The first part of research we present is the adsorption of core-excited organic molecules on graphene. We predict the induction or suppression of magnetism in the valence shell of physisorbed and chemisorbed organic molecules on graphene occurring on the femtosecond time scale as a result of core level excitations. We consider three organic molecules: Pyridine - whose interaction with graphene is mainly facilitated by van der Waals forces, Picoline radical - an intermediate case where there is a strong van der Waals interaction of the pyridine π ring with graphene but a covalent bonding of the molecule and pyri-dine radical - where the interaction is mainly by covalent bonding, and study the ground state and N 1s core excited state electronic properties for these systems. For physisorbed molecules, where the interaction with graphene is dominated by van der Waals forces and the system is non-magnetic in the ground state, numeri- cal simulations based on density functional theory show that the valence electrons relax towards a spin polarized configuration upon excitation of a core-level electron. The magnetism depends on efficient electron transfer from graphene on the femtosecond time scale. On the other hand, when graphene is covalently functionalized, the system is magnetic in the ground state showing two spin dependent midgap states localized around the adsorption site. At variance with the physisorbed case upon core-level excitation, the LUMO of the molecule and the mid gap states of graphene hybridize and the relaxed valence shell is not magnetic anymore. Next we discuss the interplay between the charge transfer lifetime of core excited organic molecules adsorbed on graphene and the modification of its electronic structure by a variable coupling with a metal substrate. Nitrogen 1s core electron of 1,10- bipyridine (C5H4N)2 is photoexcited and adsorbed on bilayer graphene/nickel(111) (BP/BLG/Ni) and epitaxially grown graphene/Ni(111) (BP/EG/ Ni). We predict from first principle calculations that the charge transfer time of core excited molecules depend strongly on the coupling of graphene to the underlying Ni substrate. In the ground state, the LUMO of the molecule is quite strongly coupled with the substrate in both the cases (BP/BLG/Ni and BP/EG/Ni). In the case of BP/BLG/Ni, the layer of graphene in contact with nickel substrate strongly hybridizes but the upper layer of graphene remains fairly decoupled. The excited molecular LUMO* finds very few states of graphene close to the Dirac point at the Fermi level to hybridize with. This leads to a decoupled molecular LUMO* and the lifetime increases significantly (∼ 116 fs). But in the case of BP/EG/Ni, the strong hybridization of graphene with the underlying nickel substrate significantly distorts the electronic structure of graphene generating states close to the Fermi level. The LUMO* of the molecule strongly couples with these states resulting in a substantially smaller lifetime (∼ 33 fs). We also find experimental evidence to confirm this trend by performing core-hole-clock spectroscopy. The resonant charge transfer lifetime we find is ∼ 30 fs±5 fs for the BP/BLG/Ni and ∼ 4 fs±1 fs for the BP/EG/Ni, thus clearly demonstrating the effect of substrate on the charge transfer dynamics of organic molecules on graphene.

Nella prima parte della ricerca che presentiamo abbiamo considerato l’eccitazione di stati elettronici profondi di molecole organiche adsorbite sul grafene. Per tali sistemi abbiamo dedotto l’induzione o la soppressione di un momento di dipolo magnetico relativo alla banda di valenza di molecole sulla scala temporale del femtosecondo. Abbiamo considerato tre molecole organiche, prototipi di diversi tipi di legame con la superficie: la Piridina, la cui interazione con il substrato di grafene è dovuta principalmente a forze di van der Waals, il radicale di Piridina che viceversa si lega alla superficie in maniera covalente e il radicale di Picolina, che rappresenta una situazione intermedia. In tutti e tre i sistemi abbiamo studiato le proprietà elettroniche sia dello stato fondamentale che di quello ottenuto eccitando lo stato 1s dell’atomo di azoto. Nel primo caso, mentre la molecola fisisorbita mostra uno stato fondamentale non-magnetico le simulazioni numeriche indicano che dopo l’eccitazione di un elettrone proveniente da un stato profondo i restanti elettroni di valenza rilassano in una configurazione polarizzata in spin. Il magnetismo indotto dipende dall’efficienza del trasferimento di carica dal grafene, sulla scala temporale del femtosecondo. Nel caso invece di una molecola chemisorbita, lo stato fondamentale del sistema è magnetico, in cui sono presenti due stati dipendenti dallo spin all’interno del gap di energia e localizzati sul sito di adsorbimento. Al contrario del caso precedente, l’eccitazione elettronica permette l’ibridazione del LUMO della molecola con gli stati del grafene all’interno del gap, risultando in una configurazione non-magnetica. Il passo successivo nella nostra analisi riguarda il legame tra il tempo di vita del trasferimento di carica in uno stato eccitato, creato a partire da livelli elettronici profondi di molecole adsorbite su grafene, e la modifica della struttura elettronica di tale interfaccia dovuta all’accoppiamento, di intensità variabile, con un substrato metallico. Abbiamo considerato la fotoemissione di un elettrone dallo stato 1s dell’azoto della molecola 1,10-bipiridina (C5H4N)2 adsorbita su un bilayer grafene/nickel(111) (BP/BLG/Ni) e su un substrato cresciuto per epitassia grafene/Ni(111) (BP/EG/Ni). Tramite simulazioni ab initio abbiamo osservato che il tempo caratteristico del trasferimento di carica durante il processo di eccitazione dipende fortemente dal tipo di interazione che si sviluppa tra il grafene ed il substrato di Ni sottostante. In entrambi i sistemi che abbiamo considerato, nello stato fondamentale il LUMO della molecola è fortemente accoppiato con la superficie. Nel caso del sistema BP/BLG/Ni, lo strato di grafene in contatto con il nickel è fortemente ibridizzato con il metallo, mentre lo strato superiore di grafene rimane sostanzialmente disaccoppiato. Il livello eccitato LUMO* della molecola ha la possibilità di ibridizzarsi con pochi livelli di grafene, intorno al punto di Dirac all’energia di Fermi. Per questo motivo il tempo di vita dello stato eccitato cresce significativamente (∼ 116 fs). Invece nel caso del sistema BP/EG/Ni la forte ibridizzazione del grafene con il sottostante substrato di nickel ne distorce significativamente la struttura elettronica, creando degli stati in prossimità del livello di Fermi. Questi livelli si possono accoppiare con il LUMO* della molecola, risultando in un tempo di vita sostanzialmente ridotto (∼ 33 fs). Abbiamo cercato delle conferme ai nostri risultati tramite misure sperimentali basate sul metodo della spettroscopia core-hole-clock. Il tempo caratteristico del trasferimento di carica che abbiamo ricavato è di ∼ 30 fs±5 fs per il sistema BP/BLG/Ni e ∼ 4 fs±1 fs per quello BP/EG/Ni. Questi risultati verificano le nostre previsioni teoriche, dimostrando l’effetto del substrato sulla dinamica del trasferimento di carica.

(2017). Electronic, spin dependent conductive properties of modified graphene. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2017).

Electronic, spin dependent conductive properties of modified graphene

RAVIKUMAR, ABHILASH
2017

Abstract

The first part of research we present is the adsorption of core-excited organic molecules on graphene. We predict the induction or suppression of magnetism in the valence shell of physisorbed and chemisorbed organic molecules on graphene occurring on the femtosecond time scale as a result of core level excitations. We consider three organic molecules: Pyridine - whose interaction with graphene is mainly facilitated by van der Waals forces, Picoline radical - an intermediate case where there is a strong van der Waals interaction of the pyridine π ring with graphene but a covalent bonding of the molecule and pyri-dine radical - where the interaction is mainly by covalent bonding, and study the ground state and N 1s core excited state electronic properties for these systems. For physisorbed molecules, where the interaction with graphene is dominated by van der Waals forces and the system is non-magnetic in the ground state, numeri- cal simulations based on density functional theory show that the valence electrons relax towards a spin polarized configuration upon excitation of a core-level electron. The magnetism depends on efficient electron transfer from graphene on the femtosecond time scale. On the other hand, when graphene is covalently functionalized, the system is magnetic in the ground state showing two spin dependent midgap states localized around the adsorption site. At variance with the physisorbed case upon core-level excitation, the LUMO of the molecule and the mid gap states of graphene hybridize and the relaxed valence shell is not magnetic anymore. Next we discuss the interplay between the charge transfer lifetime of core excited organic molecules adsorbed on graphene and the modification of its electronic structure by a variable coupling with a metal substrate. Nitrogen 1s core electron of 1,10- bipyridine (C5H4N)2 is photoexcited and adsorbed on bilayer graphene/nickel(111) (BP/BLG/Ni) and epitaxially grown graphene/Ni(111) (BP/EG/ Ni). We predict from first principle calculations that the charge transfer time of core excited molecules depend strongly on the coupling of graphene to the underlying Ni substrate. In the ground state, the LUMO of the molecule is quite strongly coupled with the substrate in both the cases (BP/BLG/Ni and BP/EG/Ni). In the case of BP/BLG/Ni, the layer of graphene in contact with nickel substrate strongly hybridizes but the upper layer of graphene remains fairly decoupled. The excited molecular LUMO* finds very few states of graphene close to the Dirac point at the Fermi level to hybridize with. This leads to a decoupled molecular LUMO* and the lifetime increases significantly (∼ 116 fs). But in the case of BP/EG/Ni, the strong hybridization of graphene with the underlying nickel substrate significantly distorts the electronic structure of graphene generating states close to the Fermi level. The LUMO* of the molecule strongly couples with these states resulting in a substantially smaller lifetime (∼ 33 fs). We also find experimental evidence to confirm this trend by performing core-hole-clock spectroscopy. The resonant charge transfer lifetime we find is ∼ 30 fs±5 fs for the BP/BLG/Ni and ∼ 4 fs±1 fs for the BP/EG/Ni, thus clearly demonstrating the effect of substrate on the charge transfer dynamics of organic molecules on graphene.
BRIVIO, GIANPAOLO
FRATESI, GUIDO
graphene,; DFT,; core-hole-clock,; electron; dynamics
graphene,; DFT,; core-hole-clock,; electron; dynamics
FIS/03 - FISICA DELLA MATERIA
English
10-lug-2017
SCIENZA E NANOTECNOLOGIA DEI MATERIALI - 79R
29
2015/2016
open
(2017). Electronic, spin dependent conductive properties of modified graphene. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2017).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_789091.pdf

accesso aperto

Descrizione: tesi di dottorato
Tipologia di allegato: Doctoral thesis
Dimensione 10.04 MB
Formato Adobe PDF
10.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/170813
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact