Self-assembly of surfactant-based structures, and their application in the nanotechnology field, is the fil rouge connecting all the projects discussed. Surfactants are molecules formed by a polar head and an apolar tail covalently connected. In water, they form nanometric aggregates called micelles. The inner portion of a micelle is formed by the apolar blocks of the surfactants, which in this way minimize the interaction with the surrounding aqueous environment. As the inner core is formed by organic chains, it is apt to solubilize other organic species (on the basis of “like dissolves like” principle). Micelles therefore work as a segregated phase, which makes possible the interaction between poorly water-soluble species. During early stages of reaserch, we found that Kolliphor® EL, a widespread and cheap industrial surfactant, forms micelles strongly insensitive to oxygen. We therefore used them to carry out oxygen sensitive processes. A first project focused on their use as “photonic boxes” for Triple-Triplet Annihilation Up-Conversion (TTA-UC). Photophysics of this process is based on triplet levels of organic molecules, easily quenched by molecular oxygen. We developed an easy protocol to perform TTA-UC in air, optimized quantic yield of the process and proved that the obtained micellar dispersion is suitable for cellular imaging. We subsequently used Kolliphor micelles as “nanoreactors” to perform organic synthesis the like Suzuki-Miyaura coupling. This reaction makes use of oxygen sensitive palladium catalysts. We demonstrated that Kolliphor can be successfully used to perform this kind of reaction in standard oxygenated atmosphere, and the reaction yields are comparable to those obtained with surfactants specifically designed for coupling reactions. We also challenged Kolliphor in the synthesis of organic semiconductors with very good results, although the developed method needs some refinements. Micelles are dynamic objects, continuously forming and disrupting in the aqueous phase, a feature that might be discouraging for a series of applications. We developed an original method, inspired by interpenetrated polymer network properties, to stabilize micellar systems. The idea was to create a hardly disentanglable system as the result of mechanical hindrance instead of bond formation, which is the most used strategy. We therefore designed a polymerogenic co-surfactant to be dispersed within a micellar solution formed by a branched surfactant. We aimed at polymerizing the co-surfactant after dispersion in order to create a polymeric chain entangled within the branched surfactant polar heads. We optimized the polymerization reaction in order to obtain a full conversion of the monomers, and therefore we proved the system to be more stable to both dilution and temperature increasing. The newly obtained material, moreover, can be still loaded with organic species, and it shows an increased retention of loading upon solvent evaporation. Finally, we used two different families of cationic surfactant (specifically, ammonium salts) to synthesize colloidal hybrid perovskites through a simple non-solvent precipitation technique. The first family of surfactants is represented by classic alkylammonium halides: they allow to synthesize perovskite nanoplatelets which maintain the properties of the material prepared as single crystal. Moreover, they can be reconfigured in solution: halogen exchange reactions under tailored conditions, in fact, allow to modify both their composition and morphology. The second surfactant used is the ammonium salt of poly(dimethylsiloxane): use of this polymer allows to grow a naturally two-dimensional, unit-cell thick material. Mechanical properties of these perovskites resemble those of the starting polymer, meaning that these platelets might behave like something similar to a “liquid semiconductor”.

