TLR4 is the innate immunity receptor which selectively recognizes LPS from the Gram-negative bacteria that eluded the physical and anatomical barriers of our organisms. TLR4 responds to bacterial LPS and to different endogenous ligands in association with the protein adaptor MD-2 and triggers the immune and inflammatory responses. The receptors LBP and CD14 are involved in the LPS recognition process and in the transfer of LPS from aggregates in solution to TLR4-MD-2 complex . TLR4 has recently been related to many important pathologies still lacking specific pharmacological treatment: from diseases caused by bacterial infection such as sepsis and septic shock, to cancer and acute or chronic inflammatory diseases, atherosclerosis, allergies, asthma, cardiovascular disorder, diabetes. Compounds able to block TLR4 activation (antagonists) are drug candidates against these pathologies, compounds active in stimulating TLR4 (agonists) may be used as antitumoral agents or vaccine adjuvants. The chemical structure of lipid A (the biologically active part of LPS) has been simplified into synthetic glycolipids resembling lipid X, a biosynthetic precursor of lipid A. These compounds retained part of the agonist or antagonist activity on TLR4. Of the 8 vaccine adjuvants currently approved or in clinical evaluation, 3 are monosaccharide derivatives of Lipid A partial structures. However, SAR and the switch from agonism to antagonism for monosaccharide TLR4 modulators have not been completely clarified yet, nor their activities have been clearly rationalized with respect to MD-2 binding. With the aim of obtaining new monosaccharide-based TLR4 modulators (antagonists or agonists), to explore their SAR and to study their MD-2 binding properties, during this PhD thesis 9 new monosaccharide molecular simplifications of Lipid A have been projected and synthesized: FP7, FP11, FP111, AM158, AM173, AMX1, AM246248-d1, AM246248-d2 and AM241. This series of molecules has been projected by varying chain length and number as well as the number and position of phosphate groups, taking into account the already known SAR from the active (agonist or antagonist respectively) monosaccharides. New types of acyl chains structures have also been synthesized and inserted. The ability of these compounds to activate or inhibit the TLR4/LPS signal was first tested in HEK-BlueTM cells. HEK-BlueTM cells are HEK-293 cells stably transfected with human TLR4, MD-2, and CD14 genes. The compounds have shown strikingly different activities with respect to their structures. In particular an agonist was discovered, and its chemical structure, together to related variants, was patented. In vitro binding assays between these synthetic compounds and MD-2 expressed in the yeast P. pastoris have been performed with the purpose of studying the correlation between biological activity and MD-2-binding properties. These binding experiments comprise Surface Plasmon Resonance (SPR), Antibody-sandwich ELISA assay, Biotin-LPS displacement ELISA assay and fluorescent bis-ANS displacement assay. Moreover, studies with FT-IR, FRET and SAXS techniques are currently being performed to understand which is the aggregates shape in solution of our active and inactive amphiphilic compounds. Indeed the specific supramolecular aggregates shape of Lipid A disaccharides as well as that of monosaccharide Lipid A partial structures appears strictly related to their activity. Finally, AM30, a new innovative TLR4 antagonist based on the scaffold of natural anti-inflammatory compound oleocanthal, was synthesized. The very promising feature of this compound lays in the higher water-solubility (due to the lack of amphiphilicity) and the easier synthesis with respect to classical Lipid A-derived TLR4 antagonists.

TLR4 è il recettore dell’immunità innata che riconosce selettivamente LPS di batteri Gram-negativi che hanno superato le barriere fisiche ed anatomiche del nostro organismo. TLR4 risponde a LPS batterici e a diversi ligandi endogeni in associazione con la proteina MD-2 ed innesca così le risposte immunitarie e infiammatorie necessarie per combattere l’infezione. I recettori LBP e CD14 sono coinvolti nel processo di riconoscimento di LPS e nel trasferimento di LPS dagli aggregati in soluzione al complesso TLR4-MD-2. TLR4 è stato recentemente collegato a molte importanti patologie che mancano ancora di un trattamento farmacologico specifico: sepsi e shock settico, cancro, patologie da infiammazioni acute o croniche, SLA, arteriosclerosi, allergie, asma, disordini cardiovascolari, diabete. Composti in grado di bloccare l’attivazione del TLR4 (antagonisti) sono quindi dei potenziali candidati per la cura di queste patologie, mentre composti in grado di stimolare TLR4 (agonisti) possono essere usati come agenti antitumorali o come adiuvanti vaccinali. La struttura chimica del lipide A (la parte biologicamente attiva di LPS) è stata semplificata in glicolipidi sintetici basati sulla struttura del Lipide X, il precursore biosintetico del Lipide A. Diversi fra questi composti hanno dimostrato di possedere attività agonistica o antagonistica su TLR4. Degli 8 adiuvanti vaccinali attualmente approvati o in valutazione clinica, tre sono monosaccaridi derivati delle strutture parziali del Lipide A. Tuttavia, le relazioni struttura-attività ed il passaggio da antagonismo ad agonismo o viceversa per i modulatori di TLR4 monosaccaridici non sono state ancora chiarificati. Con l’obiettivo di ottenere nuovi modulatori monosaccaridi di TLR4 (agonisti o antagonisti), allo scopo di esplorare le SAR e con altresì il fine di studiare le proprietà di binding con il co-recettore di TLR4 MD-2, durante il lavoro di questa tesi di dottorato sono stati progettate e sintetizzate 9 innovative semplificazioni molecolari del Lipide A a struttura monosaccaridica: FP7, FP11, FP111, AM158, AM173, AMX1, AM246248-d1, AM246248-d2 and AM241. Questa serie di molecole è stata progettata tenendo conto delle caratteristiche strutturali dei monosaccaridi già dimostratisi attivi, mentre le variazioni riguardano il numero di catene alifatiche e la loro posizione, così come il numero e la posizione dei gruppi anionici. Inoltre sono state inseriti tre nuovi tipi di catene alifatiche. L’abilità di questi composti di attivare o inibire il segnale generato dall’attivazione di TLR4 è stata inizialmente testata in cellule HEK-BlueTM (cellule HEK-293 stabilmente transfettate con i geni che esprimono TLR4, MD-2, e CD14). Questi composti hanno mostrato notevoli variazioni in termini di attività biologica a seconda del tipo di modifica strutturale introdotta. In particolare è stato scoperto un nuovo agonista di TLR4 che è stato brevettato, considerato il suo potenziale come adiuvante vaccinale. Sono inoltre stati effettuati test di binding fra questi composti sintetici e MD-2 (espresso nel lievito P. pastoris) con lo scopo di studiare la relazione fra attività biologica e interazione con lo stesso. Questi esperimenti di binding comprendono la risonanza plasmonica di superficie (SPR), un test ELISA anticorpo-sandwich, un test ELISA di spiazzamento di LPS biotininato e un test di fluorescenza per lo spiazzamento del fluoroforo bis-ANS. Sono inoltre in corso studi (FT-IR, FRET e SAXS) per determinare la forma degli aggregati che questi composti anfifilici formano in soluzione. Dalla letteratura emerge infatti un chiaro ruolo della forma degli aggregati molecolari, sia per i Lipidi A che per le loro strutture parziali monosaccaridiche, nel determinare il tipo di attività biologica. Infine, durante questa tesi è stato ottenuto un innovativo antagonista di TLR4,AM30, basato sulla struttura del composto naturale oleocantale.

(2018). New Synthetic Molecules Active on Human Toll-like Receptor 4. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).

New Synthetic Molecules Active on Human Toll-like Receptor 4

MINOTTI, ALBERTO
2018

Abstract

TLR4 is the innate immunity receptor which selectively recognizes LPS from the Gram-negative bacteria that eluded the physical and anatomical barriers of our organisms. TLR4 responds to bacterial LPS and to different endogenous ligands in association with the protein adaptor MD-2 and triggers the immune and inflammatory responses. The receptors LBP and CD14 are involved in the LPS recognition process and in the transfer of LPS from aggregates in solution to TLR4-MD-2 complex . TLR4 has recently been related to many important pathologies still lacking specific pharmacological treatment: from diseases caused by bacterial infection such as sepsis and septic shock, to cancer and acute or chronic inflammatory diseases, atherosclerosis, allergies, asthma, cardiovascular disorder, diabetes. Compounds able to block TLR4 activation (antagonists) are drug candidates against these pathologies, compounds active in stimulating TLR4 (agonists) may be used as antitumoral agents or vaccine adjuvants. The chemical structure of lipid A (the biologically active part of LPS) has been simplified into synthetic glycolipids resembling lipid X, a biosynthetic precursor of lipid A. These compounds retained part of the agonist or antagonist activity on TLR4. Of the 8 vaccine adjuvants currently approved or in clinical evaluation, 3 are monosaccharide derivatives of Lipid A partial structures. However, SAR and the switch from agonism to antagonism for monosaccharide TLR4 modulators have not been completely clarified yet, nor their activities have been clearly rationalized with respect to MD-2 binding. With the aim of obtaining new monosaccharide-based TLR4 modulators (antagonists or agonists), to explore their SAR and to study their MD-2 binding properties, during this PhD thesis 9 new monosaccharide molecular simplifications of Lipid A have been projected and synthesized: FP7, FP11, FP111, AM158, AM173, AMX1, AM246248-d1, AM246248-d2 and AM241. This series of molecules has been projected by varying chain length and number as well as the number and position of phosphate groups, taking into account the already known SAR from the active (agonist or antagonist respectively) monosaccharides. New types of acyl chains structures have also been synthesized and inserted. The ability of these compounds to activate or inhibit the TLR4/LPS signal was first tested in HEK-BlueTM cells. HEK-BlueTM cells are HEK-293 cells stably transfected with human TLR4, MD-2, and CD14 genes. The compounds have shown strikingly different activities with respect to their structures. In particular an agonist was discovered, and its chemical structure, together to related variants, was patented. In vitro binding assays between these synthetic compounds and MD-2 expressed in the yeast P. pastoris have been performed with the purpose of studying the correlation between biological activity and MD-2-binding properties. These binding experiments comprise Surface Plasmon Resonance (SPR), Antibody-sandwich ELISA assay, Biotin-LPS displacement ELISA assay and fluorescent bis-ANS displacement assay. Moreover, studies with FT-IR, FRET and SAXS techniques are currently being performed to understand which is the aggregates shape in solution of our active and inactive amphiphilic compounds. Indeed the specific supramolecular aggregates shape of Lipid A disaccharides as well as that of monosaccharide Lipid A partial structures appears strictly related to their activity. Finally, AM30, a new innovative TLR4 antagonist based on the scaffold of natural anti-inflammatory compound oleocanthal, was synthesized. The very promising feature of this compound lays in the higher water-solubility (due to the lack of amphiphilicity) and the easier synthesis with respect to classical Lipid A-derived TLR4 antagonists.
PERI, FRANCESCO
LA FERLA, BARBARA
TLR4; MODULATORS,; SEPSIS,; IMMUNITY,; ADJUVANTS
TLR4; MODULATORS,; SEPSIS,; IMMUNITY,; ADJUVANTS
CHIM/06 - CHIMICA ORGANICA
English
6-mar-2018
SCIENZE CHIMICHE, GEOLOGICHE E AMBIENTALI - 94R
30
2016/2017
open
(2018). New Synthetic Molecules Active on Human Toll-like Receptor 4. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_709538.pdf

Accesso Aperto

Descrizione: tesi di dottorato
Tipologia di allegato: Doctoral thesis
Dimensione 19.8 MB
Formato Adobe PDF
19.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/199133
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact