Catalysis has largely shaped society and will play a key part in the resolution of the energy and environment crisis we are facing in this century. The great advancements in the development of nanomaterials in the realm of nanotechnology have brought forth unforeseen possibilities also for the design of novel catalysts. The production and understanding of highly efficient catalysts based on nanostructured materials is the endeavor of the emerging field of nanocatalysis. In the last years, nanocatalysts have been studied extensively and progress in their large-scale fabrication has been demonstrated. Still, the technology is immature and further research is necessary to capitalize its full potential. Computational approaches are well suited to investigate the functioning of nanocatalysts and provide valuable atomistic insights. An accurate and efficient method is density functional theory (DFT). In this thesis, we explored the physical and chemical characteristics of supported metal clusters and oxide thin films using mainly DFT. These materials are of special interest in catalysis and many other applications, because of their unique features emerging from the nanostructuring. In particular, we investigated the geometry, the charge state, the cluster-support interaction, and the reactivity of sub-nanometer metal clusters supported on oxides. In a case study, we also addressed size-effects on larger metal nanoparticles. Regarding the supported clusters, we find that van-der-Waals dispersion forces are important for the correct description of the cluster-support interaction. Furthermore, we establish that defects and dopants present on the supporting oxide surface have a determining influence on the clusters, inherently affecting their reactivity. Also the modification of the clusters via alloying alters the metal-support interaction which can be exploited against cluster agglomeration. Nanostructuring of the oxide support engenders new material properties and in this context we examined the features of metal-supported oxide ultrathin films. Finally, we performed mechanistic studies contributing to elucidate the reaction mechanism of CO oxidation on Au/TiO2, as well as CO2 hydrogenation on Ru/TiO2 and Cu/TiO2.
La catalisi ha profondamento modificato la nostra società e giocherà un ruolo chiave nella risoluzione della crisi energetica ed ambientale che stiamo affrontando in questo secolo. Il grande vantaggio nello sviluppo dei nanomateriali nel regno della nanotecnologia ha portato a possibilità impreviste anche per la progettazione di nuovi catalizzatori. La produzione e la comprensione del funzionamento di catalizzatori ad alta efficienza basati su materiali nanostrutturati è lo sforzo del campo emergente della nanocatalisi. Negli ultimi anni, i nanocatalizzatori sono stati ampiamente studiati e si è registrato un costante progresso nella loro produzione su larga scala. La tecnologia è tuttora in evoluzione ed ulteriore ricerca è necessaria per capitalizzare appieno il suo potenziale. I metodi computazionali sono molto adatti a studiare il funzionamento dei nanocatalizzatori e a fornire importanti informazioni da un punto di vista atomistico. Un accurato ed efficiente metodo è rappresentato dalla teoria del funzionale della densità (DFT). In questa tesi, abbiamo esplorato le caratteristiche chimiche e fisiche di clusters metallici supportati e di film sottili di ossidi utilizzando principalmente il metodo basato su DFT. Questi materiali sono di particolare interesse nella catalisi e in molte altre applicazioni, a causa delle loro caratteristiche uniche che derivano dalla nanostrutturazione. In particolare, abbiamo studiato la geometria, lo stato di carica, l’interazione cluster-supporto, e la reattività di clusters metallici sub-nanometrici supportati su ossidi. In un caso particolare abbiamo inoltre affrontato il ruolo della dimensione in nanoparticelle metalliche più grandi. Per quanto riguarda i clusters supportati, abbiamo verificato che le forze di dispersione di van-der-Waals sono molto importanti per la corretta descrizione dell’interazione cluster-supporto. Inoltre, abbiamo stabilito che difetti e dopanti presenti sulla superfice del supporto ossido hanno un'influenza determinante sui cluster, determinandone intrinsecamente la reattività. Anche la modifica dei cluster attraverso la formazione di leghe altera l’interazione metallo-supporto, e può essere sfruttata per evitare l’agglomerazione dei clusters. La nanostrutturazione del supporto a base di ossido può generare nuove proprietà del materiale e in questo contesto abbiamo esaminato le caratteristiche di un film ultrasottile di ossido supportato su metallo. Infine, abbiamo eseguito studi meccanicistici che hanno contribuito a chiarire il meccanismo di reazione dell’ossidazione di CO su catalizzatori a base di Au/TiO2 e dell’idrogenazione di CO2 su catalizzatori a base di Ru/TiO2 and Cu/TiO2.
(2017). Nanostructures in Catalysis - Support Effects on Metal Clusters and Oxide Thin Films. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2017).
Nanostructures in Catalysis - Support Effects on Metal Clusters and Oxide Thin Films
SCHLEXER, PHILOMENA DENIZ
2017
Abstract
Catalysis has largely shaped society and will play a key part in the resolution of the energy and environment crisis we are facing in this century. The great advancements in the development of nanomaterials in the realm of nanotechnology have brought forth unforeseen possibilities also for the design of novel catalysts. The production and understanding of highly efficient catalysts based on nanostructured materials is the endeavor of the emerging field of nanocatalysis. In the last years, nanocatalysts have been studied extensively and progress in their large-scale fabrication has been demonstrated. Still, the technology is immature and further research is necessary to capitalize its full potential. Computational approaches are well suited to investigate the functioning of nanocatalysts and provide valuable atomistic insights. An accurate and efficient method is density functional theory (DFT). In this thesis, we explored the physical and chemical characteristics of supported metal clusters and oxide thin films using mainly DFT. These materials are of special interest in catalysis and many other applications, because of their unique features emerging from the nanostructuring. In particular, we investigated the geometry, the charge state, the cluster-support interaction, and the reactivity of sub-nanometer metal clusters supported on oxides. In a case study, we also addressed size-effects on larger metal nanoparticles. Regarding the supported clusters, we find that van-der-Waals dispersion forces are important for the correct description of the cluster-support interaction. Furthermore, we establish that defects and dopants present on the supporting oxide surface have a determining influence on the clusters, inherently affecting their reactivity. Also the modification of the clusters via alloying alters the metal-support interaction which can be exploited against cluster agglomeration. Nanostructuring of the oxide support engenders new material properties and in this context we examined the features of metal-supported oxide ultrathin films. Finally, we performed mechanistic studies contributing to elucidate the reaction mechanism of CO oxidation on Au/TiO2, as well as CO2 hydrogenation on Ru/TiO2 and Cu/TiO2.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_775519.pdf
accesso aperto
Descrizione: tesi di dottorato
Tipologia di allegato:
Doctoral thesis
Dimensione
10.76 MB
Formato
Adobe PDF
|
10.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.