Il filo conduttore del lavoro è il self-assembly di surfattanti per varie applicazioni nel campo delle nanotecnologie. I surfattanti sono molecole composte da una testa polare e una coda apolare che, in acqua, formano aggregati nanometrici detti micelle. L’interno di una micella è formato dalla porzione apolare dei surfattanti, che minimizza così la sua interazione con l'acqua, per cui non ha affinità. Dal momento che è composto da catene organiche, l'interno delle micelle forma un ambiente adatto alla solubilizzazione di altre specie organiche in base al principio "il simile scioglie il simile". Le micelle funzionano quindi come una “fase segregata” in cui è possibile far interagire tra loro specie poco solubili in acqua. Nei corso del primo progetto, abbiamo scoperto che un noto surfattante industriale, il Kolliphor® EL, forma micelle fortemente insensibili alla presenza di ossigeno. Questo ci ha permesso di utilizzarle come “scatole fotoniche” per il processo fotofisico di Triplet-Triplet Annihilation Up-Conversion, che sfrutta i livelli di tripletto di due specie organiche interagenti per convertire fotoni di bassa energia in fotoni di energia più elevata. Dal momento che l'ossigeno è un noto quencher di tripletti, è necessario un ambiente anossico. Abbiamo ottimizzato la resa quantica del processo in micella, e utilizzato con successo le micelle per imaging cellulare. Lo stesso surfattante è stato poi implementato per lo svolgimento di reazioni di sintesi organica di tipo Suzuki-Miyaura, anch’esse fortemente sensibili alla presenza di ossigeno, in condizioni di atmosfera non controllata. Abbiamo dimostrato che il Kolliphor può essere utilizzato con successo per la sintesi senza necessità di deossigenare l’ambiente di reazione, permettendo di ottenere rese di reazione comparabili a quelle di designer surfactants specifici per reazioni di coupling. Inoltre, abbiamo verificato che questo tensioattivo è utilizzabile come “nanoreattore” per la preparazione specificamente di semiconduttori organici. Le micelle sono oggetti dinamici, che continuamente si formano e digregano della fase acquosa. Nel corso del terzo progetto, abbiamo studiato la possibilità di stabilizzarle utilizzando un metodo originale, ispirato ai network polimerici interpenetrati. L’idea era di creare un sistema che, anche se formato da specie non legate chimicamente, fosse difficilmente separabile poiché formato da catene "aggrovigliate". All'atto pratico, abbiamo sintetizzato un co-surfattante polimerizzabile, e lo abbiamo disperso in una fase micellare formata da un surfattante ramificato: la polimerizzazione, avvenendo dopo la dispersione, avrebbe permesso di creare una catena polimerica interamente tra le maglie del tensioattivo. Dopo aver ottimizzato la polimerizzazione, abbiamo verificato non solo l’incrementata stabilità del sistema alla diluizione e alla temperatura, sintomatica della formazione di un sistema del tipo ricercato, ma anche che il nuovo materiale ha un’incrementata capacità di ritenzione del carico. Infine, surfattanti cationici (nello specifico, sali di ammonio) sono stati utilizzati per la sintesi di perovskiti colloidali attraverso un semplice processo di precipitazione da non-solvente. Nel caso di uso di sali di alchilammonio, le “piastrelle” ottenute mantengono le proprietà delle perovskiti cresciute come cristalli singoli, benché la sintesi sia sotto controllo cinetico anziché termodinamico. Inoltre, è possibile riconfigurarle in soluzione, variandone composizione e morfologia, tramite reazioni di scambio di alogeni in opportune condizioni. Quando il legante usato è invece il sale di ammonio di un poli(dimetilsilossano), la perovskite cresce in forma di singoli strati cristallini, sottilissimi e molto ampi. Le proprietà meccaniche di questo materiale rimangono molto simili a quelle del polimero di partenza, facendolo quindi assomigliare a un “semiconduttore liquido”.

(2018). VARIATIONS ON SELF-ASSEMBLY OF SURFACTANT-BASED CONFINED SYSTEMS. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).

VARIATIONS ON SELF-ASSEMBLY OF SURFACTANT-BASED CONFINED SYSTEMS

MATTIELLO, SARA
2018

Abstract

Il filo conduttore del lavoro è il self-assembly di surfattanti per varie applicazioni nel campo delle nanotecnologie. I surfattanti sono molecole composte da una testa polare e una coda apolare che, in acqua, formano aggregati nanometrici detti micelle. L’interno di una micella è formato dalla porzione apolare dei surfattanti, che minimizza così la sua interazione con l'acqua, per cui non ha affinità. Dal momento che è composto da catene organiche, l'interno delle micelle forma un ambiente adatto alla solubilizzazione di altre specie organiche in base al principio "il simile scioglie il simile". Le micelle funzionano quindi come una “fase segregata” in cui è possibile far interagire tra loro specie poco solubili in acqua. Nei corso del primo progetto, abbiamo scoperto che un noto surfattante industriale, il Kolliphor® EL, forma micelle fortemente insensibili alla presenza di ossigeno. Questo ci ha permesso di utilizzarle come “scatole fotoniche” per il processo fotofisico di Triplet-Triplet Annihilation Up-Conversion, che sfrutta i livelli di tripletto di due specie organiche interagenti per convertire fotoni di bassa energia in fotoni di energia più elevata. Dal momento che l'ossigeno è un noto quencher di tripletti, è necessario un ambiente anossico. Abbiamo ottimizzato la resa quantica del processo in micella, e utilizzato con successo le micelle per imaging cellulare. Lo stesso surfattante è stato poi implementato per lo svolgimento di reazioni di sintesi organica di tipo Suzuki-Miyaura, anch’esse fortemente sensibili alla presenza di ossigeno, in condizioni di atmosfera non controllata. Abbiamo dimostrato che il Kolliphor può essere utilizzato con successo per la sintesi senza necessità di deossigenare l’ambiente di reazione, permettendo di ottenere rese di reazione comparabili a quelle di designer surfactants specifici per reazioni di coupling. Inoltre, abbiamo verificato che questo tensioattivo è utilizzabile come “nanoreattore” per la preparazione specificamente di semiconduttori organici. Le micelle sono oggetti dinamici, che continuamente si formano e digregano della fase acquosa. Nel corso del terzo progetto, abbiamo studiato la possibilità di stabilizzarle utilizzando un metodo originale, ispirato ai network polimerici interpenetrati. L’idea era di creare un sistema che, anche se formato da specie non legate chimicamente, fosse difficilmente separabile poiché formato da catene "aggrovigliate". All'atto pratico, abbiamo sintetizzato un co-surfattante polimerizzabile, e lo abbiamo disperso in una fase micellare formata da un surfattante ramificato: la polimerizzazione, avvenendo dopo la dispersione, avrebbe permesso di creare una catena polimerica interamente tra le maglie del tensioattivo. Dopo aver ottimizzato la polimerizzazione, abbiamo verificato non solo l’incrementata stabilità del sistema alla diluizione e alla temperatura, sintomatica della formazione di un sistema del tipo ricercato, ma anche che il nuovo materiale ha un’incrementata capacità di ritenzione del carico. Infine, surfattanti cationici (nello specifico, sali di ammonio) sono stati utilizzati per la sintesi di perovskiti colloidali attraverso un semplice processo di precipitazione da non-solvente. Nel caso di uso di sali di alchilammonio, le “piastrelle” ottenute mantengono le proprietà delle perovskiti cresciute come cristalli singoli, benché la sintesi sia sotto controllo cinetico anziché termodinamico. Inoltre, è possibile riconfigurarle in soluzione, variandone composizione e morfologia, tramite reazioni di scambio di alogeni in opportune condizioni. Quando il legante usato è invece il sale di ammonio di un poli(dimetilsilossano), la perovskite cresce in forma di singoli strati cristallini, sottilissimi e molto ampi. Le proprietà meccaniche di questo materiale rimangono molto simili a quelle del polimero di partenza, facendolo quindi assomigliare a un “semiconduttore liquido”.
BEVERINA, LUCA
Self-assembly of surfactant-based structures, and their application in the nanotechnology field, is the fil rouge connecting all the projects discussed. Surfactants are molecules formed by a polar head and an apolar tail covalently connected. In water, they form nanometric aggregates called micelles. The inner portion of a micelle is formed by the apolar blocks of the surfactants, which in this way minimize the interaction with the surrounding aqueous environment. As the inner core is formed by organic chains, it is apt to solubilize other organic species (on the basis of “like dissolves like” principle). Micelles therefore work as a segregated phase, which makes possible the interaction between poorly water-soluble species. During early stages of reaserch, we found that Kolliphor® EL, a widespread and cheap industrial surfactant, forms micelles strongly insensitive to oxygen. We therefore used them to carry out oxygen sensitive processes. A first project focused on their use as “photonic boxes” for Triple-Triplet Annihilation Up-Conversion (TTA-UC). Photophysics of this process is based on triplet levels of organic molecules, easily quenched by molecular oxygen. We developed an easy protocol to perform TTA-UC in air, optimized quantic yield of the process and proved that the obtained micellar dispersion is suitable for cellular imaging. We subsequently used Kolliphor micelles as “nanoreactors” to perform organic synthesis the like Suzuki-Miyaura coupling. This reaction makes use of oxygen sensitive palladium catalysts. We demonstrated that Kolliphor can be successfully used to perform this kind of reaction in standard oxygenated atmosphere, and the reaction yields are comparable to those obtained with surfactants specifically designed for coupling reactions. We also challenged Kolliphor in the synthesis of organic semiconductors with very good results, although the developed method needs some refinements. Micelles are dynamic objects, continuously forming and disrupting in the aqueous phase, a feature that might be discouraging for a series of applications. We developed an original method, inspired by interpenetrated polymer network properties, to stabilize micellar systems. The idea was to create a hardly disentanglable system as the result of mechanical hindrance instead of bond formation, which is the most used strategy. We therefore designed a polymerogenic co-surfactant to be dispersed within a micellar solution formed by a branched surfactant. We aimed at polymerizing the co-surfactant after dispersion in order to create a polymeric chain entangled within the branched surfactant polar heads. We optimized the polymerization reaction in order to obtain a full conversion of the monomers, and therefore we proved the system to be more stable to both dilution and temperature increasing. The newly obtained material, moreover, can be still loaded with organic species, and it shows an increased retention of loading upon solvent evaporation. Finally, we used two different families of cationic surfactant (specifically, ammonium salts) to synthesize colloidal hybrid perovskites through a simple non-solvent precipitation technique. The first family of surfactants is represented by classic alkylammonium halides: they allow to synthesize perovskite nanoplatelets which maintain the properties of the material prepared as single crystal. Moreover, they can be reconfigured in solution: halogen exchange reactions under tailored conditions, in fact, allow to modify both their composition and morphology. The second surfactant used is the ammonium salt of poly(dimethylsiloxane): use of this polymer allows to grow a naturally two-dimensional, unit-cell thick material. Mechanical properties of these perovskites resemble those of the starting polymer, meaning that these platelets might behave like something similar to a “liquid semiconductor”.
surfactants,; self-assembly,; micelles,; green-chemistry,; perovskite
surfactants,; self-assembly,; micelles,; green-chemistry,; perovskite
CHIM/06 - CHIMICA ORGANICA
English
SCIENZA E NANOTECNOLOGIA DEI MATERIALI - 79R
30
2016/2017
(2018). VARIATIONS ON SELF-ASSEMBLY OF SURFACTANT-BASED CONFINED SYSTEMS. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_726873.pdf

accesso aperto

Descrizione: tesi di dottorato
Tipologia di allegato: Doctoral thesis
Dimensione 16.18 MB
Formato Adobe PDF
16.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/199111
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact