Microorganisms are the most diverse and abundant living organisms on Earth, inhabiting different and heterogeneous terrestrial and aquatic habitats and establishing interactions with plant, animal and human hosts. Particularly, marine microorganisms represent an intriguing reservoir of genetic and functional diversity, the products of which could be exploited in many different industrial sectors; for instance, they can produce bioactive natural compounds, pharmaceutical agents or enzymes useful in industrial applications. However, marine microorganisms are still largely uncultured, and thus unexploited, due to the lack of current efficient isolation and/or cultivation methods. Recently, the awareness that marine microorganisms represent a fascinating source of bioactive molecules is encouraging the interest from the scientific community, as also highlighted by last calls in the EU programs and related funded projects. In this scenario, understanding the genetic manipulation systems to be applied to marine microorganisms represents an important issue too. Genetic manipulation systems are generally aimed at obtaining new improved strains expressing desired genetic determinants or to insert genetic variants encoding for specific phenotypic changes. Particularly, one of the most interesting applications in the field of environmental microbiology is to exploit genetic manipulation methodologies to explore the enormous undiscovered source of genetic information associated to the environmental samples (e.g. by the construction of metagenomics libraries in functional metagenomics) and to study the biotechnological potential of cultured microorganisms (e.g. to investigate gene functions). Since the increasing interest on this topic, an initial part of this PhD thesis has been devoted to a thorough analysis of the literature in order to present in a review the genetic manipulation methodologies hitherto applied on marine strains. In particular, the attention has been directed to natural and artificial transformation (especially electroporation) and conjugation, since they have been successfully applied to marine strains. The aim of my PhD project was to investigate those aspects that could affect the biotechnological exploitation of marine bacteria, i.e. cultivation of novel strains, cryopreservation of isolated ones and their genetic manipulation. First, I evaluated the ability of several marine bacteria to enter and exit from the state defined as “viable but non culturable” (VBNC), since this state has been proposed as one of the putative reasons for the uncultivability of environmental microorganisms. A second part of the work has been dedicated to the comparison of the protection property of several compounds, conventional or not, used as bacterial cryo-protectants, in long-term conservation experiments and testing different marine strains. Then, I assessed the capability of selected strains with biotechnological interest to be genetically manipulated. Finally, last part of the work has been devoted to the genome sequencing of a marine bacterium isolated from the interface of the deep hypersaline anoxic basin Discovery, located in the Mediterranean Sea. In conclusion, a better comprehension of mechanisms driving the entrance of marine microorganisms in the VBNC state and the resuscitation from it, their criopreservation and genetic manipulation procedures would contribute to improve the different stages of the marine biodiscovery pipeline.

Capaci di colonizzare habitat variegati ed eterogenei e di stabilire interazioni con piante e animali, i microrganismi rappresentano la forma di vita più abbondante e diversa presente sul nostro pianeta. In particolare, i microrganismi marini sono considerati un interessante reservoir di diversità genetica e funzionale, i cui prodotti potrebbero essere sfruttati in molti settori industriali, come, ad esempio, la produzione di composti naturali bioattivi, agenti farmaceutici o enzimi. Tuttavia, a causa della mancanza di efficienti metodi di isolamento e/o di coltivazione, la maggior parte di essi risulta ancora largamente incoltivabile e, di conseguenza, non sfruttabile. Recentemente, la consapevolezza che i microrganismi marini rappresentano una fonte interessante di molecole bioattive sta spingendo l’interesse della comunità scientifica verso questo filone di ricerca, come documentato dagli ultimi bandi pubblicati nei programmi EU e dai relativi progetti finanziati. Un ulteriore ed importante argomento di interesse riguarda l’utilizzo di sistemi di manipolazione genetica applicabili ai microrganismi marini. Generalmente, i sistemi di manipolazione genetica hanno lo scopo di ottenere ceppi che esprimono determinanti genetici desiderati o di inserire, in ceppi selezionati, delle varianti genetiche che codificano per specifici cambiamenti fenotipici. In particolare, una delle applicazioni più interessanti nel campo della microbiologia ambientale è quello di sfruttare i metodi della manipolazione genetica per esplorare l’enorme e sconosciuta risorsa di informazione genetica associata ai campioni ambientali (ad esempio, attraverso la costruzione di librerie metagenomiche nella metagenomica funzionale) e di studiare il potenziale biotecnologico dei microrganismi coltivati (ad esempio per indagare le funzioni geniche). In seguito ad un crescente interesse nei riguardi di questo argomento, la parte iniziale della tesi di dottorato è stata dedicata ad un’accurata analisi della letteratura per poter presentare in una review le metodologie fino ad oggi utilizzate nella manipolazione genetica di ceppi batterici di origine marina. In particolare, l’attenzione è stata rivolta alla trasformazione naturale ed artificiale (specialmente al metodo dell’elettroporazione) e alla coniugazione, poiché applicate con successo su ceppi marini. Il mio progetto di dottorato si è focalizzato sullo studio di alcuni degli aspetti in grado di influenzare lo sfruttamento biotecnologico dei batteri marini, con particolare riferimento alla loro coltivazione, crioconservazione e manipolazione genetica. In primo luogo, ho valutato la capacità di diversi ceppi batterici marini di entrare ed uscire dallo stato definito “vitale ma non coltivabile” (in inglese viable but non culturable, VBNC), dal momento che questa condizione è stata proposta come uno dei motivi responsabili dell’incoltivabilità dei microrganismi ambientali. Una seconda parte del lavoro è stata dedicata al confronto della capacità di crioconservazione di ceppi marini da parte di diversi composti, convenzionali e non, in esperimenti di conservazione a lungo termine. Successivamente, ho valutato la capacità di determinati batteri marini, con interesse biotecnologico, di essere manipolati geneticamente. Infine, l’ultima parte del lavoro è stata dedicata al sequenziamento del genoma di un microrganismo marino isolato dall'interfaccia del bacino anossico ipersalino profondo Discovery, che si trova nel Mar Mediterraneo.

(2017). TOWARDS THE BIOTECHNOLOGICAL EXPLOITATION OF MARINE MICROORGANISMS: INVESTIGATION ON CULTIVATION, PRESERVATION AND GENETIC MANIPULATION. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2017).

TOWARDS THE BIOTECHNOLOGICAL EXPLOITATION OF MARINE MICROORGANISMS: INVESTIGATION ON CULTIVATION, PRESERVATION AND GENETIC MANIPULATION

ZEAITER, ZAHRAA
2017

Abstract

Microorganisms are the most diverse and abundant living organisms on Earth, inhabiting different and heterogeneous terrestrial and aquatic habitats and establishing interactions with plant, animal and human hosts. Particularly, marine microorganisms represent an intriguing reservoir of genetic and functional diversity, the products of which could be exploited in many different industrial sectors; for instance, they can produce bioactive natural compounds, pharmaceutical agents or enzymes useful in industrial applications. However, marine microorganisms are still largely uncultured, and thus unexploited, due to the lack of current efficient isolation and/or cultivation methods. Recently, the awareness that marine microorganisms represent a fascinating source of bioactive molecules is encouraging the interest from the scientific community, as also highlighted by last calls in the EU programs and related funded projects. In this scenario, understanding the genetic manipulation systems to be applied to marine microorganisms represents an important issue too. Genetic manipulation systems are generally aimed at obtaining new improved strains expressing desired genetic determinants or to insert genetic variants encoding for specific phenotypic changes. Particularly, one of the most interesting applications in the field of environmental microbiology is to exploit genetic manipulation methodologies to explore the enormous undiscovered source of genetic information associated to the environmental samples (e.g. by the construction of metagenomics libraries in functional metagenomics) and to study the biotechnological potential of cultured microorganisms (e.g. to investigate gene functions). Since the increasing interest on this topic, an initial part of this PhD thesis has been devoted to a thorough analysis of the literature in order to present in a review the genetic manipulation methodologies hitherto applied on marine strains. In particular, the attention has been directed to natural and artificial transformation (especially electroporation) and conjugation, since they have been successfully applied to marine strains. The aim of my PhD project was to investigate those aspects that could affect the biotechnological exploitation of marine bacteria, i.e. cultivation of novel strains, cryopreservation of isolated ones and their genetic manipulation. First, I evaluated the ability of several marine bacteria to enter and exit from the state defined as “viable but non culturable” (VBNC), since this state has been proposed as one of the putative reasons for the uncultivability of environmental microorganisms. A second part of the work has been dedicated to the comparison of the protection property of several compounds, conventional or not, used as bacterial cryo-protectants, in long-term conservation experiments and testing different marine strains. Then, I assessed the capability of selected strains with biotechnological interest to be genetically manipulated. Finally, last part of the work has been devoted to the genome sequencing of a marine bacterium isolated from the interface of the deep hypersaline anoxic basin Discovery, located in the Mediterranean Sea. In conclusion, a better comprehension of mechanisms driving the entrance of marine microorganisms in the VBNC state and the resuscitation from it, their criopreservation and genetic manipulation procedures would contribute to improve the different stages of the marine biodiscovery pipeline.
BORIN, SARA
CROTTI, ELENA
Biotechnological; potential;; Marine; microorganisms;; Exploitation
Biotechnological; potential;; Marine; microorganisms;; Exploitation
BIO/07 - ECOLOGIA
English
19-giu-2017
SCIENZE - 80R
29
2015/2016
open
(2017). TOWARDS THE BIOTECHNOLOGICAL EXPLOITATION OF MARINE MICROORGANISMS: INVESTIGATION ON CULTIVATION, PRESERVATION AND GENETIC MANIPULATION. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2017).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_788480.pdf

Accesso Aperto

Descrizione: tesi di dottorato
Tipologia di allegato: Doctoral thesis
Dimensione 6.95 MB
Formato Adobe PDF
6.95 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/170815
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact