This thesis is devoted to the study of several problems arising in the field of nonlinear analysis. The work is divided in two parts: the first one concerns existence of oscillating solutions, in a suitable sense, for some nonlinear ODEs and PDEs, while the second one regards the study of qualitative properties, such as monotonicity and symmetry, for solutions to some elliptic problems in unbounded domains. Although the topics faced in this work can appear far away one from the other, the techniques employed in different chapters share several common features. In the firts part, the variational structure of the considered problems plays an essential role, and in particular we obtain existence of oscillating solutions by means of non-standard versions of the Nehari's method and of the Seifert's broken geodesics argument. In the second part, classical tools of geometric analysis, such as the moving planes method and the application of Liouville-type theorems, are used to prove 1-dimensional symmetry of solutions in different situations.
(2014). Variational and geometric methods for nonlinear differential equations. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2014).
Variational and geometric methods for nonlinear differential equations
SOAVE, NICOLA
2014
Abstract
This thesis is devoted to the study of several problems arising in the field of nonlinear analysis. The work is divided in two parts: the first one concerns existence of oscillating solutions, in a suitable sense, for some nonlinear ODEs and PDEs, while the second one regards the study of qualitative properties, such as monotonicity and symmetry, for solutions to some elliptic problems in unbounded domains. Although the topics faced in this work can appear far away one from the other, the techniques employed in different chapters share several common features. In the firts part, the variational structure of the considered problems plays an essential role, and in particular we obtain existence of oscillating solutions by means of non-standard versions of the Nehari's method and of the Seifert's broken geodesics argument. In the second part, classical tools of geometric analysis, such as the moving planes method and the application of Liouville-type theorems, are used to prove 1-dimensional symmetry of solutions in different situations.| Campo DC | Valore | Lingua |
|---|---|---|
| dc.authority.academicField2024 | Settore MATH-03/A - Analisi matematica | * |
| dc.authority.advisor | TERRACINI, SUSANNA | it |
| dc.authority.people | SOAVE, NICOLA | it |
| dc.authority.phdCourse | MATEMATICA PURA E APPLICATA - 23R | it |
| dc.authority.phdSchool | Scuola di dottorato di Scienze | it |
| dc.collection.id.s | e39773c1-7ce8-35a3-e053-3a05fe0aac26 | * |
| dc.collection.name | 07 - Tesi di dottorato Bicocca post 2009 | * |
| dc.coverage.academiccycle | 26 | it |
| dc.coverage.academicyear | 2012/2013 | it |
| dc.date.accessioned | 2014/01/24 16:47:36 | - |
| dc.date.available | 2014/01/24 16:47:36 | - |
| dc.date.issued | 2014-01-17 | it |
| dc.description.abstracteng | This thesis is devoted to the study of several problems arising in the field of nonlinear analysis. The work is divided in two parts: the first one concerns existence of oscillating solutions, in a suitable sense, for some nonlinear ODEs and PDEs, while the second one regards the study of qualitative properties, such as monotonicity and symmetry, for solutions to some elliptic problems in unbounded domains. Although the topics faced in this work can appear far away one from the other, the techniques employed in different chapters share several common features. In the firts part, the variational structure of the considered problems plays an essential role, and in particular we obtain existence of oscillating solutions by means of non-standard versions of the Nehari's method and of the Seifert's broken geodesics argument. In the second part, classical tools of geometric analysis, such as the moving planes method and the application of Liouville-type theorems, are used to prove 1-dimensional symmetry of solutions in different situations. | - |
| dc.description.allpeople | Soave, N | - |
| dc.description.allpeopleoriginal | Soave, | - |
| dc.description.codicestruttura | 4402 | it |
| dc.description.doctoreuropaeus | No | it |
| dc.description.fulltext | open | en |
| dc.description.fulltextoriginal | open | en |
| dc.description.numberofauthors | 1 | - |
| dc.description.otherinformation | Il prodotto della ricerca svolta negli anni di dottorato, finalizzato con la stesura della tesi, ha prodotto anche sei articoli, attualmente in fase di pubblicazione su riviste scientifiche. Una di queste pubblicazioni e` in collaborazione con la Professoressa Susanna Terracini, due con il Professor Alberto Farina, una con il Dottor Gianmaria Verzini, una con lo studente di dottorato Alessandro Zilio. Per quanto riguarda i precisi riferimenti bibliografici, si rimanda alla bibliografia della tesi. | it |
| dc.identifier.citation | (2014). Variational and geometric methods for nonlinear differential equations. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2014). | it |
| dc.identifier.uri | http://hdl.handle.net/10281/49889 | - |
| dc.language.iso | eng | it |
| dc.publisher.country | Italy | - |
| dc.publisher.name | Università degli Studi di Milano-Bicocca | - |
| dc.publisher.otheruniversity | UNIVERSITE DE PICARDIE JULES VERNE | it |
| dc.relation.alleditors | FARINA, ALBERTO | it |
| dc.subject.keywordseng | Variational methods; geometric analysis; nonlinear oscillator; Landesman-Lazer conditions; N-centre problem; negative energy; symbolic dynamics; phase separation; elliptic systems; solutions with exponential growth; Almgren monotonicity formula; Liouville theorems; half-space problem; 1-dimensional symmetry; moving planes method. | - |
| dc.subject.singlekeyword | Variational methods | * |
| dc.subject.singlekeyword | geometric analysis | * |
| dc.subject.singlekeyword | nonlinear oscillator | * |
| dc.subject.singlekeyword | Landesman-Lazer conditions | * |
| dc.subject.singlekeyword | N-centre problem | * |
| dc.subject.singlekeyword | negative energy | * |
| dc.subject.singlekeyword | symbolic dynamics | * |
| dc.subject.singlekeyword | phase separation | * |
| dc.subject.singlekeyword | elliptic systems | * |
| dc.subject.singlekeyword | solutions with exponential growth | * |
| dc.subject.singlekeyword | Almgren monotonicity formula | * |
| dc.subject.singlekeyword | Liouville theorems | * |
| dc.subject.singlekeyword | half-space problem | * |
| dc.subject.singlekeyword | 1-dimensional symmetry | * |
| dc.subject.singlekeyword | moving planes method | * |
| dc.title | Variational and geometric methods for nonlinear differential equations | it |
| dc.type | Tesi di dottorato | - |
| dc.type.driver | info:eu-repo/semantics/doctoralThesis | - |
| dc.type.full | Pubblicazioni::07 - Tesi di dottorato Bicocca post 2009 | it |
| dc.type.miur | -2.0 | - |
| iris.bncf.datainvio | 2025/12/14 13:57:59 | * |
| iris.bncf.error | Error creating item on BNCF server | * |
| iris.bncf.stato | 0 | * |
| iris.mediafilter.data | 2025/04/04 03:40:28 | * |
| iris.orcid.lastModifiedDate | 2023/12/21 12:13:17 | * |
| iris.orcid.lastModifiedMillisecond | 1703157197773 | * |
| iris.sitodocente.maxattempts | 2 | - |
| Appare nelle tipologie: | 07 - Tesi di dottorato Bicocca post 2009 | |
| File | Dimensione | Formato | |
|---|---|---|---|
|
phd_unimib_744866.pdf
accesso aperto
Tipologia di allegato:
Doctoral thesis
Dimensione
1.81 MB
Formato
Adobe PDF
|
1.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


