Biological drugs (BD) include a wide range of products such as proteins, peptides, genetic materials and cells. Compared with the traditional small chemical drugs, BD generally show higher potency and selectivity of action and, so, have the potential to address many chronic diseases and various unmet medical needs. Unfortunately, most of BD are characterized by short circulating half-life, low stability and rapid body clearance via glomerular filtration. Among the several strategies proposed to overcome these drawbacks, nanoparticles (NPs) are emerging as valid drug delivery tools: indeed, they are able to improve the drug distribution, reduce its inactivation and elimination and provide the opportunity of non-invasive administration. The aim of this thesis was the development of NPs-based BD delivery systems. In particular, I was involved in two distinct projects: one concerned the hormonal substitution therapy, while the second a suicide gene delivery. In the first project, an oral nanocarrier for insulin colon delivery was developed. The novelty of this approach was the evaluation of the synergistic effect of colon release and muco-adhesive NPs in presence of a permeation enhancer. Insulin-loaded polymeric NPs (NI) were synthesized according to previously published protocols with several improvements. Then, NI were incorporated into cores that were subsequently coated with three overlapping layers, aiming to release insulin into the large intestine. The system was evaluated in vitro for its physico-technological characteristics, NPs dispersion, disintegration and release performance, showing delayed release behavior. Finally, the coated nanoformulation effect was tested in diabetic rats: a significant hypoglycaemic activity, due to the synergistic effect of NPs and colon delivery, was observed. Based on the in vivo efficacy, scalable process and safety profile, the proposed multitasking system appears a promising way to control diabetes. In the second project, lipid NPs with a selective targeting for poorly differentiated triple negative breast cancer (TNBC) cells were developed as a novel gene delivery system. In particular, the suicide gene included was Saporin encoding plasmid DNA, whereas the specific targeting was achieved by the functionalization with a ligand of urokinase plasminogen activator receptor. Firstly, targeted lipid-protamine-DNA (U11-LPD) NPs were synthetized, characterized and their antitumoral effect tested on TBNC cell line. Then, fluorescent U11-LPD NPs were developed and their binding and uptake profiles were evaluated in vitro. An enhanced performance was observed comparing the optimized U11-LPD NPs with the non-targeted formulation. In vivo biodistribution experiment of U11-LPD NPs in tumor bearing mice showed a time-dependent tumor infiltration and accumulation. Finally, the antitumoral activity was tested in vivo: under the investigated conditions, the selected system was able to significantly reduce the tumor progression without compromising major organs functionality.

Per farmaci biologici si intende principi attivi prodotti o derivati da una fonte biologica. Essi sono ampiamente studiati/impiegati come alternativa alle tradizionali piccole molecole organiche in quanto generalmente posseggono maggior potenza e specificità. Nonostante i grandi vantaggi, il loro utilizzo rimane ancora piuttosto limitato per la scarsa biodisponibilità intrinseca. Infatti, la suscettibilità a degradazione chimica ed enzimatica e l’elevata dimensione ne impediscono l’accumulo e/o l’azione nel tessuto target. Tra le diverse strategie proposte per superare queste limitazioni, le nanoparticelle (NPs) stanno emergendo come validi sistemi di trasporto e rilascio: esse infatti sono in grado di migliorare la distribuzione e l’assorbimento di farmaci e di ridurne l’inattivazione e l’eliminazione. Alla luce di quanto sopra esplicitato, lo scopo di questo lavoro di tesi è stato lo sviluppo di sistemi di rilascio di farmaci biologici basati sull’impiego di NPs. In particolare, sono stati affrontati due diversi progetti: il primo riguardante la terapia di sostituzione ormonale, il secondo riguardante il delivery di geni suicidi. Nel primo progetto, è stata progettata, sviluppata e testata una forma farmaceutica solida somministrabile per via orale contenente NPs incapsulanti l’insulina, un peptide largamente impiegato nel trattamento del diabete mellito di tipo 1 e di tipo 2 allo stadio avanzato. La novità di questo approccio consiste nella combinazione di due strategie normalmente impiegate per aumentare la biodisponibilità di peptidi/proteine per via orale: l’impiego di NPs mucoadesive e il rilascio al colon. NPs incapsulanti insulina sono state sintetizzate in accordo con un protocollo riportato in letteratura con diverse modifiche atte a rendere il prodotto adatto per gli step successivi. Successivamente, tali NPs sono state incorporate in una forma farmaceutica solida e i nuclei ottenuti sono stati rivestiti allo scopo di ottenere un sistema di rilascio al colon. Il sistema è stato caratterizzato in vitro nelle sue proprietà fisico tecnologiche, nella sua capacità di ridispersione, disgregazione e rilascio dell’attivo. Infine, l’effetto di tale nanoformulazione è stato indagato in vivo in ratti diabetici: in particolare, è stato osservata una significativa azione ipoglicemica, dipendente dall’effetto sinergico delle NPs e del rilascio al colon. Sulla base dell’efficacia in vivo, della scalabilità del processo e la sicurezza del prodotto, il sistema multitasking proposto appare come una via promettente del trattamento del diabete. Nel secondo progetto, NPs lipidiche con un targeting selettivo per cancro al seno triplo negativo sono state proposte e sviluppate come sistemi per il gene delivery. In particolare, il gene suicida incluso è un DNA plasmidico codificante per Saporina, mentre il targeting specifico è stato raggiunto attraverso la coniugazione delle NPs con un ligando peptidico (U11) del recettore dell’attivatore plasminogeno di tipo urochinasico overespresso nel modello tumorale studiato. In primo luogo, sono state sintetizzate NPs lipidiche incapsulanti un complesso di DNA e protamina e funzionalizzate con U11 (LPD-U11 NPs). Tale formulazione è stata caratterizzata nelle sue proprietà chimico fisiche e la sua attività testata in cellule di carcinoma mammario. Successivamente, LPD-U11 NPs fluorescenti sono state sviluppate e la loro capacità di binding e di uptake valutata in vitro. Complessivamente, una migliorata performace è stata riscontrata in confronto a NPs senza agente di targeting. Uno studio di biodistribuzione in vivo di LPD-U11 NPs in un modello animale di carcinoma mammario ha mostrato un accumulo tempo dipendente. Infine, l’attività antitumorale del preparato è stata testata in vivo: nelle condizioni indagate la formulazione sviluppata è in grado di indurre un significativo effetto antitumorale senza evidenti effetti collaterali.

(2019). Nanoparticles-based delivery of biologic drugs: improvements and challenges. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).

Nanoparticles-based delivery of biologic drugs: improvements and challenges

SALVIONI, LUCIA
2019

Abstract

Biological drugs (BD) include a wide range of products such as proteins, peptides, genetic materials and cells. Compared with the traditional small chemical drugs, BD generally show higher potency and selectivity of action and, so, have the potential to address many chronic diseases and various unmet medical needs. Unfortunately, most of BD are characterized by short circulating half-life, low stability and rapid body clearance via glomerular filtration. Among the several strategies proposed to overcome these drawbacks, nanoparticles (NPs) are emerging as valid drug delivery tools: indeed, they are able to improve the drug distribution, reduce its inactivation and elimination and provide the opportunity of non-invasive administration. The aim of this thesis was the development of NPs-based BD delivery systems. In particular, I was involved in two distinct projects: one concerned the hormonal substitution therapy, while the second a suicide gene delivery. In the first project, an oral nanocarrier for insulin colon delivery was developed. The novelty of this approach was the evaluation of the synergistic effect of colon release and muco-adhesive NPs in presence of a permeation enhancer. Insulin-loaded polymeric NPs (NI) were synthesized according to previously published protocols with several improvements. Then, NI were incorporated into cores that were subsequently coated with three overlapping layers, aiming to release insulin into the large intestine. The system was evaluated in vitro for its physico-technological characteristics, NPs dispersion, disintegration and release performance, showing delayed release behavior. Finally, the coated nanoformulation effect was tested in diabetic rats: a significant hypoglycaemic activity, due to the synergistic effect of NPs and colon delivery, was observed. Based on the in vivo efficacy, scalable process and safety profile, the proposed multitasking system appears a promising way to control diabetes. In the second project, lipid NPs with a selective targeting for poorly differentiated triple negative breast cancer (TNBC) cells were developed as a novel gene delivery system. In particular, the suicide gene included was Saporin encoding plasmid DNA, whereas the specific targeting was achieved by the functionalization with a ligand of urokinase plasminogen activator receptor. Firstly, targeted lipid-protamine-DNA (U11-LPD) NPs were synthetized, characterized and their antitumoral effect tested on TBNC cell line. Then, fluorescent U11-LPD NPs were developed and their binding and uptake profiles were evaluated in vitro. An enhanced performance was observed comparing the optimized U11-LPD NPs with the non-targeted formulation. In vivo biodistribution experiment of U11-LPD NPs in tumor bearing mice showed a time-dependent tumor infiltration and accumulation. Finally, the antitumoral activity was tested in vivo: under the investigated conditions, the selected system was able to significantly reduce the tumor progression without compromising major organs functionality.
COLOMBO, MIRIAM
Farmaci biologici; Nanoparticelle; Gene delivery; Peptide oraldelivery; Nanomedicina
Biologic drugs; Nanoparticles; Gene delivery; Peptide oraldelivery; Nanomedicina
BIO/12 - BIOCHIMICA CLINICA E BIOLOGIA MOLECOLARE CLINICA
English
12-feb-2019
SCIENZA E NANOTECNOLOGIA DEI MATERIALI - 79R
31
2017/2018
open
(2019). Nanoparticles-based delivery of biologic drugs: improvements and challenges. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_810442.pdf

accesso aperto

Descrizione: tesi di dottorato
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/241141
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact