The claim of recombinant protein continues to increase for both research and industrial application. More and more resources are invested to develop the most efficient system for high protein expression. Mammalian cells are the best host for quality and reliability of expressed recombinant proteins. A diffuse protein production technology is based on dihydrofolate reductase (DHFR) deficient CHO cell line expression system. DHFR is an essential enzyme involved in purines synthesis and it is used as a selection marker. This technology has the potentiality to strength the selection process by inhibiting DHFR activity with methotrexate (MTX), forcing cells to amplify the DHFR gene and the gene of interest carried by the plasmid used for transfection. Thanks to the continuous progression in recombinant DNA technology, DHFR knockout cell lines are recently developed using different molecular tools. Preliminary data showed that by using the piggyBac (PB) transposon system it is possible to enhance the frequency of high producing clones compared to conventional transfections. In order to evaluate if PB transposon potentiality also occur in DHFR knockout cell line and to analyze the effects of amplification process on integrated transgene, research plan involved the comparison of the conventional gene transfer method to the PB transposon system. Our aim was to explore PB transposon in the DHFR knockout CHO expression system to obtain clones producing high yield of anti-Mullerian hormone (AMH) protein for industrial purposes. AMH is a dimeric glycoprotein, member of the TGFβ superfamily that causes regression of Mullerian ducts in male embryos. It has a fundamental role as diagnostic marker in assisted reproduction to predict ovarian reserve. The PB transposon system resulted a more efficient method to obtain high protein expression compared to standard vector. Moreover, it allowed higher performance in gene copy number integration and genetic stability than standard transfection method. In spite of the substantial improvement obtained by this new approach, AMH protein yield in scale-up was unsatisfactory. Therefore, we focused on construct engineering to increase productivity, since a higher MTX gene amplification was expected. Strategies to reduce the DHFR activity acting on its expression pathway were performed to enhance the AMH protein production. Even though encouraging data were obtained with the insertion of a less efficient IRES, achieved AMH protein yield was not comparable to what reported in literature exploiting the same approaches. Moreover, difficulties in culturing cells due to DHFR expression pathway impairments discouraged a further exploration. Thus, we decided to shift our focus on epigenetic regulatory elements in order to force transcriptional efficiency. Impressive results were obtained in cell pools transfected with vectors carrying the UCOEs, in which high protein expression levels were reached, thus demonstrating the valid impact of these sequences. To further characterize the UCOE we decided to isolate single cell clones from the cell pool derived from the transposon with one UCOE sequence. We aimed to highlight differences between this new vector and our previous PB transposon. We reached the final goal to isolate a high-producing clone, which guaranteed expression and genetic stability over time. In conclusion, in this work a new generated DHFR knockout cell line was exploited in association with the piggyBac transposon system to achieve high expression of recombinant protein. The PB transposon system was confirmed to be a powerful method to enhance the expression of AMH protein allowing higher performances in gene copy number integration and genetic stability compared to the standard transfection method. Employing epigenetic regulatory elements, such as the UCOE, not only a substantial increase in AMH protein yield was achieved, but also expression and genetic stability was strictly conserved over time

In ricerca ed in applicazione industriale la richiesta di proteine ricombinanti è in continua crescita; vengono investite sempre più risorse per sviluppare un sistema efficace in grado di ottenere un’elevata espressione proteica.Le cellule di mammifero sono l’ospite di elezione per lo sviluppo di proteine ricombinanti in quanto ne garantiscono la qualità.Linee cellulari CHO deficitarie dell’enzima diidrofolato reduttasi(DHFR) sono molto diffuse come sistema di espressione.In tali linee, il DHFR, un enzima essenziale coinvolto nella sintesi di purine, viene sfruttato come marker di selezione. È possibile aumentare la pressione selettiva con il metotrexate, molecola che presenta un’attività inibitoria sul DHFR.L’inibizione spinge le cellule ad amplificare il gene DHFR come meccanismo di resistenza, ne consegue una contestuale amplificazione del gene di interesse presente nella cassetta di espressione del plasmide. Grazie al progresso della tecnologia del DNA ricombinante, sono state recentemente sviluppate, linee cellulari knockout per il gene DHFR. Dati preliminari, ottenuti nel nostro laboratorio, hanno dimostrato che utilizzando il sistema del trasposone piggyBac(PB) è possibile migliorare la frequenza di cloni alto-producenti rispetto al metodo di trasfezione convenzionale. Il progetto di ricerca ha avuto come primo obiettivo quello di valutare se la potenzialità del trasposone si esprimesse anche nella linea cellulare DHFR knockout e di analizzare gli effetti del processo di amplificazione sul transgene integrato, comparandolo con i vettori convenzionali. Lo scopo finale era l’ottenimento di cloni alto-producenti dell'ormone anti-Mulleriano(AMH). AMH è una glicoproteina dimerica che causa la regressione dei dotti Mulleriani negli embrioni maschili ed è utilizzata come marker diagnostico nella riproduzione assistita. I dati indicano che il sistema del trasposone risulta essere più efficiente rispetto al vettore standard nell’ottenere un’elevata espressione proteica e consentendo l’integrazione di un numero maggiore di copie del transgene e la stabilità genetica nel tempo. Nonostante il miglioramento ottenuto, la resa proteica nello scale-up non è stata soddisfacente. Pertanto, ci siamo concentrati sui costrutti per aumentare la produttività e potenziare l’amplificazione genica. Abbiamo sperimentato strategie volte a ridurre l'attività del DHFR agendo sulla sua via di espressione. Anche se l'inserimento di un IRES meno efficiente ha permesso di ottenere dati incoraggianti, la resa proteica non è risultata paragonabile a quella riportata in letteratura. Inoltre, l’indebolimento della via di espressione del DHFR ha reso difficile la crescita delle colture cellulari scoraggiando un'ulteriore esplorazione. Abbiamo quindi valutato gli elementi regolatori epigenetici per migliorare l’efficienza trascrizionale.Ottimi risultati sono stati ottenuti in pool di cellule trasfettate con i vettori contenenti gli UCOE.Sono stati infatti raggiunti elevati livelli di espressione proteica dimostrando il sostanziale effetto di queste sequenze. Per caratterizzare ulteriormente gli UCOE, abbiamo isolato alcuni cloni. Lo scopo era evidenziare differenze tra questi nuovi vettori ed il trasposone precedentemente utilizzato. L'obiettivo finale è stato raggiunto.Abbiamo, infatti, isolato un clone ad alta produttività caratterizzato sia dalla stabilità genetica sia da quella dell’espressione nel tempo.In conclusione, l’utilizzo di una linea cellulare DHFR knockout in associazione con il sistema del trasposone PB ha permesso di ottenere una buona espressione della proteina ricombinante AMH.Il trasposone si è confermato un sistema efficiente per incrementare l'espressione proteica; l'utilizzo dell’elemento regolatore epigenetico UCOE non solo ha permesso un ulteriore e significativo aumento della resa proteica, ma anche un rigoroso mantenimento della stabilità genetica e dell’espressione nel tempo

(2018). Transposon based technology in DHFR knockout CHO cell line improves generation of AMH high producing clones for industrial applications. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).

Transposon based technology in DHFR knockout CHO cell line improves generation of AMH high producing clones for industrial applications

ZUCCHETTI, FIONA
2018

Abstract

The claim of recombinant protein continues to increase for both research and industrial application. More and more resources are invested to develop the most efficient system for high protein expression. Mammalian cells are the best host for quality and reliability of expressed recombinant proteins. A diffuse protein production technology is based on dihydrofolate reductase (DHFR) deficient CHO cell line expression system. DHFR is an essential enzyme involved in purines synthesis and it is used as a selection marker. This technology has the potentiality to strength the selection process by inhibiting DHFR activity with methotrexate (MTX), forcing cells to amplify the DHFR gene and the gene of interest carried by the plasmid used for transfection. Thanks to the continuous progression in recombinant DNA technology, DHFR knockout cell lines are recently developed using different molecular tools. Preliminary data showed that by using the piggyBac (PB) transposon system it is possible to enhance the frequency of high producing clones compared to conventional transfections. In order to evaluate if PB transposon potentiality also occur in DHFR knockout cell line and to analyze the effects of amplification process on integrated transgene, research plan involved the comparison of the conventional gene transfer method to the PB transposon system. Our aim was to explore PB transposon in the DHFR knockout CHO expression system to obtain clones producing high yield of anti-Mullerian hormone (AMH) protein for industrial purposes. AMH is a dimeric glycoprotein, member of the TGFβ superfamily that causes regression of Mullerian ducts in male embryos. It has a fundamental role as diagnostic marker in assisted reproduction to predict ovarian reserve. The PB transposon system resulted a more efficient method to obtain high protein expression compared to standard vector. Moreover, it allowed higher performance in gene copy number integration and genetic stability than standard transfection method. In spite of the substantial improvement obtained by this new approach, AMH protein yield in scale-up was unsatisfactory. Therefore, we focused on construct engineering to increase productivity, since a higher MTX gene amplification was expected. Strategies to reduce the DHFR activity acting on its expression pathway were performed to enhance the AMH protein production. Even though encouraging data were obtained with the insertion of a less efficient IRES, achieved AMH protein yield was not comparable to what reported in literature exploiting the same approaches. Moreover, difficulties in culturing cells due to DHFR expression pathway impairments discouraged a further exploration. Thus, we decided to shift our focus on epigenetic regulatory elements in order to force transcriptional efficiency. Impressive results were obtained in cell pools transfected with vectors carrying the UCOEs, in which high protein expression levels were reached, thus demonstrating the valid impact of these sequences. To further characterize the UCOE we decided to isolate single cell clones from the cell pool derived from the transposon with one UCOE sequence. We aimed to highlight differences between this new vector and our previous PB transposon. We reached the final goal to isolate a high-producing clone, which guaranteed expression and genetic stability over time. In conclusion, in this work a new generated DHFR knockout cell line was exploited in association with the piggyBac transposon system to achieve high expression of recombinant protein. The PB transposon system was confirmed to be a powerful method to enhance the expression of AMH protein allowing higher performances in gene copy number integration and genetic stability compared to the standard transfection method. Employing epigenetic regulatory elements, such as the UCOE, not only a substantial increase in AMH protein yield was achieved, but also expression and genetic stability was strictly conserved over time
TISI, RENATA ANITA
PB; transposon,; CHO; DHFR,; UCOE
PB; transposon,; CHO; DHFR,; UCOE
BIO/11 - BIOLOGIA MOLECOLARE
English
2-mar-2018
BIOLOGIA E BIOTECNOLOGIE - 93R
30
2016/2017
open
(2018). Transposon based technology in DHFR knockout CHO cell line improves generation of AMH high producing clones for industrial applications. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2018).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_076262.pdf

Accesso Aperto

Descrizione: tesi di dottorato
Tipologia di allegato: Doctoral thesis
Dimensione 3.97 MB
Formato Adobe PDF
3.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/198952
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact