Given the pivotal role of β-amyloid peptide (Aβ) in the pathogenesis of Alzheimer’s disease (AD), nanoliposomes functionalized to cross the blood-brain barrier (BBB) and to interact with Aβ were designed and tested. Two different liposome formulations were considered: i) mApoE-PA-LIP, bifunctionalized with mApoE, a peptide derived from apolipoprotein-E, for BBB targeting, and with PA, phosphatidic acid, for Aβ binding; ii) PINPs, functionalized with RI-OR2-TAT, a fusion peptide combining the Aβ aggregation inhibitor RI-OR2 and the HIV ‘TAT’ cell-penetrating peptide. A treatment (3 IP injections/week for 3 weeks, 73.5 mg of total lipids/kg) with mApoE-PA-LIP on symptomatic APP/PS1 Tg mice (10 months of age), showing evident Aβ plaque deposition and cognitive impairment, ameliorated mouse impaired memory and decreased total insoluble brain Aβ (-33%), number and total area of brain Aβ plaques (-34%) and Aβ oligomers (-70.5%), as assessed by immunohistochemistry, ELISA assay and SDS-PAGE. Plaque reduction was also confirmed in symptomatic APP23 Tg mice (15 months of age) by PET imaging. The reduction of brain Aβ was associated with its increase in liver (+18%) and spleen (+20%). Due to these findings, the ability of mApoE-PA-LIP to draw out Aβ from the brain (sink effect) was postulated and further investigated using a transwell cellular model of the BBB. The spontaneous efflux of Aβ oligomers from the ‘brain’ side of the transwell was strongly enhanced (5-fold) in presence of mApoE-PA-LIP in the ‘blood’ compartment. Since mApoE-PA-LIP were not able to return to periphery once entered the ‘brain’ side, the effect was not due to a carrier action of liposomes, but to a withdrawal of Aβ exerted by sink effect. Finally, the possibility to hinder AD progression by a mApoE-PA-LIP treatment was evaluated. Weekly IP administration for 7 months of mApoE-PA-LIP (73.5 mg of total lipids/kg) to pre-symptomatic APP/PS1 Tg mice (5-month-old), showing initial brain Aβ deposition in the absence of cognitive impairment, durably slowed down brain Aβ deposition (-30%) and prevented the onset of memory impairment and the occurrence of typical AD cerebral anatomical abnormalities, such as ventricle enlargement and reduction of entorhinal cortex thickness, as assessed by MRI. Besides the sink effect action, the long-term treatment effects were likely due to an increase of brain Aβ-degrading enzyme levels, a decrease of amyloid precursor protein level and a change in Aβ-transporter levels on the BBB, as determined by enzymatic activity assay and SDS-PAGE. Regarding PINPs, they displayed the ability to bind Aβ fibrils with high affinity (Kd = 36-50 nM), to inhibit Aβ aggregation in vitro (50% inhibition after 48 h) and to rescue neuronal cells from the toxic effect of pre-aggregated Aβ. As a proof of concept, IP administration of PINPs (daily for 21 days, 100 nmol of peptide/kg) to symptomatic Tg2576 mice (22 months of age) improved mouse impaired memory. Together, these findings promote multifunctional liposomes as a valuable all-in-one multitask nanomedicine potentially suitable for the treatment of AD.
Dato il ruolo centrale del peptide beta-amiloide (Aβ) nella patogenesi della malattia di Alzheimer (AD), liposomi funzionalizzati per attraversare la barriera emato-encefalica (BEE) e interagire con Aβ sono stati preparati e testati. Due diverse formulazioni sono state valutate: i) mApoE-PA-LIP, bifunzionalizzati con mApoE, un peptide derivato dall’apolipoproteina E, per il passaggio della BEE, e con PA, acido fosfatidico, per il legame di Aβ; ii) PINPs, funzionalizzati con RI-OR2-TAT, un peptide di fusione composto da RI-OR2, inibitore dell’aggregazione di Aβ, e dalla sequenza cellula-penetrante ‘TAT’ del virus HIV. Il trattamento (3 iniezioni settimanali per 3 settimane, 73.5 mg di lipidi totali/kg) con mApoE-PA-LIP in topi APP/PS1 sintomatici (10 mesi di età), con evidenti placche amiloidi e deficit cognitivi, ha migliorato la memoria e diminuito la quantità di Aβ insolubile (-33%), il numero e l’area delle placche (-34%) e la quantità di oligomeri di Aβ (-70.5%). La riduzione delle placche è stata anche confermata in topi APP23 sintomatici (15 mesi di età) tramite PET imaging. La riduzione dell’Aβ cerebrale è stata accompagnata dal suo aumento in fegato (+18%) e milza (+20%). In base a questi risultati, l’abilità dei mApoE-PA-LIP di richiamare l’Aβ fuori dal cervello è stata ipotizzata e confermata usando un modello transwell di BEE. Il flusso di oligomeri di Aβ dal compartimento inferiore, mimante il cervello, è enormemente aumentato (5 volte) in presenza di mApoE-PA-LIP nel compartimento apicale, rappresentante il sangue. Il fatto che i mApoE-PA-LIP non si siano dimostrati in grado di tornare indietro una volta entrati nel compartimento inferiore ha suggerito che l’effetto osservato non è risultato dal trasporto di Aβ da parte dei liposomi, ma da un suo richiamo periferico. Infine, è stata valutata la possibilità di ostacolare la progressione dell’AD tramite un trattamento con mApoE-PA-LIP. La somministrazione settimanale per 7 mesi di mApoE-PA-LIP (73.5 mg di lipidi totali/kg) in topi APP/PS1 pre-sintomatici (5 mesi di età), con deposizione inziale di Aβ e mancanza di deficit cognitivi, ha rallentato la deposizione di Aβ (-30%) e prevenuto la compromissione della memoria e il manifestarsi di anormalità anatomiche legate all’AD, come l’allargamento dei ventricoli e l’assottigliamento della corteccia entorinale. Oltre che dal richiamo periferico di Aβ, questi effetti a lungo termine sono risultati da un aumento dei livelli di enzimi degradanti l’Aβ, da una diminuzione del livello di proteina precursore dell’amiloide e da un cambiamento nei livelli dei trasportatori di Aβ presenti sulla BEE. Per quanto riguarda i PINPs, hanno mostrato l’abilità di legare Aβ con grande affinità (Kd = 36-50 nM), di inibirne l’aggregazione (50% di inibizione dopo 48 h) e di proteggere cellule neuronali dai suoi effetti tossici. La somministrazione giornaliera di PINPs per 21 giorni (100 nmol di peptide/kg) in topi Tg2576 sintomatici (22 mesi di età) ha migliorato la memoria degli animali. Questi risultati promuovono i liposomi multifunzionalizzati come strumento potenzialmente utile per il trattamento dell’AD.
(2017). Nanoparticles for the treatment of Alzheimer’s disease. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2017).
Nanoparticles for the treatment of Alzheimer’s disease
MANCINI, SIMONA
2017
Abstract
Given the pivotal role of β-amyloid peptide (Aβ) in the pathogenesis of Alzheimer’s disease (AD), nanoliposomes functionalized to cross the blood-brain barrier (BBB) and to interact with Aβ were designed and tested. Two different liposome formulations were considered: i) mApoE-PA-LIP, bifunctionalized with mApoE, a peptide derived from apolipoprotein-E, for BBB targeting, and with PA, phosphatidic acid, for Aβ binding; ii) PINPs, functionalized with RI-OR2-TAT, a fusion peptide combining the Aβ aggregation inhibitor RI-OR2 and the HIV ‘TAT’ cell-penetrating peptide. A treatment (3 IP injections/week for 3 weeks, 73.5 mg of total lipids/kg) with mApoE-PA-LIP on symptomatic APP/PS1 Tg mice (10 months of age), showing evident Aβ plaque deposition and cognitive impairment, ameliorated mouse impaired memory and decreased total insoluble brain Aβ (-33%), number and total area of brain Aβ plaques (-34%) and Aβ oligomers (-70.5%), as assessed by immunohistochemistry, ELISA assay and SDS-PAGE. Plaque reduction was also confirmed in symptomatic APP23 Tg mice (15 months of age) by PET imaging. The reduction of brain Aβ was associated with its increase in liver (+18%) and spleen (+20%). Due to these findings, the ability of mApoE-PA-LIP to draw out Aβ from the brain (sink effect) was postulated and further investigated using a transwell cellular model of the BBB. The spontaneous efflux of Aβ oligomers from the ‘brain’ side of the transwell was strongly enhanced (5-fold) in presence of mApoE-PA-LIP in the ‘blood’ compartment. Since mApoE-PA-LIP were not able to return to periphery once entered the ‘brain’ side, the effect was not due to a carrier action of liposomes, but to a withdrawal of Aβ exerted by sink effect. Finally, the possibility to hinder AD progression by a mApoE-PA-LIP treatment was evaluated. Weekly IP administration for 7 months of mApoE-PA-LIP (73.5 mg of total lipids/kg) to pre-symptomatic APP/PS1 Tg mice (5-month-old), showing initial brain Aβ deposition in the absence of cognitive impairment, durably slowed down brain Aβ deposition (-30%) and prevented the onset of memory impairment and the occurrence of typical AD cerebral anatomical abnormalities, such as ventricle enlargement and reduction of entorhinal cortex thickness, as assessed by MRI. Besides the sink effect action, the long-term treatment effects were likely due to an increase of brain Aβ-degrading enzyme levels, a decrease of amyloid precursor protein level and a change in Aβ-transporter levels on the BBB, as determined by enzymatic activity assay and SDS-PAGE. Regarding PINPs, they displayed the ability to bind Aβ fibrils with high affinity (Kd = 36-50 nM), to inhibit Aβ aggregation in vitro (50% inhibition after 48 h) and to rescue neuronal cells from the toxic effect of pre-aggregated Aβ. As a proof of concept, IP administration of PINPs (daily for 21 days, 100 nmol of peptide/kg) to symptomatic Tg2576 mice (22 months of age) improved mouse impaired memory. Together, these findings promote multifunctional liposomes as a valuable all-in-one multitask nanomedicine potentially suitable for the treatment of AD.File | Dimensione | Formato | |
---|---|---|---|
phd_unimib_717615.pdf
Accesso Aperto
Descrizione: tesi di dottorato
Tipologia di allegato:
Doctoral thesis
Dimensione
4.87 MB
Formato
Adobe PDF
|
4.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.