This thesis focuses on various non-perturbative aspects of supersymmetric gauge theories in dimensions 2,3 and 4 and several constructions that relate properties of superconformal quantum field theories among different dimensionalities. Various techniques have been applied the most prominent of them being dimensional reduction and compactifications with decorations of the internal manifolds. The thesis deals with two main topics; the first is the study of compactifications of 4d superconformal field theories placed on a Riemann surface with a particular choice of background data along the internal dimensions, the choice of which is imposed by the requirement that supersymmetry is unbroken by the curved geometry. An extensive analysis of this construction is carried out at the formal level for any genus both for minimal and extended supersymmetry. The results obtained provide a systematic classification of all 2d theories that can be constructed via this technique. We then apply the results to the study of several specific 4d models. By restricting to a special class of theories endowed with a toric structure on their moduli space we are able to show a direct connection between the toric geometry and the explicit form of the 2d central charge and anomalies. The second topic is the study of circle compactifications of 4d dualities. We consider the reduction of Seiberg duality and its generalizations to SQCD with symplectic gauge group and adjoint plus fundamental matter fields. A remarkable property of these 4d theories, called E7 surprise, carries over to 3d and it is shown to be responsible for the appearance in the infrared theory of a pattern of duality and global symmetry enhancement. We conjecture the existence of such IR fixed points and support our claim of the 3d dualities by providing explicit checks of the 3d partition functions computed via supersymmetric localization. Finally, we obtain similar results for theories with power-law superpotentials for the antisymmetric tensor field as well as confining theories with 6 fundamentals.
Questa tesi tratta di vari aspetti non perturbativi delle teorie di gauge supersimmetriche nelle dimensioni 2,3 e 4 e delle diverse costruzioni che mettono in relazione proprietà di teorie di campo superconformi tra diverse dimensionalità. Sono state applicate varie tecniche tra cui la più importante è la riduzione dimensionale e la compattificazione con decorazioni delle varietà interne. La tesi tratta di due argomenti principali; il primo è lo studio delle compattificazioni delle teorie del campo superconformi in 4d poste su una superficie di Riemann con una particolare scelta di "background" lungo le dimensioni interne, la cui scelta è imposta dal requisito che la supersimmetria non sia rotta dalla geometria curva. Un'analisi approfondita di questa costruzione viene effettuata a livello formale per ogni genus sia per supersimmetria minima che estesa. I risultati ottenuti forniscono una classificazione sistematica di tutte le teorie 2d che possono essere costruite attraverso questa tecnica. I risultati sono quindi applicati allo studio di specifici modelli 4d. Limitandoci ad una specifica classe di teorie dotate di una struttura torica sul loro spazio dei moduli, siamo in grado di mostrare una connessione diretta tra la geometria torica e la forma esplicita della carica centrale e delle anomalie in 2d. Il secondo argomento è lo studio delle compattificazioni su cerchio delle dualità 4d. Consideriamo la riduzione della dualità di Seiberg e le sue generalizzazioni a SQCD con gruppi di gauge simplettici, campi nell'aggiunta e nella fondamentale. Un'interessante proprietà di queste teorie 4d, chiamata "E7 surprise", si estende a 3d e si dimostra responsabile della comparsa nell'infrarosso di un pattern di dualità e di "enhancement" di simmetria globale. Congetturiamo l'esistenza di tali punti fissi IR e discutiamo delle dualità 3d fornendo controlli espliciti delle funzioni di partizione calcolate tramite localizzazione supersimmetrica. Infine, otteniamo risultati simili per teorie con superpotenziali a potenza per il campo tensoriale antisimmetrico e per teorie confinanti con 6 fondamentali.
(2019). Aspects of Compactifications and Dualities in Superconformal Theories. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).
Aspects of Compactifications and Dualities in Superconformal Theories
CASSIA, LUCA
2019
Abstract
This thesis focuses on various non-perturbative aspects of supersymmetric gauge theories in dimensions 2,3 and 4 and several constructions that relate properties of superconformal quantum field theories among different dimensionalities. Various techniques have been applied the most prominent of them being dimensional reduction and compactifications with decorations of the internal manifolds. The thesis deals with two main topics; the first is the study of compactifications of 4d superconformal field theories placed on a Riemann surface with a particular choice of background data along the internal dimensions, the choice of which is imposed by the requirement that supersymmetry is unbroken by the curved geometry. An extensive analysis of this construction is carried out at the formal level for any genus both for minimal and extended supersymmetry. The results obtained provide a systematic classification of all 2d theories that can be constructed via this technique. We then apply the results to the study of several specific 4d models. By restricting to a special class of theories endowed with a toric structure on their moduli space we are able to show a direct connection between the toric geometry and the explicit form of the 2d central charge and anomalies. The second topic is the study of circle compactifications of 4d dualities. We consider the reduction of Seiberg duality and its generalizations to SQCD with symplectic gauge group and adjoint plus fundamental matter fields. A remarkable property of these 4d theories, called E7 surprise, carries over to 3d and it is shown to be responsible for the appearance in the infrared theory of a pattern of duality and global symmetry enhancement. We conjecture the existence of such IR fixed points and support our claim of the 3d dualities by providing explicit checks of the 3d partition functions computed via supersymmetric localization. Finally, we obtain similar results for theories with power-law superpotentials for the antisymmetric tensor field as well as confining theories with 6 fundamentals.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_728341.pdf
accesso aperto
Descrizione: tesi di dottorato
Dimensione
3.3 MB
Formato
Adobe PDF
|
3.3 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.