The work presented in this thesis focuses on the development and improvement of instrumentation and methods applied to neutron transmission imaging. In particular, the research activities have been performed at the "Imaging and Materials Science and Engineering" (IMAT) instrument. This facility is a part of the ISIS neutron source at the Rutherford Appleton Laboratory, in UK. The neutrons here are produced by spallation of a tungsten target hit by protons with energy of 800 MeV. The resulting neutrons are then moderated and convoyed through beam guides towards the IMAT experimental area. The neutrons spectrum in this case is characterized by the presence of thermal and cold neutrons with a wavelength in the range of 0.68 - 6.8 A. IMAT has been designed to acquire neutron pulses in Time-Of-Flight mode, by recording the time of arrival of neutrons, related to their energy, with a maximum of 10 ns timing resolution. This analysis is performed with a new generation detector, that is a combination of a MicroChannel Plate neutron converter with a TIMEPIX electronic readout. By means of this apparatus, radiographies and tomographies with a field of view of 28 mm^2 can be generated with a spatial resolution of 55 \textmu m and with respect to specific neutron energies. Beside this device, a larger CMOS camera can be used in combination with 6LiF/ZnS based neutron screen scintillators to acquire images up to 200 * 200 mm^2 in white-beam imaging. Such configuration opens several possibilities in different case scenarios. In one hand, the energy-resolved neutron imaging technique can be used to investigate the phase fraction composition and texture of the samples via Bragg Edge analysis software tools, at the cost of a reduced field of view. On the other hand, bigger samples can be studied with standard CMOS or CCD based white-beam imaging cameras, but loosing any information about the energy of the incoming neutrons. In this work, the first part is devoted to the description of the IMAT instrumentation, including the beamline design, the experimental area and the detectors. The second part is directed to case studies that made use of these novel instrumentation and imaging techniques. In particular, the cultural heritage takes advantage of such non-destructive methods where small and delicate specimens must be analysed. In this class of examples, a "soufflè" pearl was considered. The peculiarity of these cultured pearls resides in the fact that they are empty inside. The inspection of the morphological structure of the inner part, as well as the individuation of the different orientations of the nacres crystallites was conducted with energy-resolved imaging. A second experiment, presented in this thesis, regards the diagnosis of a series of metallic grids with a size up to 200 * 10 mm^2. For this case, a fast and non destructive way to verify the thickness of 1 um boron carbide layer deposited over the lamellae was successfully implemented, within an uncertainty of 120 nm. The third part is directed to show two new methods developed to improve the MCP detector camera in terms of spatial resolution and reliability. For what concerns the spatial resolution, a new procedure based on a centroiding algorithm has been tested. This acquisition method enables the possibility to go over the physical constraint given by the dimension of the pixels of the electronic readout and to acquire images with a resolutions up to four times higher. Furthermore, an improvement to the resulting images generated by the MCP detector has been developed, based on a post-processing approach. Actually, one of the weak spots of the TIMEPIX readout installed on the MCP detector is that it is constituted by four matrices of pixels assembled together. This brings to noticeable artifacts which, in some cases, may produce issues in the data analysis. A procedure, including a customized software, was implemented to fix such problem.

Il lavoro presentato in questa tesi si concentra sullo sviluppo e sul miglioramento della strumentazione e dei metodi applicati all'imaging a trasmissione di neutroni. Le attività di ricerca sono state svolte presso il laboratorio di "Imaging and Materials Science and Engineering" (IMAT). Questa struttura fa parte della sorgente di neutroni ISIS presso il Rutherford Appleton Laboratory (UK). I neutroni qui sono prodotti dalla spallazione di un bersaglio di tungsteno colpito da protoni con energia di 800 MeV. I neutroni risultanti vengono moderati e convogliati attraverso le guide dei fasci verso l'area sperimentale IMAT. Lo spettro dei neutroni è caratterizzato dalla presenza di neutroni termici e freddi con una lunghezza d'onda compresa tra 0,68 e 6,8 A. IMAT è stato progettato per acquisire impulsi di neutroni in modalità tempo di volo, registrando il tempo di arrivo dei neutroni, relativo alla loro energia, con una risoluzione temporale massima di 10 ns. Questa analisi viene eseguita con un rilevatore di nuova generazione, che è una combinazione di un convertitore di neutroni “MicroChannel Plate” e un readout elettronico “TIMEPIX”. Mediante questo apparato, radiografie e tomografie con un campo visivo di 28 mm^2 possono essere generate con una risoluzione spaziale di 55 um e a particolari energie dei neutroni incidenti. Una fotocamera CMOS di maggiori dimensioni può essere utilizzata in combinazione con gli scintillatori a 6LiF/ZnS per acquisire immagini fino a 200 * 200 mm^2 in modalità white-beam. Ciò apre diverse possibilità. Da una parte, la tecnica di imaging neutronico risolta in energia può essere utilizzata per studiare composizione e texture dei campioni tramite software di analisi dei Bragg Edge, a costo di un campo visivo ridotto. Dall’altra, i campioni più grandi possono essere studiati con fotocamere standard basate su CMOS o CCD, ma perdendo qualsiasi informazione sull'energia dei neutroni in ingresso. In questo lavoro, la prima parte è dedicata alla descrizione della strumentazione IMAT, incluso il progetto della beamline, l'area sperimentale e i rivelatori. La seconda parte è diretta a casi di studio basati su queste nuove tecniche di strumentazione e di imaging. In particolare, nel campo del patrimonio culturale, tali metodi non distruttivi sono utilizzati, in quanto i campioni sono spesso piccoli e delicati. Per esempio, abbiamo analizzato una perla "soufflè". La loro particolarità risiede nel fatto che sono vuote all'interno. L'ispezione della struttura morfologica della parte interna e l'individuazione dei diversi orientamenti dei cristalliti sono stati condotti con tecniche di imaging risolte in energia. Un secondo esperimento, presentato in questa tesi, riguarda lo studio di una serie di griglie metalliche con una dimensione fino a 200 * 10 mm^2. In questo caso, un modo rapido e non distruttivo per verificare lo spessore dello strato di carburo di boro di 1 um depositato sulle lamelle è stato implementato con successo, considerando un'incertezza di 120 nm. La terza parte è rivolta a mostrare due nuovi metodi sviluppati per migliorare la fotocamera del rivelatore MCP in termini di risoluzione spaziale e affidabilità. Per quanto riguarda la risoluzione spaziale, è stata testata una nuova procedura basata su un algoritmo di centroiding. Questo metodo di acquisizione consente di superare il vincolo fisico dato dalla dimensione dei pixel del readout elettronico e di acquisire immagini con risoluzioni fino a quattro volte superiori. Inoltre, è stato sviluppato un sistema per migliorare le immagini generate dal rivelatore MCP in post-elaborazione. Uno dei punti deboli del readout TIMEPIX installato sul rivelatore MCP è il fatto di essere costituito da quattro matrici di pixel assemblate insieme. Ciò porta a notevoli artefatti che possono causare problemi nell'analisi dei dati. Una procedure con software specifico è stata implementata per risolvere il problema.

(2019). Advances in instruments and methods for neutron transmission imaging. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).

Advances in instruments and methods for neutron transmission imaging

VITUCCI, GIUSEPPE
2019-01-31

Abstract

Il lavoro presentato in questa tesi si concentra sullo sviluppo e sul miglioramento della strumentazione e dei metodi applicati all'imaging a trasmissione di neutroni. Le attività di ricerca sono state svolte presso il laboratorio di "Imaging and Materials Science and Engineering" (IMAT). Questa struttura fa parte della sorgente di neutroni ISIS presso il Rutherford Appleton Laboratory (UK). I neutroni qui sono prodotti dalla spallazione di un bersaglio di tungsteno colpito da protoni con energia di 800 MeV. I neutroni risultanti vengono moderati e convogliati attraverso le guide dei fasci verso l'area sperimentale IMAT. Lo spettro dei neutroni è caratterizzato dalla presenza di neutroni termici e freddi con una lunghezza d'onda compresa tra 0,68 e 6,8 A. IMAT è stato progettato per acquisire impulsi di neutroni in modalità tempo di volo, registrando il tempo di arrivo dei neutroni, relativo alla loro energia, con una risoluzione temporale massima di 10 ns. Questa analisi viene eseguita con un rilevatore di nuova generazione, che è una combinazione di un convertitore di neutroni “MicroChannel Plate” e un readout elettronico “TIMEPIX”. Mediante questo apparato, radiografie e tomografie con un campo visivo di 28 mm^2 possono essere generate con una risoluzione spaziale di 55 um e a particolari energie dei neutroni incidenti. Una fotocamera CMOS di maggiori dimensioni può essere utilizzata in combinazione con gli scintillatori a 6LiF/ZnS per acquisire immagini fino a 200 * 200 mm^2 in modalità white-beam. Ciò apre diverse possibilità. Da una parte, la tecnica di imaging neutronico risolta in energia può essere utilizzata per studiare composizione e texture dei campioni tramite software di analisi dei Bragg Edge, a costo di un campo visivo ridotto. Dall’altra, i campioni più grandi possono essere studiati con fotocamere standard basate su CMOS o CCD, ma perdendo qualsiasi informazione sull'energia dei neutroni in ingresso. In questo lavoro, la prima parte è dedicata alla descrizione della strumentazione IMAT, incluso il progetto della beamline, l'area sperimentale e i rivelatori. La seconda parte è diretta a casi di studio basati su queste nuove tecniche di strumentazione e di imaging. In particolare, nel campo del patrimonio culturale, tali metodi non distruttivi sono utilizzati, in quanto i campioni sono spesso piccoli e delicati. Per esempio, abbiamo analizzato una perla "soufflè". La loro particolarità risiede nel fatto che sono vuote all'interno. L'ispezione della struttura morfologica della parte interna e l'individuazione dei diversi orientamenti dei cristalliti sono stati condotti con tecniche di imaging risolte in energia. Un secondo esperimento, presentato in questa tesi, riguarda lo studio di una serie di griglie metalliche con una dimensione fino a 200 * 10 mm^2. In questo caso, un modo rapido e non distruttivo per verificare lo spessore dello strato di carburo di boro di 1 um depositato sulle lamelle è stato implementato con successo, considerando un'incertezza di 120 nm. La terza parte è rivolta a mostrare due nuovi metodi sviluppati per migliorare la fotocamera del rivelatore MCP in termini di risoluzione spaziale e affidabilità. Per quanto riguarda la risoluzione spaziale, è stata testata una nuova procedura basata su un algoritmo di centroiding. Questo metodo di acquisizione consente di superare il vincolo fisico dato dalla dimensione dei pixel del readout elettronico e di acquisire immagini con risoluzioni fino a quattro volte superiori. Inoltre, è stato sviluppato un sistema per migliorare le immagini generate dal rivelatore MCP in post-elaborazione. Uno dei punti deboli del readout TIMEPIX installato sul rivelatore MCP è il fatto di essere costituito da quattro matrici di pixel assemblate insieme. Ciò porta a notevoli artefatti che possono causare problemi nell'analisi dei dati. Una procedure con software specifico è stata implementata per risolvere il problema.
TERRANOVA, FRANCESCO
GORINI, GIUSEPPE
MINNITI, TRIESTINO
The work presented in this thesis focuses on the development and improvement of instrumentation and methods applied to neutron transmission imaging. In particular, the research activities have been performed at the "Imaging and Materials Science and Engineering" (IMAT) instrument. This facility is a part of the ISIS neutron source at the Rutherford Appleton Laboratory, in UK. The neutrons here are produced by spallation of a tungsten target hit by protons with energy of 800 MeV. The resulting neutrons are then moderated and convoyed through beam guides towards the IMAT experimental area. The neutrons spectrum in this case is characterized by the presence of thermal and cold neutrons with a wavelength in the range of 0.68 - 6.8 A. IMAT has been designed to acquire neutron pulses in Time-Of-Flight mode, by recording the time of arrival of neutrons, related to their energy, with a maximum of 10 ns timing resolution. This analysis is performed with a new generation detector, that is a combination of a MicroChannel Plate neutron converter with a TIMEPIX electronic readout. By means of this apparatus, radiographies and tomographies with a field of view of 28 mm^2 can be generated with a spatial resolution of 55 \textmu m and with respect to specific neutron energies. Beside this device, a larger CMOS camera can be used in combination with 6LiF/ZnS based neutron screen scintillators to acquire images up to 200 * 200 mm^2 in white-beam imaging. Such configuration opens several possibilities in different case scenarios. In one hand, the energy-resolved neutron imaging technique can be used to investigate the phase fraction composition and texture of the samples via Bragg Edge analysis software tools, at the cost of a reduced field of view. On the other hand, bigger samples can be studied with standard CMOS or CCD based white-beam imaging cameras, but loosing any information about the energy of the incoming neutrons. In this work, the first part is devoted to the description of the IMAT instrumentation, including the beamline design, the experimental area and the detectors. The second part is directed to case studies that made use of these novel instrumentation and imaging techniques. In particular, the cultural heritage takes advantage of such non-destructive methods where small and delicate specimens must be analysed. In this class of examples, a "soufflè" pearl was considered. The peculiarity of these cultured pearls resides in the fact that they are empty inside. The inspection of the morphological structure of the inner part, as well as the individuation of the different orientations of the nacres crystallites was conducted with energy-resolved imaging. A second experiment, presented in this thesis, regards the diagnosis of a series of metallic grids with a size up to 200 * 10 mm^2. For this case, a fast and non destructive way to verify the thickness of 1 um boron carbide layer deposited over the lamellae was successfully implemented, within an uncertainty of 120 nm. The third part is directed to show two new methods developed to improve the MCP detector camera in terms of spatial resolution and reliability. For what concerns the spatial resolution, a new procedure based on a centroiding algorithm has been tested. This acquisition method enables the possibility to go over the physical constraint given by the dimension of the pixels of the electronic readout and to acquire images with a resolutions up to four times higher. Furthermore, an improvement to the resulting images generated by the MCP detector has been developed, based on a post-processing approach. Actually, one of the weak spots of the TIMEPIX readout installed on the MCP detector is that it is constituted by four matrices of pixels assembled together. This brings to noticeable artifacts which, in some cases, may produce issues in the data analysis. A procedure, including a customized software, was implemented to fix such problem.
neutroni; radiografia; IMAT; imaging; Bragg-edge
neutrons; radiography; IMAT; imaging; Bragg-edge
FIS/01 - FISICA SPERIMENTALE
English
FISICA E ASTRONOMIA - 86R
31
2017/2018
(2019). Advances in instruments and methods for neutron transmission imaging. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2019).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_805464.pdf

accesso aperto

Descrizione: tesi di dottorato
Dimensione 19.35 MB
Formato Adobe PDF
19.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10281/241081
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact