Kabuki Syndrome (KS) is a rare multiple malformation disease characterized by intellectual disability, short stature and peculiar facial gestalt. Recently, mutations of KMT2D and KDM6A genes have been identified as causative genes in 60 to 80% of KS cases. These two genes encode for histone modifying enzymes that are specific subunit of the COMPASS-like MLL4 complex, which has been described to possess a gene-specific function by modulating the chromatin state of enhancers. The lack of any in vitro or animal disease model for KS represents a major obstacle to understand the mechanisms by which KMT2D and KDM6A gene alterations causes the disorder. We propose the development an in vitro disease model of KS through CRISPR/Cas9 system. In particular, we focused our attention ok KMT2D, a mono methyltransferase of H3K4, because it was found mutated in the majority of Kabuki patients. We used mesenchymal stem cells (MSCs) as cellular model since they are able to differentiate into osteocyte and chondrocyte, whose derived tissues are affected in Kabuki patients. In these cells, we introduced frame shift mutations that lead to the formation of a truncated form of KMT2D protein which lose the catalytic domain. Mutated MSCs show a reduction in the H3K4me1 level, but not in H3K4me3, confirming the role of KMT2D as mono methyltransferase. Analyzing the phenotype of undifferentiated MSCs, very slight differences are present between WT and mutated cells. Mutated cells appear smaller and with a less structured actin cytoskeleton. Also, KMT2D mutations impair iMSCs differentiation through chondrocyte lineages. Indeed these cells fail in chondrocyte differentiation, in terms of morphology and in terms of synthesis of extracellular matrix. Considering also that mutated iMSCs show an altered expression of chondrogenic specific transcription factors, we hypothesize that KMT2D impairment cause an alteration in undifferentiated stem cells structure and transcriptional program that, in turn, alters the differentiation process. The altered differentiation process is also confirmed by the cell cycle analysis that reveals how mutated cells are not able to exit from cell cycle, an important step during chondrogenesis. The involvement of KMT2D in chondrocyte lineage, and also in the pathology, was also confirmed in vivo because morpholino mediated down-regulation of KMT2D results in aberration of craniofacial development of medaka animal model. In conclusion, we developed a tool that will allow us to study at the molecular level the effects of KMT2D frame-shift mutations both in the undifferentiated state of MSCs but also during the differentiation process. Moreover, our results could be reinforced and confirmed in the medaka animal model. These models could be therefore a good candidate for the study of disease pathogenesis but also for drug screening approaches.

La sindrome di Kabuki (KS) è una patologia caratterizzata da anomalie congenite multiple. Sintomi tipici sono anomalie scheletriche, disabilità cognitiva lieve-moderata e difetti nello sviluppo cranio-facciale. Recentemente, i geni KMT2D e KDM6A sono stati identificati come geni causativi della malattia nel 60-80% dei casi. Questi geni codificano enzimi che modificano gli istoni e sono parte del complesso multiproteico COMPASS-like MLL4. Questo complesso è respondabile del rimodellamento della cromatina delle regioni enhancers. Uno dei maggiori ostacoli per lo studio dei meccanismi molecolari della patologia è la mancanza di modelli sperimentali, sia in vitro che in vivo. Per poter comprendere gli effetti causati dalle mutazioni sul gene KMT2D, proponiamo lo sviluppo di un modello cellulare della patologia attraverso l’utilizzo di techniche di genome editing. Abbiamo deciso di concentrarci sul gene KMT2D, responsabile della monometilazione di H3K4, perchè è stato trovato più frequentemente mutato nei pazienti Kabuki. Come modello cellulare, abbiamo utilizzato le cellule staminali mesenchimali (MSC) perchè sono i precursori di osteoblasti ed condrociti, cellule da cui derivano due dei maggiori tessuti alterati nella patologia (ossa e cartilagini). Attraverso la tecnologia CRISPR/Cas abbiamo introdotto mutazioni sul gene KMT2D. Queste mutazioni portano alla produzione di una forma tronca della proteina che manca del dominio metiltransferasico. Le cellule mutate mostrano livelli ridotti di H3K4me1, ma non di H3K4me3, confermando il ruolo di mono-metilasi di KMT2D. Analizzando il fenotipo delle cellule mesenchimali nello stato indifferenziato, abbiamo osservato solo piccole differenze presenti nelle cellule mutate rispetto alle cellule non mutate. In particolare sono presenti alterazioni nella morfologia. Infatti, le cellule mutate sono più piccole e hanno un citoscheletro di actina meno strutturato. Parallelamente, abbiamo osservato che le cellule mutate non sono in grado di completare il differenziamento condrocitario, sia in termini di morfologia ma anche in termini di produzione della matrice extracellulare. Considerando anche che le cellule staminali mesenchimali mutate hanno un’alterata espressione dei fattori di trascrizione responsabili per il differenziamento condrocitario, noi ipotiziamo che uno sbilanciamento dell’attività di KMT2D causi un’alterazione strutturale e trascrizionale nelle cellule staminali mesenchimali che, a loro volta, non sono poi in grado di differenziare completamente in condrociti. La difficoltà delle cellule mutate nel completare il differenziamento condrocitario è anche confermato dall’analisi del ciclo cellulare. Infatti, le cellule mutate non sono in grado di uscire dalla fase S del ciclo cellulare, che è un passaggio importante durante il differenziamento condrocitario. Il coinvolgimento di KMT2D nel differenziamento condrocitario e nella patologia è inoltre confermato in vivo poichè la down regolazione, mediata da morfolino, di KMT2D causa alterazioni nello sviluppo craniofacciale nel modello animale di medaka. In conclusione, abbiamo sviluppato un modello in vitro della sindrome di Kabuki il quale mostra alterazioni nelle cellule staminali mesenchimali che a loro volta non sono in grado di differenziare in condrociti, i cui tessuti che ne derivano sono alterati nella patologia. Il modello animale, inoltre, conferma questo risultato mostrandosi utile per confermare e rinforzare successivi studi. Questo modello non solo può essere utile per lo studio della patologia, ma potrebbe anche essere utilizzato per lo studio di approcci terapeutici.

(2018). Development of an in vitro disease model for dissecting the epigenetic mechanisms underlying pathogenesis of Kabuki syndrome. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).

Development of an in vitro disease model for dissecting the epigenetic mechanisms underlying pathogenesis of Kabuki syndrome

FASCIANI, ALESSANDRA
2018

Abstract

Kabuki Syndrome (KS) is a rare multiple malformation disease characterized by intellectual disability, short stature and peculiar facial gestalt. Recently, mutations of KMT2D and KDM6A genes have been identified as causative genes in 60 to 80% of KS cases. These two genes encode for histone modifying enzymes that are specific subunit of the COMPASS-like MLL4 complex, which has been described to possess a gene-specific function by modulating the chromatin state of enhancers. The lack of any in vitro or animal disease model for KS represents a major obstacle to understand the mechanisms by which KMT2D and KDM6A gene alterations causes the disorder. We propose the development an in vitro disease model of KS through CRISPR/Cas9 system. In particular, we focused our attention ok KMT2D, a mono methyltransferase of H3K4, because it was found mutated in the majority of Kabuki patients. We used mesenchymal stem cells (MSCs) as cellular model since they are able to differentiate into osteocyte and chondrocyte, whose derived tissues are affected in Kabuki patients. In these cells, we introduced frame shift mutations that lead to the formation of a truncated form of KMT2D protein which lose the catalytic domain. Mutated MSCs show a reduction in the H3K4me1 level, but not in H3K4me3, confirming the role of KMT2D as mono methyltransferase. Analyzing the phenotype of undifferentiated MSCs, very slight differences are present between WT and mutated cells. Mutated cells appear smaller and with a less structured actin cytoskeleton. Also, KMT2D mutations impair iMSCs differentiation through chondrocyte lineages. Indeed these cells fail in chondrocyte differentiation, in terms of morphology and in terms of synthesis of extracellular matrix. Considering also that mutated iMSCs show an altered expression of chondrogenic specific transcription factors, we hypothesize that KMT2D impairment cause an alteration in undifferentiated stem cells structure and transcriptional program that, in turn, alters the differentiation process. The altered differentiation process is also confirmed by the cell cycle analysis that reveals how mutated cells are not able to exit from cell cycle, an important step during chondrogenesis. The involvement of KMT2D in chondrocyte lineage, and also in the pathology, was also confirmed in vivo because morpholino mediated down-regulation of KMT2D results in aberration of craniofacial development of medaka animal model. In conclusion, we developed a tool that will allow us to study at the molecular level the effects of KMT2D frame-shift mutations both in the undifferentiated state of MSCs but also during the differentiation process. Moreover, our results could be reinforced and confirmed in the medaka animal model. These models could be therefore a good candidate for the study of disease pathogenesis but also for drug screening approaches.
ZIPPO, ALESSIO
Kabuki,; MSC,; chondrogenesis,; KMT2D,; H3K4me1
Kabuki,; MSC,; chondrogenesis,; KMT2D,; H3K4me1
BIO/11 - BIOLOGIA MOLECOLARE
English
20-mar-2018
MEDICINA TRASLAZIONALE E MOLECOLARE - DIMET - 76R
30
2016/2017
open
(2018). Development of an in vitro disease model for dissecting the epigenetic mechanisms underlying pathogenesis of Kabuki syndrome. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_798701.pdf

Accesso Aperto

Descrizione: tesi di dottorato
Tipologia di allegato: Doctoral thesis
Dimensione 2.96 MB
Formato Adobe PDF
2.96 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/199035
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact