applied: i) latex compounding technique (LCT) and ii) in situ emulsion polymerization to prepare highly-loaded nanocomposite rubber materials containing silica-based fillers, silica and sepiolite (Sep) clay, considered a promising filler candidate for the polymer strengthening due to its fibrous structure and high particle aspect ratio (AR). The concentration, the charge and the shape of silica-based nanofillers were studied as relevant parameters on stabilization and destabilization of natural and synthetic polyisoprene latexes. An effective LCT procedure was established to produce eco-friendly composites, namely masterbaches (MBs), by incorporating silica or Sep into natural rubber latex (i.e. emulsion in water of cis-1,4-polyisoprene), through the flocculation (i.e. aggregation resulting from the bridging of polymer particles) of the silica-based nanofillers/rubber mixed aqueous system. LCT showed to favour a homogeneous dispersion of hydrophilic Sep fibers in the rubber matrix. The main physicochemical parameters which control aggregation processes in the aqueous medium, i.e. pH, -potential, concentration, as well as the morphological features of the final Sep-natural rubber MBs, were comprehensively investigated helping to figure out the Sep-NR interactions and to propose a flocculation mechanism, based on electrostatic and depletion attraction forces, remarkably connected both to the high content (50 wt.%) and to the peculiar anisotropy of Sep fibers. Furthermore, the MBs with high filler loadings were used to produce environmentally friendly composites, by combining LTC and melt mixing. This combined approach could take advantage of the good filler distribution and prevents dust from floating in the air during processing. In situ Pickering polymerization was considered as an alternative colloidal approach to produce eco-friendly nanocomposites. Polyisoprene/silica-based structured particles were synthesized on the base of the stabilizing effects of inorganic fillers which act like surfactants lowering the interfacial tension and stabilizing the emulsion. On the basis of our results, we suggested a possible mechanism for emulsion polymerizations stabilized by solid particles. In conclusion, the colloidal approach, based on both LTC and in situ Pickering emulsion polymerization, can be considered as green, simple and effective method suitable for high-performance technological applications. The outcomes indicate the suitability of the adopted strategies as a sustainable procedure for the production of high-loaded silica based-rubber nanocomposites.

L’industria degli pneumatici si prefigge di indagare possibili strategie sintetiche per ridurre l’impatto ambientale durante tutto il ciclo di vita dello pneumatico, attraverso l’uso di materiali sostenibili e lo sviluppo di tecniche innovative che riducano il consumo di energia e le emissioni di CO2. In questo contesto, questa progetto di dottorato è focalizzato sulla preparazione di nanocompositi eco-sostenibili attraverso l’uso di un approccio colloidale per aumentare la dispersione di filler idrofilici, in linea con i nuovi requisiti di sostenibilità delle politiche europee. L’approccio colloidale punta a produrre nanocompositi con filler idrofilici, la cui efficiente dispersione attraverso tecniche di miscelazione tradizionali rimane difficoltosa a causa della scarsa compatibilità con la matrice organica. Questa tecnica si focalizza sull’incremento della dispersione di filler senza alcuna modifica superficiale, con l’eliminazione delle poveri prodotte durante il mescolamento con significativi benefici per l’ambiente e i lavoratori. Due diversi approcci colloidali sono stati utilizzati: i) una tecnica di miscelazione in lattice e ii) una in situ polimerizzazione in emulsione per la produzione di nanocompositi altamente caricati contenenti filler come silice e sepiolite (Sep), questi ultimi sono considerati filler promettenti nell’ambito del rinforzo dei polimeri grazie alla loro struttura fibrosa e all’elevato rapporto di forma. La concentrazione, la carica, la forma dei nanofiller a base silicea sono stati studiati come parametri rilevanti per la stabilizzazione e destabilizzazione di lattici a base di poliisoprene naturale e sintetico. Una efficiente procedura di miscelazione in lattice è stata messa a punto per produrre compositi eco-sostenibili, chiamati masterbatches (MBs), attraverso l’incorporazione di silice o Sep nel lattice di gomma naturale (emulsione in acqua di cis-1,4-poliisoprene), attraverso la flocculazione (aggregazione risultante dalla coesione di particelle di polimero) di una miscela acquosa di nanofiller a base silicea e gomma. La tecnica di miscelazione in lattice ha dimostrato di favorire una omogenea dispersione di fibre di sepiolite idrofilica in matrice di gomma. La principali caratteristiche fisico-chimiche che controllano i processi di aggregazione in acqua come il pH, il potenziale Z, la concentrazione, assieme alle caratteristiche morfologiche del MB Sep-gomma naturale, sono state prese in considerazione allo scopo di investigare le interazioni Sep-gomma naturale. E’ stato proposto un meccanismo di flocculazione basato su attrazioni elettrostatiche e depletive, connesso all’elevato contenuto di filler (50% in peso) e alla peculiare anisotropia delle particelle di Sep. Inoltre, i MBs sono stati utilizzati per preparare compositi sostenibili attraverso la combinazione di miscelazione in lattice e mescolazione meccanica. Questo approccio combinato sfrutta la buona distribuzione del filler e previene il rilascio di polveri durante il processo. Una polimerizzazione Pickering in situ è stata considerata come alternativa per la produzione di nanocompositi eco-sostenibili. Particelle poliisoprene/filler a base silicea sono state sintetizzate sfruttando dell’effetto stabilizzante di filler inorganici che agiscono come tensioattivi riducendo la tensione superficiale e stabilizzando l’emulsione. Sulla base dei nostri risultati, viene suggerito un possibile meccanismo di polimerizzazione in emulsione stabilizzata da particelle solide. In conclusione, l’approccio colloidale, basato su miscelazione in lattice e polimerizzazione Pickering in situ, può essere considerato un metodo sostenibile, semplice ed efficace adatto per applicazioni tecnologiche altamente performanti. I risultati indicano che le strategie utilizzate sono adatte per produrre nanocompositi altamente caricati di filler a base silicea.

(2019). NOVEL COLLOIDAL APPROACH TO PREPARE HIGHLY-LOADED SILICA-BASED ELASTOMERIC NANOCOMPOSITES. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).

NOVEL COLLOIDAL APPROACH TO PREPARE HIGHLY-LOADED SILICA-BASED ELASTOMERIC NANOCOMPOSITES

TAGLIARO, IRENE
2019

Abstract

Sustainability has become a field of great interest in the world industry. For the scientific community the challenge lies in the identification of green synthetic approaches and new alternatives to petroleum-based materials. In the case of the tyre industry, the challenge is to identify possible design strategies and alternatives to reduce the environmental impact throughout the life cycle of tyres, by means of both the use of environmentally friendly materials and the development of innovative products, having reduced energy consumption and CO2 emissions. In this context, this PhD thesis is focused on the preparation of eco-friendly silica-based nanocomposites by using a colloidal approach to increase the dispersion of hydrophilic fillers in line with the new requirements of sustainability from the EU policies. The colloidal approach aims at compounding nanocomposites with hydrophilic fillers, whose efficient dispersion through traditional mixing still remains a challenging issue, due to their poor compatibility with the organic matrix. This technique aims at increasing the filler dispersion without any expensive surface modification, with the elimination of the volatile component released during mixing, producing significant benefits for environment and workers. Two different colloidal approaches were applied: i) latex compounding technique (LCT) and ii) in situ emulsion polymerization to prepare highly-loaded nanocomposite rubber materials containing silica-based fillers, silica and sepiolite (Sep) clay, considered a promising filler candidate for the polymer strengthening due to its fibrous structure and high particle aspect ratio (AR). The concentration, the charge and the shape of silica-based nanofillers were studied as relevant parameters on stabilization and destabilization of natural and synthetic polyisoprene latexes. An effective LCT procedure was established to produce eco-friendly composites, namely masterbaches (MBs), by incorporating silica or Sep into natural rubber latex (i.e. emulsion in water of cis-1,4-polyisoprene), through the flocculation (i.e. aggregation resulting from the bridging of polymer particles) of the silica-based nanofillers/rubber mixed aqueous system. LCT showed to favour a homogeneous dispersion of hydrophilic Sep fibers in the rubber matrix. The main physicochemical parameters which control aggregation processes in the aqueous medium, i.e. pH, -potential, concentration, as well as the morphological features of the final Sep-natural rubber MBs, were comprehensively investigated helping to figure out the Sep-NR interactions and to propose a flocculation mechanism, based on electrostatic and depletion attraction forces, remarkably connected both to the high content (50 wt.%) and to the peculiar anisotropy of Sep fibers. Furthermore, the MBs with high filler loadings were used to produce environmentally friendly composites, by combining LTC and melt mixing. This combined approach could take advantage of the good filler distribution and prevents dust from floating in the air during processing. In situ Pickering polymerization was considered as an alternative colloidal approach to produce eco-friendly nanocomposites. Polyisoprene/silica-based structured particles were synthesized on the base of the stabilizing effects of inorganic fillers which act like surfactants lowering the interfacial tension and stabilizing the emulsion. On the basis of our results, we suggested a possible mechanism for emulsion polymerizations stabilized by solid particles. In conclusion, the colloidal approach, based on both LTC and in situ Pickering emulsion polymerization, can be considered as green, simple and effective method suitable for high-performance technological applications. The outcomes indicate the suitability of the adopted strategies as a sustainable procedure for the production of high-loaded silica based-rubber nanocomposites.
DI CREDICO, BARBARA
GIANNINI, LUCA
Lattice naturale; Sepiolite; argille; Latex compounding; emulsione Pickering
Natural rubber latex; Sepiolite; Clays; Latex compounding; emulsione Pickering
CHIM/03 - CHIMICA GENERALE E INORGANICA
English
27-feb-2019
SCIENZA E NANOTECNOLOGIA DEI MATERIALI - 79R
31
2017/2018
open
(2019). NOVEL COLLOIDAL APPROACH TO PREPARE HIGHLY-LOADED SILICA-BASED ELASTOMERIC NANOCOMPOSITES. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_736430.pdf

accesso aperto

Descrizione: tesi di dottorato
Dimensione 11.98 MB
Formato Adobe PDF
11.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/241175
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact