TOSCA is an indirect-geometry inelastic neutron spectrometer optimised for high resolution vibrational spectroscopy. In its current form the instrument is operational for almost two decades and during that time has set the standard for broadband chemical spectroscopy with neutrons. In 2013 as part of the international beamline review it was concluded that for TOSCA to be able to participate in strategic research areas, an increase in the incident neutron flux via the provision of a neutron guide was highly beneficial. This major upgrade has been implemented and has required the complete redesign of the TOSCA primary spectrometer to house a state-of-the-art neutron guide to boost its incident flux. We have tested the new setup to have better idea about the influence of the guide inside the shutter on the neutron flux, beam profile, spectral resolution and background. The data overall show a good beam profile across the TOSCA sample thanks to our efforts on the theoretical guide design to ensure that the chain of reflections had minimal beam profile patterns. As a result of the guide being installed on TOSCA the neutron flux at the sample position has been significantly increased. The experimental gain in incident neutron flux is an order-of-magnitude on average. A further upgrade required the redesign of the TOSCA secondary spectrometer, and their combined effect will be to highly improve the utilization efficiency of the neutron source. The flat analyzer currently used on TOSCA can be approximate with a square shape with a limited area, and the centre of the analyzer is placed at a 45° glazing angle and at an average distance of 320 mm with respect to the sample. The analyzer is made of highly oriented pyrolythic graphite, this material is particularly suitable for the specific reflection of sub-thermal neutrons thanks to its high reflectivity and sharp diffraction peaks. The current inelastic banks are also equipped with a beryllium-cadmium filter to cut the higher wavelength harmonics diffracted by the analyzer. In the current configuration the analyzer and the filter are very close together and this feature limits strongly the neutron collection efficiency of the assembly as a whole. In this project, the TOSCA spectrometer upgrade focused on the design of a double bent analyzer and a new beryllium filter by means of the McStas software. We also had to code a custom component which can meet the TOSCA needs. Several simulations were performed by means of this component, in order to study the performance of the future TOSCA setup; analyzer with different areas and radii of curvature were considered and each parameter has been optimized independently via numerical analysis. We found that, with the appropriate focusing and mosaicity, it is possible to increase the current analyzer area and to achieve a relevant gain in the detected flux. This performance can be further increased by tuning the graphite mosaicity to expand the analyzer bandwidth and thus the order-of-magnitude overall gain is within reach. This important upgrade can be achieved with limited effects on resolution, thanks to the extensive optimization we performed on the curved geometry via numerical analysis. Our calculations focused initially on three different configurations of double-bent analyzer having different surface extensions; for each case a parabolic and a spherical curvature were considered. This route for the TOSCA upgrade appears feasible and a similarly large device with a horizontal and vertical spherical curvature have been successfully implemented at NIST with significant advance for the instrument and in the double focusing technology.
TOSCA è uno spettrometro inelastico di neutroni a geometria indiretta ottimizzato per spettroscopia vibrazionale ad alta risoluzione. Nella sua forma attuale, lo strumento è operativo da quasi due decenni e in quel periodo ha fissato lo standard per la spettroscopia chimica ad ampio spettro con i neutroni. Nel 2013, nel corso di una revisione internazionale degli strumenti, si è concluso che per TOSCA sarebbe stato altamente vantaggioso incrementare di flusso di neutroni incidenti mediante una guida di neutroni, affinché lo strumento fosse in grado di partecipare ad aree di ricerca strategiche. Questo importante aggiornamento è stato implementato e ha richiesto la riprogettazione completa dello spettrometro primario, così da alloggiare una guida di neutroni all'avanguardia. La nuova configurazione è stata testata per avere una migliore idea dell'influenza della guida sul flusso incidente, il profilo del fascio, la risoluzione spettrale e il background. Lo studio mostra un buon profilo del fascio sul campione e i nostri sforzi per il design teorico della guida hanno garantito un profilo di fascio omogeneo. Grazie alla guida, il flusso di neutroni alla posizione del campione è stato significativamente aumentato. Il guadagno sperimentale medio è stato di un ordine di grandezza sul flusso. Un ulteriore aggiornamento richiede la riprogettazione dello spettrometro secondario TOSCA e il loro effetto combinato sarà quello di migliorare notevolmente l'efficienza di utilizzo della sorgente di neutroni. L'analizzatore piano attualmente utilizzato su TOSCA ha area ridotta ed è posizionato ad un angolo di riflessione di 45° e a una distanza media di 320 mm rispetto al campione. Esso è realizzato in grafite pirolitica ad alta orientazione, questo materiale è particolarmente adatto per la riflessione specifica dei neutroni sub-termici grazie all'elevata riflettività e ai picchi di diffrazione netti. Gli attuali banchi inelastici sono anche dotati di un filtro in berillio-cadmio per tagliare le armoniche superiori dell'analizzatore. Nella configurazione attuale, l'analizzatore e il filtro sono molto vicini tra loro e questa caratteristica limita l'efficienza di raccolta dei neutroni dello strumento. L'aggiornamento dello spettrometro secondario si è concentrato sulla progettazione di un analizzatore a doppia curvatura e di un nuovo filtro usando il software McStas. Abbiamo anche dovuto codificare un componente specifico in grado di soddisfare le esigenze di TOSCA. Sono state eseguite numerose simulazioni utilizzando questo componente, al fine di studiare le prestazioni del futuro spettrometro; sono stati considerati analizzatori con diverse aree e curvature, ciascun parametro è stato ottimizzato in modo indipendente. Con appropriata focalizzazione e mosaicità, è possibile aumentare l'area dell'analizzatore e ottenere un importante guadagno nel flusso rivelato. Questa performance può essere ulteriormente aumentata scegliendo la mosaicità della grafite in modo da espandere la banda passante e raggiungere così un guadagno di un ordine di grandezza sul secondario. Questo importante aggiornamento può essere ottenuto con effetti limitati sulla risoluzione, grazie all'ottimizzazione eseguita sulla geometria curva tramite analisi numerica. I nostri calcoli si sono concentrati su tre diverse configurazioni di analizzatore a doppia curvatura con varie estensioni di superficie; per ogni caso sono state considerate curvature paraboliche e sferiche. Questa strada appare fattibile e un dispositivo di dimensioni simili con curvatura sferica orizzontale e verticale è stato implementato con successo al NIST con un significativo avanzamento per la strumentazione e per la tecnologia a doppia focalizzazione.
(2018). TOSCA NEUTRON GUIDE AND SPECTROMETER UPGRADE. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).
TOSCA NEUTRON GUIDE AND SPECTROMETER UPGRADE
PINNA, ROBERTO SIMONE
2018
Abstract
TOSCA is an indirect-geometry inelastic neutron spectrometer optimised for high resolution vibrational spectroscopy. In its current form the instrument is operational for almost two decades and during that time has set the standard for broadband chemical spectroscopy with neutrons. In 2013 as part of the international beamline review it was concluded that for TOSCA to be able to participate in strategic research areas, an increase in the incident neutron flux via the provision of a neutron guide was highly beneficial. This major upgrade has been implemented and has required the complete redesign of the TOSCA primary spectrometer to house a state-of-the-art neutron guide to boost its incident flux. We have tested the new setup to have better idea about the influence of the guide inside the shutter on the neutron flux, beam profile, spectral resolution and background. The data overall show a good beam profile across the TOSCA sample thanks to our efforts on the theoretical guide design to ensure that the chain of reflections had minimal beam profile patterns. As a result of the guide being installed on TOSCA the neutron flux at the sample position has been significantly increased. The experimental gain in incident neutron flux is an order-of-magnitude on average. A further upgrade required the redesign of the TOSCA secondary spectrometer, and their combined effect will be to highly improve the utilization efficiency of the neutron source. The flat analyzer currently used on TOSCA can be approximate with a square shape with a limited area, and the centre of the analyzer is placed at a 45° glazing angle and at an average distance of 320 mm with respect to the sample. The analyzer is made of highly oriented pyrolythic graphite, this material is particularly suitable for the specific reflection of sub-thermal neutrons thanks to its high reflectivity and sharp diffraction peaks. The current inelastic banks are also equipped with a beryllium-cadmium filter to cut the higher wavelength harmonics diffracted by the analyzer. In the current configuration the analyzer and the filter are very close together and this feature limits strongly the neutron collection efficiency of the assembly as a whole. In this project, the TOSCA spectrometer upgrade focused on the design of a double bent analyzer and a new beryllium filter by means of the McStas software. We also had to code a custom component which can meet the TOSCA needs. Several simulations were performed by means of this component, in order to study the performance of the future TOSCA setup; analyzer with different areas and radii of curvature were considered and each parameter has been optimized independently via numerical analysis. We found that, with the appropriate focusing and mosaicity, it is possible to increase the current analyzer area and to achieve a relevant gain in the detected flux. This performance can be further increased by tuning the graphite mosaicity to expand the analyzer bandwidth and thus the order-of-magnitude overall gain is within reach. This important upgrade can be achieved with limited effects on resolution, thanks to the extensive optimization we performed on the curved geometry via numerical analysis. Our calculations focused initially on three different configurations of double-bent analyzer having different surface extensions; for each case a parabolic and a spherical curvature were considered. This route for the TOSCA upgrade appears feasible and a similarly large device with a horizontal and vertical spherical curvature have been successfully implemented at NIST with significant advance for the instrument and in the double focusing technology.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_708837.pdf
accesso aperto
Descrizione: tesi di dottorato
Tipologia di allegato:
Doctoral thesis
Dimensione
18.88 MB
Formato
Adobe PDF
|
18.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.