This thesis is devoted to the study of several problems arising in the field of nonlinear analysis. The work is divided in two parts: the first one concerns existence of oscillating solutions, in a suitable sense, for some nonlinear ODEs and PDEs, while the second one regards the study of qualitative properties, such as monotonicity and symmetry, for solutions to some elliptic problems in unbounded domains. Although the topics faced in this work can appear far away one from the other, the techniques employed in different chapters share several common features. In the firts part, the variational structure of the considered problems plays an essential role, and in particular we obtain existence of oscillating solutions by means of non-standard versions of the Nehari's method and of the Seifert's broken geodesics argument. In the second part, classical tools of geometric analysis, such as the moving planes method and the application of Liouville-type theorems, are used to prove 1-dimensional symmetry of solutions in different situations.

(2014). Variational and geometric methods for nonlinear differential equations. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2014).

Variational and geometric methods for nonlinear differential equations

SOAVE, NICOLA
2014

Abstract

This thesis is devoted to the study of several problems arising in the field of nonlinear analysis. The work is divided in two parts: the first one concerns existence of oscillating solutions, in a suitable sense, for some nonlinear ODEs and PDEs, while the second one regards the study of qualitative properties, such as monotonicity and symmetry, for solutions to some elliptic problems in unbounded domains. Although the topics faced in this work can appear far away one from the other, the techniques employed in different chapters share several common features. In the firts part, the variational structure of the considered problems plays an essential role, and in particular we obtain existence of oscillating solutions by means of non-standard versions of the Nehari's method and of the Seifert's broken geodesics argument. In the second part, classical tools of geometric analysis, such as the moving planes method and the application of Liouville-type theorems, are used to prove 1-dimensional symmetry of solutions in different situations.
Campo DC Valore Lingua
dc.authority.academicField2024 Settore MATH-03/A - Analisi matematica *
dc.authority.advisor TERRACINI, SUSANNA it
dc.authority.people SOAVE, NICOLA it
dc.authority.phdCourse MATEMATICA PURA E APPLICATA - 23R it
dc.authority.phdSchool Scuola di dottorato di Scienze it
dc.collection.id.s e39773c1-7ce8-35a3-e053-3a05fe0aac26 *
dc.collection.name 07 - Tesi di dottorato Bicocca post 2009 *
dc.coverage.academiccycle 26 it
dc.coverage.academicyear 2012/2013 it
dc.date.accessioned 2014/01/24 16:47:36 -
dc.date.available 2014/01/24 16:47:36 -
dc.date.issued 2014-01-17 it
dc.description.abstracteng This thesis is devoted to the study of several problems arising in the field of nonlinear analysis. The work is divided in two parts: the first one concerns existence of oscillating solutions, in a suitable sense, for some nonlinear ODEs and PDEs, while the second one regards the study of qualitative properties, such as monotonicity and symmetry, for solutions to some elliptic problems in unbounded domains. Although the topics faced in this work can appear far away one from the other, the techniques employed in different chapters share several common features. In the firts part, the variational structure of the considered problems plays an essential role, and in particular we obtain existence of oscillating solutions by means of non-standard versions of the Nehari's method and of the Seifert's broken geodesics argument. In the second part, classical tools of geometric analysis, such as the moving planes method and the application of Liouville-type theorems, are used to prove 1-dimensional symmetry of solutions in different situations. -
dc.description.allpeople Soave, N -
dc.description.allpeopleoriginal Soave, -
dc.description.codicestruttura 4402 it
dc.description.doctoreuropaeus No it
dc.description.fulltext open en
dc.description.fulltextoriginal open en
dc.description.numberofauthors 1 -
dc.description.otherinformation Il prodotto della ricerca svolta negli anni di dottorato, finalizzato con la stesura della tesi, ha prodotto anche sei articoli, attualmente in fase di pubblicazione su riviste scientifiche. Una di queste pubblicazioni e` in collaborazione con la Professoressa Susanna Terracini, due con il Professor Alberto Farina, una con il Dottor Gianmaria Verzini, una con lo studente di dottorato Alessandro Zilio. Per quanto riguarda i precisi riferimenti bibliografici, si rimanda alla bibliografia della tesi. it
dc.identifier.citation (2014). Variational and geometric methods for nonlinear differential equations. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2014). it
dc.identifier.uri http://hdl.handle.net/10281/49889 -
dc.language.iso eng it
dc.publisher.country Italy -
dc.publisher.name Università degli Studi di Milano-Bicocca -
dc.publisher.otheruniversity UNIVERSITE DE PICARDIE JULES VERNE it
dc.relation.alleditors FARINA, ALBERTO it
dc.subject.keywordseng Variational methods; geometric analysis; nonlinear oscillator; Landesman-Lazer conditions; N-centre problem; negative energy; symbolic dynamics; phase separation; elliptic systems; solutions with exponential growth; Almgren monotonicity formula; Liouville theorems; half-space problem; 1-dimensional symmetry; moving planes method. -
dc.subject.singlekeyword Variational methods *
dc.subject.singlekeyword geometric analysis *
dc.subject.singlekeyword nonlinear oscillator *
dc.subject.singlekeyword Landesman-Lazer conditions *
dc.subject.singlekeyword N-centre problem *
dc.subject.singlekeyword negative energy *
dc.subject.singlekeyword symbolic dynamics *
dc.subject.singlekeyword phase separation *
dc.subject.singlekeyword elliptic systems *
dc.subject.singlekeyword solutions with exponential growth *
dc.subject.singlekeyword Almgren monotonicity formula *
dc.subject.singlekeyword Liouville theorems *
dc.subject.singlekeyword half-space problem *
dc.subject.singlekeyword 1-dimensional symmetry *
dc.subject.singlekeyword moving planes method *
dc.title Variational and geometric methods for nonlinear differential equations it
dc.type Tesi di dottorato -
dc.type.driver info:eu-repo/semantics/doctoralThesis -
dc.type.full Pubblicazioni::07 - Tesi di dottorato Bicocca post 2009 it
dc.type.miur -2.0 -
iris.bncf.datainvio 2025/12/14 13:57:59 *
iris.bncf.error Error creating item on BNCF server *
iris.bncf.stato 0 *
iris.mediafilter.data 2025/04/04 03:40:28 *
iris.orcid.lastModifiedDate 2023/12/21 12:13:17 *
iris.orcid.lastModifiedMillisecond 1703157197773 *
iris.sitodocente.maxattempts 2 -
Appare nelle tipologie: 07 - Tesi di dottorato Bicocca post 2009
File in questo prodotto:
File Dimensione Formato  
phd_unimib_744866.pdf

accesso aperto

Tipologia di allegato: Doctoral thesis
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/49889
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact