Cytokine-induced killer (CIK) cells are a heterogeneous population of lymphocytes obtained in vitro within 21 days from mononuclear cells under the influence of cytokines. CIK cells show potent MHC-unrestricted cytotoxicity against a variety of tumor cells, in particular hematological malignancies, and minimal tendency to induce graft-versus-host disease. The expanded bulk CIK culture consists of over 90% CD3+ cells, of which the majority coexpress CD56 and the remaining cells are CD56-. CD3+CD56+ “true” CIK cells are terminally differentiated non dividing lymphocytes which could deliver potent MHC-unrestricted cytotoxicity for the immediate destruction of tumor cells. The other less cytotoxic CD3+CD56- cell subset represents a progenitor reservoir that could proliferate and differentiate into CD3+CD56+ CIK cells. CD3+CD56+ CIK cells express activating NK receptors including NKG2D, DNAM-1 and low levels of NKp30. Cell signalling not only through TCR/CD3, but also through NKG2D, DNAM-1 and NKp30, leads to CIK cell activation resulting in granule exocytosis and cytotoxicity. Antibody blocking experiments revealed that NKG2D, DNAM-1 and NKp30 are actually involved in tumor cell recognition and killing. Anti-CMV specific CIK cells could be expanded in standard CIK conditions and mediate both specific, MHC-restricted recognition of a CMV-pulsed autologous target and NK-like non specific cytolytic activity against leukemic cell targets. Antibody blocking of NKG2D and NKp30 only inhibited NK-like cytotoxicity. Their dual effector function suggests that CIK cells, when used in a clinical setting, may control both neoplastic relapses and viral infections, two frequently associated complications in transplanted patients. B-cell non-Hodgkin lymphoma is only partially susceptible to CIK-mediated lysis. The addition of anti-CD20 monoclonal antibodies GA101 or rituximab increased cytotoxicity mediated by CIK cell cultures by 35% and 15%, respectively. This enhancement was mainly due to antibody-dependent cytotoxicity mediated by the 1%-10% NK cells contaminating CIK cultures. The addition of human serum inhibited NK-cell activation induced by rituximab, but not activation induced by GA101. Overall lysis in presence of serum, even of a resistant B-NHL cell line, was significantly increased by 100 mcg/mL of rituximab, but even more so by GA101, with respect to CIK cultures alone. The combined use of CIK cells with anti-CD20 mAbs could represent a novel immunotherapy protocol for the treatment of B lymphoma patients with resistant disease.

(2011). Cytokine-induced killer (cik) cell cultures for the adoptive immunotherapy of hematological malignancies: characterization and new therapeutic strategies for clinical application. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2011).

Cytokine-induced killer (cik) cell cultures for the adoptive immunotherapy of hematological malignancies: characterization and new therapeutic strategies for clinical application

PIEVANI, ALICE SILVIA
2011

Abstract

Cytokine-induced killer (CIK) cells are a heterogeneous population of lymphocytes obtained in vitro within 21 days from mononuclear cells under the influence of cytokines. CIK cells show potent MHC-unrestricted cytotoxicity against a variety of tumor cells, in particular hematological malignancies, and minimal tendency to induce graft-versus-host disease. The expanded bulk CIK culture consists of over 90% CD3+ cells, of which the majority coexpress CD56 and the remaining cells are CD56-. CD3+CD56+ “true” CIK cells are terminally differentiated non dividing lymphocytes which could deliver potent MHC-unrestricted cytotoxicity for the immediate destruction of tumor cells. The other less cytotoxic CD3+CD56- cell subset represents a progenitor reservoir that could proliferate and differentiate into CD3+CD56+ CIK cells. CD3+CD56+ CIK cells express activating NK receptors including NKG2D, DNAM-1 and low levels of NKp30. Cell signalling not only through TCR/CD3, but also through NKG2D, DNAM-1 and NKp30, leads to CIK cell activation resulting in granule exocytosis and cytotoxicity. Antibody blocking experiments revealed that NKG2D, DNAM-1 and NKp30 are actually involved in tumor cell recognition and killing. Anti-CMV specific CIK cells could be expanded in standard CIK conditions and mediate both specific, MHC-restricted recognition of a CMV-pulsed autologous target and NK-like non specific cytolytic activity against leukemic cell targets. Antibody blocking of NKG2D and NKp30 only inhibited NK-like cytotoxicity. Their dual effector function suggests that CIK cells, when used in a clinical setting, may control both neoplastic relapses and viral infections, two frequently associated complications in transplanted patients. B-cell non-Hodgkin lymphoma is only partially susceptible to CIK-mediated lysis. The addition of anti-CD20 monoclonal antibodies GA101 or rituximab increased cytotoxicity mediated by CIK cell cultures by 35% and 15%, respectively. This enhancement was mainly due to antibody-dependent cytotoxicity mediated by the 1%-10% NK cells contaminating CIK cultures. The addition of human serum inhibited NK-cell activation induced by rituximab, but not activation induced by GA101. Overall lysis in presence of serum, even of a resistant B-NHL cell line, was significantly increased by 100 mcg/mL of rituximab, but even more so by GA101, with respect to CIK cultures alone. The combined use of CIK cells with anti-CD20 mAbs could represent a novel immunotherapy protocol for the treatment of B lymphoma patients with resistant disease.
INTRONA, MARTINO
cytokine-induced killer (CIK) cells; cellular immunotherapy; anti-CD20 monoclonal antibodies; B-cell lymphoma
MED/04 - PATOLOGIA GENERALE
English
29-mar-2011
Scuola di Dottorato in Medicina Traslazionale e Molecolare
MEDICINA TRASLAZIONALE E MOLECOLARE (DIMET) - 45R
23
2009/2010
Il lavoro di tesi è stato svolto presso il Laboratorio di Terapia Cellulare "G. Lanzani", USC Ematologia, Ospedali Riuniti di Bergamo. Parte della tesi è stata pubblicata nei seguenti lavori: Franceschetti M, Pievani A, Borleri GM, Vago L, Fleischhauer K, Golay J, Introna M. (2009) Cytokine Induced Killer Cells are terminally differentiated activated CD8 cytotoxic T EMRA lymphocytes. Experimental Hematology, 37: 616-628; Pievani A, Belussi C, Klein C, Rambaldi A, Golay J, Introna M. (2011) Enhanced killing of human B lymphoma targets by combined use of Cytokine Induced Killer (CIK) cultures and anti-CD20 antibodies. Blood, 117: 510-518
open
(2011). Cytokine-induced killer (cik) cell cultures for the adoptive immunotherapy of hematological malignancies: characterization and new therapeutic strategies for clinical application. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2011).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_040703.pdf

Accesso Aperto

Tipologia di allegato: Doctoral thesis
Dimensione 1.64 MB
Formato Adobe PDF
1.64 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/20178
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact