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Abstract

The induction effects due to a steady source field in the shape of a torus knot
or unknot filament are analysed in detail. Similar studies for rectilinear, circu-
lar or helical geometries have been done in the past, but very little is known for
more complex geometries and topologies. Torus knots provide a rare example of
closed, space curves of non-trivial topology, that admit a mathematically simple
description; for this reason they represent an interesting case study to consider.
Moreover, since torus knots are also a good mathematical model for studying
braided field line structures, the present work provides useful information for a
wide range of possible applications, from physical sciences (solar physics and as-
trophysics, vortex dynamics, fusion physics) to technology (telecommunication,
new materials design, data analysis). The work is organized in 4 chapters.

In chapter 1 we present a comprehensive study of geometric and topological prop-
erties of torus knots and unknots. By using a standard parametrization, we
demonstrate the existence, and determine the location, of inflection points for
a given critical configuration, and prescribe the condition for removing the sin-
gularity associated with torsion at the inflection point. We show that, to first
approximation, total length grows linearly with the number of coils, and it is
proportional to the minimum crossing number of the knot type. By taking the
winding number, given by the ratio between meridian and longitudinal wraps, as
measure of topological complexity of the knot, we analyse its influence on several
global quantities, such as total length, curvature, torsion and writhe.

In chapter 2 we analyse the influence of the winding number and other geometric
properties on induction, energy and helicity. This is done by assuming the phys-
ical filament of infinitesimally small cross-section and by using the Biot-Savart
law adapted for the particular parametrization chosen. Field line patterns of the
induced field are obtained for a large family of knots/unknots on several cross-
sectional planes. The intensity of the induced field is shown to depend linearly
on the number of toroidal coils. We provide bounds on energy, and an estimate
of helicity in terms of writhe.

In chapter 3 we compare local and global induction contributions in relation to the
winding number, by providing asymptotic expansions of the integrand function.
We show that in general local leading order terms are not sufficient to provide
accurate global information; nevertheless, for some values of the winding number
local and global behaviours are found to be in good agreement.



In chapter 4 we investigate the influence of the winding number on the binormal
component of the self-induction a point asymptotically near to the source field.
Since in the limit the Biot-Savart integral becomes singular, we apply the analyt-
ical prescription of Moore and Saffman (1972) to regularize it. While to leading
order the self-induction is proportional to local curvature, we derive an integral
formula for next terms, including higher order local terms together with non-local
terms, and we study its dependence on the winding number by showing that the
dominant contribution is generally given by non-local terms.
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walking next to me during my ups but also during my downs, and for loving and
taking care of me, as simple as that. A sincere thank to Marco for his help as
mathematician and as friend. A kind thank to Enza for her friendship.





Contents

Introduction 1

1 The geometry of torus knots and unknots 3

1.1 Torus knots and unknots . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The symmetry of torus knots and unknots . . . . . . . . . . . . . . 5

1.3 Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Total length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7 Total curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.8 Total torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.9 Total squared curvature and torsion . . . . . . . . . . . . . . . . . 24

1.10 Writhing number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.11 Spherical indicatrices . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.12 Pohl self-linking number . . . . . . . . . . . . . . . . . . . . . . . . 31
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Introduction

The first mathematical formulation of the physical law giving the magnetic
effects due to an infinitely long, rectilinear, electric wire dates October 30, 1820,
when Biot and Savart read in front of the French Royal Academy of Sciences
the Mémoire sur la mesure de l’action exercée à distance sur une particule de
magnétisme, par un fil conjonctif [12]. In this one-page note they state that the
measured effects are proportional to the distance from the wire and directed or-
thogonally to it, acknowledging the first experimental observations by Oersted
[42] and the work by Ampère on mutual effects of two straight electric wires, a
wire and a magnet, and two magnets [5, 6]. Other communications by Biot and
Savart then followed to add further information to their very first statement [13],
together with supplementary comments by other scientists, such as Laplace and
Ampère, but some of these communications were never published (see [56] pp.
80–127 and 128–140 for a posthumous collection of two extensive communications
by Biot & Savart and Ampère, respectively).

A challenging programme on magnetic effects induced by more complex ge-
ometries and topologies was undertaken by Tait in the late 1870s. Inspired and
motivated by Lord Kelvin’s theory of vortex atoms to describe natural laws of
physics and energy quantizations in terms of topological properties, he began a
tabulation of knots and links ordered according to their minimal number of cross-
ings. Since he was in search for a discriminant to identify different knot-types, he
began to investigate the effects of currents in electric wires in the shape of knots,
trying to detect the knot-type of the source in terms of its magnetic effects. In
particular, he thought that “we might possibly obtain a definite measurement of
beknottedness in terms of the work necessary to carry a magnetic pole along the
curve, the curve being supposed to be traversed by an electric current: as it ob-
viously must be always the same for the same knot, and must vanish when there
is no beknottedness” [57]. After several efforts, on April 3, 1882 Tait had to com-
municate, in a short note to the Royal Society of Edinburgh, his failed attempts;
nevertheless, he managed to classify knots up to 7 crossings (1877, [58]; see [59],
plate 44), and then alternating knots up to 10 crossings (1885, [60], plates 80 and
81).

The possibility of extracting geometric and topological properties of an ob-
ject from emitted signals interested scientists of different areas, being this part of
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the general inverse problem to infer information on a source from analysis of its
effects; for example Kac addresses the problem of detecting the geometric shape
of an elastic membrane with fixed boundary from the algebraic analysis of the
eigenvalues of the acoustic wave equation [25]. A similar problem was firstly ad-
dressed by Weyl in [62], where he proved a relation between eigenvalues and area
of the membrane. Manuar & Jaggar use wave scattering techniques to examine
the geometry and topology of a thin scattered wire [32, 33]. In particular they
analyse the backscattering of 4 different objects: the trefoil and its related un-
knot (obtained by local switching of a crossing), and their respective mirror image,
finding that the difference in the backscattering is larger between the knot and
its unknot (which share the same geometry, except for a neighbourhood of the
switched crossing), than between the knot and its mirror image (which share the
same topology). Werner, by looking for applications to communication devices,
considers small torus knotted electric wires and finds that the far electro-magnetic
field is equivalent to that produced by a circular loop [63]. Peralta-Salas et al.
examine the structure and properties of the induced magnetic field-lines due to
several current distributions [23, 3, 2].

Detailed studies of the Biot-Savart induction effects due to circular or heli-
cal geometries have been done in the past, but to the best of our knowledge the
problem for more complex geometries and topologies is still open. In this thesis,
by taking advantage of the rather simple mathematical description of torus knots
and unknots, we analyse the geometric and topological effects on the Biot-Savart
induction due to a steady field in the shape of a torus knot/unknot. Since circular
configurations, as well as non-planar deformations of the circle, can be obtained
as degenerate cases from the standard parametrization of torus knots/unknots,
it is reasonable to think that this problem falls into the class of elliptic integral
problems, to which the Biot-Savart integral on a circular support belongs. Since
in ideal flows the Biot-Savart law gives the velocity field induced by vorticity,
or, by analogy, the magnetic field induced by an electric current, this work is of
interest for applications in fluid dynamics as well as magnetohydrodynamics.



Chapter 1

The geometry of torus knots
and unknots

In this chapter we present a comprehensive study of geometric and topological
properties of torus knots and unknots. By using a standard parametrization, new
results on local and global properties are found. In Sections 1.3–1.5 we present
a detailed analysis of local properties. The existence of inflectional configura-
tions for every torus knot/unknot is proven, and we determine the location of
the inflection points. We prescribe the condition for removing the singularity
associated with torsion at the inflection point and we revise a result on zeros of
torsion for knots/unknots in inflectional state. Global properties are discussed
in Sections 1.6–1.13. We show that to first approximation total length grows lin-
early with the number of coils, and it is proportional to the minimum crossing
number of the knot type. The dependence on knot complexity, measured by the
winding number, of several global quantities such as total curvature and torsion,
writhing number, total squared curvature and torsion is investigated. By using
the concept of tangent indicatrix, we relate the development of inflectional config-
urations to the growth in writhing number, and we show how the passage through
inflectional state is responsible for the jump of the intrinsic twist of framed torus
knots/unknots.

1.1 Torus knots and unknots

By torus knots and unknots we mean particularly symmetric, closed curves,
that lie on the surface of a mathematical torus, wrapped uniformly around it.
A torus knot or unknot Tp,q wraps p times along the longitudinal (or toroidal)
direction and q times along the meridian (or poloidal) direction. Torus knots are
obtained by taking p > 1, q > 1 and p, q co-prime integers [34] (Figure 1.1a).
If either p or q is equal to 1, we do not have knots, but multiply coiled curves,
topologically equivalent to the unknot (Figure 1.1b). The ratio w = q/p is called
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(a)

(b)

Figure 1.1: (a) Two geometrically different presentations of the same topological
knot type. The trefoil knot T2,3 on the left can be deformed to the T3,2 on the
right by a continuous deformation, and vice-versa. (b) A poloidal coil T1,7 (left)
and a toroidal coil T7,1 (right). These two curves are both topologically equivalent
to the unknot.

the winding number of Tp,q, and it is a rational, positive number, taken here as a
measure of the geometric and topological complexity of the knot (or unknot).
For a given, finite value of p, by letting q → ∞, the curve covers entirely the
mathematical torus with infinitely many poloidal turns and, in the limit, we obtain
a poloidal hollow ring. For a given, finite value of q, by letting p→∞, the curve
covers entirely the torus with infinitely many toroidal turns and, in the limit, we
obtain a toroidal hollow ring.
For given p and q, torus knots Tp,q and Tq,p are topologically equivalent [34], that
is, it is possible to deform each knot into the other by continuous deformations
and vice-versa; however they have different geometries and they are defined by
different equations (Figure 1.1a).
A natural parametrization of a torus knot or unknot with winding number w is
given by

x(R, r, w;α) :


x = (R+ r coswα) cosα
y = (R+ r coswα) sinα, α ∈ [0, 2πp) ,
z = r sinwα

(1.1)

where α is the parameter of the curve, R and r are respectively the toroidal and
the poloidal radii of the torus. We require 0 < r < R in order to avoid degenerate
configurations (for r = 0 the torus degenerates into a planar circumference of
radius R, and for r ≥ R the torus self-intersects).
By introducing the non-dimensional quantity λ = r/R, λ ∈ (0, 1), eqs. (1.1) be-



1.2 The symmetry of torus knots and unknots 5

come

x(R, λ,w;α) :


x = R(1 + λ coswα) cosα
y = R(1 + λ coswα) sinα, α ∈ [0, 2πp) ,
z = Rλ sinwα

(1.2)

where λ is the aspect ratio of the torus.
For every R and λ, every torus knot and unknot parametrized by eqs. (1.2) is a
smooth (i.e C∞) and simple (i.e. without self-intersections) curve in R3.

1.2 The symmetry of torus knots and unknots

A torus knot/unknot Tp,q parametrized by eqs. (1.2) can be thought of as
generated under the action of a rotational symmetry group by a (q − 1)-times
rigid rotation (around the z-axis and parallel to the (xy)-plane) of the section

(a) (b)

(c) (d)

Figure 1.2: Fundamental sections (in blue) and fundamental sectors (darker re-
gions) of torus knots (a) T2,3 and (b) T3,2 and torus unknots (c) T1,3 and (d)
T3,1.
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of the curve given by α ∈ [0, 2π/w). We shall call this section fundamental
section. The whole closed curve is therefore recovered from the fundamental
section (Figure 1.2). For every torus knot and unknot, its fundamental section
presents a central symmetry at α = π/w, with the two halves of the fundamental
section wrapping up and down around the torus anti-symmetrically. Hence, the
geometry of the curve, given for example by curvature and torsion information,
can be studied on the fundamental section and extended to the whole curve with
period 2π/w. Moreover, the central symmetry of the fundamental section implies
the axial symmetry of both pointwise curvature and torsion.
Since a torus knot/unknot Tp,q parametrized by eqs. (1.2) appears the same from
each of the cross-sectional half-planes at 2kπ/q, with k = 0, ..., q − 1, we can also
identify a fundamental sector between the half-planes at 0 and 2π/q (Figure 1.2),
a property that will be exploited in the analysis done later on.

1.3 Regularity

Let us consider now a smooth curve γ in R3, parametrized by r(t), t ∈ [a, b].
We shall denote by ṙ(t), r̈(t) and

...
r (t) the first, second and third derivative,

respectively, of the parametrization with respect to t. The pointwise curvature
and torsion of γ are defined by

c(t) =
|ṙ(t)× r̈(t)|
|ṙ(t)|3

, (1.3)

τ(t) =
(ṙ(t)× r̈(t)) · ...r (t)

|ṙ(t)× r̈(t)|2
. (1.4)

A smooth curve γ with parametrization r(t) is said to be regular if its tangent
vector ṙ(t) never vanishes for all t ∈ [a, b]. A point where ṙ(t0) = 0 is said to be
a singular point of order 0. A point where r̈(t1) = 0 in isolation, but ṙ(t1) 6= 0, is
said to be a singular point of order 1 or an inflection point. Equivalently, a point
of a smooth and regular curve where curvature vanishes in isolation is called an
inflection point. Indeed, non vanishing ṙ(t) and r̈(t) are linearly independent for
all t, hence, the curvature of a regular curve is zero at a point r(t1) if and only
if r̈(t1) = 0. At an inflection point, torsion is singular (where the singularity is
integrable [51]). The simplest inflection point is when the singularity of the torsion
is removable by continuity, that is when the left and right limit of torsion at the
inflection point have finite and equal values. For a regular curve with everywhere
non vanishing curvature, the vectors ṙ(t), r̈(t) and

...
r (t) are linearly independent

if and only if (ṙ(t) × r̈(t)) · ...r (t) 6= 0. Hence, the torsion of a regular curve with
everywhere non vanishing curvature is zero at a point r(t3) if and only if ṙ(t3),
r̈(t3) and

...
r (t3) are linearly dependent. The case when

...
r (t3) = 0 is just a special

case for which ṙ(t3), r̈(t3) and
...
r (t3) are linearly dependent.
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For torus knots and unknots parametrized by eqs. (1.2), we have:

ẋ(R, λ,w;α) =R

−(1 + λ coswα) sinα− λw cosα sinwα
(1 + λ coswα) cosα− λw sinα sinwα

λw coswα

 ,

ẍ(R, λ,w;α) =R

−(1 + λ coswα+ λw2 coswα) cosα+ 2λw sinα sinwα
−(1 + λ coswα+ λw2 coswα) sinα− 2λw cosα sinwα

−λw2 sinwα

 ,

...
x(R, λ,w;α)=R

 (1 + λ coswα+ 3λw2 coswα) sinα+ (3 + w2)λw cosα sinwα
−(1 + λ coswα+ 3λw2 coswα) cosα+ (3 + w2)λw sinα sinwα

−λw3 coswα

 .

(1.5)

We can prove the following result:

Proposition 1.1. Every torus knot and unknot parametrized by eqs. (1.2), is a
regular curve.

Proof. For considerations on the symmetry of torus knots/unknots, it is sufficient
to prove that, for every w ∈ (0,+∞) ∩Q, R ∈ (0,+∞) and λ ∈ (0, 1),

ẋ(R, λ,w;α) = R

−(1 + λ coswα) sinα− λw cosα sinwα
(1 + λ coswα) cosα− λw sinα sinwα

λw coswα

 6= 0 ∀ α ∈
[
0,

2π

w

)
. (1.6)

Let us assume the first and second components of ẋ to vanish: we prove that the
third is never zero. From the second component we have

1 + λ coswα =
λw sinα sinwα

cosα
for α 6= π

2
+ kπ, k ∈ Z . (1.7)

By substituting eq. (1.7) into the first component, we have

λw sinwα = 0 . (1.8)

Solutions to eq. (1.8) are given by α = 0 and α =
π

w
; for both of these values, the

third component never vanishes.

For α =
π

2
+ kπ, k ∈ Z, the first component becomes[

− sin
(π

2
+ kπ

)]
·
[
1 + λ cos

(
w
(π

2
+ kπ

))]
= 0 , (1.9)

and since
sin
(π

2
+ kπ

)
6= 0 ∀ k ∈ Z , (1.10)

we have

cos
(
w
(π

2
+ kπ

))
= − 1

λ
. (1.11)

By eq. (1.11) the third component evaluated at α =
π

2
+kπ, k ∈ Z, never vanishes.
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1.4 Curvature

The study of the existence of inflectional configurations is interesting for the
geometric characterization of torus knots and unknots as curves in R3 as well as
for applications. Given a Tp,q of winding number w, its geometric shape depends
on the supporting torus by changing the values of the aspect ratio λ. The following
result states that there exists a unique torus of aspect ratio λ = λ(w) on which
Tp,q has inflection point in isolation.

Theorem 1.2 (Fuller Jr, [21, 22]). Let Tp,q be a torus knot or unknot with winding
number w on a torus of aspect ratio λ. Then Tp,q has points of zero curvature (in

isolation) for only one value of λ = λcr =
1

1 + w2
. For λ = λcr there are exactly

q points of vanishing curvature on Tp,q, all lying on the innermost longitudinal
circle of the torus.

We shall call λcr = λcr(w) the critical aspect ratio for Tp,q. By considering λ as a
kinematic parameter, eqs. (1.2) provide a kinematic description of a deformation
process of the curve through an inflectional configuration.
The existence of a critical aspect ratio λcr for Tp,q (and hence for λ = λcr, the
existence of q inflection points on Tp,q) can be easily proved. By evaluating the
curvature of Tp,q (see the definition given by eq. (1.3)) at the point Q for α = π/w,
we have

c
(
R, λ,w;

π

w

)
=

1− λ− λw2

R(1− λ)2 + λ2w2
. (1.12)

Hence,

c
(
R, λ,w;

π

w

)
= 0 ⇔ 1− λ− λw2 = 0 ⇔ λ = λcr =

1

1 + w2
. (1.13)

The point Q is in the fundamental section, which has q − 1 repeats along the
closed curve, and is defined for α ∈ [0, 2π/w), hence the points at

α =
π

w
+

2kπ

w
, k = 0, 1, ..., q − 1 , (1.14)

are the q inflection points of Tp,q.
The result of Theorem 1.2 is proven if and only if:

1. for λ = λcr, Tp,q has no more than q inflection points;

2. λ = λcr is the only critical aspect ratio for Tp,q.

Fuller Jr’s proof of Theorem 1.2 relies on the geodesic and normal components of
curvature.
Because of symmetry considerations, the position of the inflection points on Tp,q
can be determined according to the following result.
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Corollary 1.3. Every critical torus knot/unknot Tp,q with λ = λcr(w) has an
inflection point at α = π/w in the middle of the fundamental section, and q − 1
repeats obtained by rotating q− 1 times the fundamental section along the torus.

In Figure 1.3 and Figure 1.4 we show the curvature period for several torus
knots and unknots (R = 1) with different λ. The curvature of every torus
knot/unknot with λ 6= λcr never vanishes. The pair (λ, α) for which curvature
vanishes in the fundamental section is given by

(λ, α) =

(
1

1 + w2
,
π

w

)
, (1.15)

and the inflection point is placed at the middle of the curvature period. For
example, the torus knot T2,3 (Figure 1.3a) has λcr = 4/13 with inflection point at
α = 2π/3 (in the middle of the curvature period of 4π/3); there are 3 inflection
points in total, the other two are at α = 2π and α = 10π/3.
As λ → λcr, the curvature c develops two maxima. When λ → 0, the torus
collapses to the standard circle of radius R = 1. Hence, when toroidal wraps
dominate, c→ 1/R when λ→ 0 (see, for example, in the right-hand side diagrams
of Figure 1.3 and 1.4, when λ = 0.1 (red)). When poloidal wraps dominates, when
λ→ 1, then the curvature approximates that of the cross-sectional circle of radius
λ, that is c→ 1/λ (see Figure 1.3e and 1.4e for λ = 0.9 (blue)).

1.5 Torsion

We are interested in the behaviour of torsion in the neighbourhood of the
inflection point. For this it is sufficient to study the torsion in the fundamental
section. Let us denote by αcr(w) = π/w the value of α for which a Tp,q with
λ = λcr(w) has an inflection point. As expected, the denominator of

τ (R, λcr, w;αcr) (1.16)

vanishes and torsion is singular. Note that, since λcr(w) and αcr(w) are only
functions of w, τ (R, λcr, w;αcr) is only a function of R and w as well.

Theorem 1.4. For every Tp,q of winding number w with λ = λcr(w), the singu-
larity of the torsion at the inflection point is removable by continuity by setting

τ (R, λcr, w;αcr) := −
(
10 + 7w2 + w4

) (
1 + w2

)
2Rw (2 + w2)2

. (1.17)

Proof. Taylor’s expansion of the numerator Nτ (R, λcr, w;α) and denominator
Dτ (R, λcr, w;α) of τ (R, λcr, w, α) near α = αcr gives

Nτ (R, λcr, w;α) = n2

(
α− π

w

)2
+ n4

(
α− π

w

)4
+ ... ,

Dτ (R, λcr, w;α) = d2

(
α− π

w

)2
+ d4

(
α− π

w

)4
+ ... ,

(1.18)
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(a) (b)

(c) (d)

(e) (f)

Figure 1.3: One period of curvature c versus α, for several knot types (R = 1);
λ = 0.1 (red), λ = 0.5 (green), λ = 0.9 (blue) and λ = λcr (black).
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(a) (b)

(c) (d)

(e) (f)

Figure 1.4: One period of curvature c versus α, for several unknot types (R = 1);
λ = 0.1 (red), λ = 0.5 (green), λ = 0.9 (blue) and λ = λcr (black).
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where

n2 = −
R3w5

(
10 + 7w2 + w4

)
2 (1 + w2)3

, n4 =
R3w5

(
−6 + 64w2 + 31w4 + w6

)
24 (1 + w2)3

,

d2 =
R4w6

(
2 + w2

)2
(1 + w2)4

, d4 =
R4w6

(
3 + 29w2 + 5w4 − w6

)
12 (1 + w2)4

.

(1.19)

Hence,

τ (R, λcr, w;α) =

n2

(
α− π

w

)2(
1 +

n4
n2

(
α− π

w

)2
+ ...

)
d2

(
α− π

w

)2(
1 +

d4
d2

(
α− π

w

)2
+ ...

) −→
α→ π

w

n2
d2

, (1.20)

where
n2
d2

= −
(
10 + 7w2 + w4

) (
1 + w2

)
2Rw (2 + w2)2

(1.21)

and since the denominator of eq. (1.21) never vanishes, the limit is finite. Thus,
the singularity of torsion for α = αcr can be removed by continuity by setting

τ (R, λcr, w;αcr) := −
(
10 + 7w2 + w4

) (
1 + w2

)
2Rw (2 + w2)2

. (1.22)

Since eq. (1.17) never vanishes for all w, we have:

Corollary 1.5. For every Tp,q of winding number w with λ = λcr(w), the value
of torsion at the inflection point ( eq. (1.17)) is never zero.

In Figure 1.5 and Figure 1.6 we show the diagrams of one period of torsion
versus α for several knot/unknot types (R = 1). For each knot/unknot in inflec-
tional configuration, the singularity of torsion at the inflection point is removed by
applying eq. (1.17). The negative value of torsion is due to the parametrization
chosen. By replacing the third equation of the parametrization eqs. (1.2) with
z = −Rλ sinwα, we obtain graphs that are axially symmetric with respect to the
x-axis.
The more the aspect ratio approaches λcr, the more marked becomes the vari-
ation in the values of torsion with respect to α. If λ → λ−cr then torsion has a
positive, global maximum value; if λ → λ+cr then torsion has a negative, global
minimum value (λ−cr and λ+cr denote the left- and right-hand limit respectively).
The maximum (or minimum) is reached at α = π/w, which is the αcr in the limit
λ = λcr. When considering the deformation with kinematic parameter λ of a Tp,q,
this behaviour of the torsion for λ ≈ λcr is responsible to the jump discontinuity
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(a) (b)

(c) (d)

(e) (f)

Figure 1.5: One period of torsion τ versus α, for several knot types (R = 1);
λ = 0.1 (red), λ = 0.5 (green), λ = 0.9 (blue) and λ = λcr (black).
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(a) (b)

(c) (d)

(e) (f)

Figure 1.6: One period of torsion τ versus α, for several unknot types (R = 1);
λ = 0.1 (red), λ = 0.5 (green), λ = 0.9 (blue) and λ = λcr (black).



1.5 Torsion 15

of the total torsion as a function of λ as Tp,q passes through the inflectional con-
figuration (see [39]).
Torus knots/unknots with dominant toroidal wraps for λ small are almost planar
curves, hence torsion is nearly zero everywhere (right columns of Figure 1.5 and
1.6, in red). For torus knots/unknots with dominant poloidal wraps for λ large
since each poloidal turn lies almost in the cross-sectional plane, torsion assumes
values next to zero (Figure 1.5e and 1.6e, in blue).
When torus knots/unknots have dominant toroidal wraps, then they have points
of zero torsion for every λ (right columns of Figure 1.5 and 1.6). On the contrary,
there exist some torus knots/unknots with dominant poloidal wraps with nowhere
vanishing torsion (Figure 1.5e and 1.6c and e).

Theorem 1.6 (Rodriguez Costa, [53]). A torus knot or unknot Tp,q of wind-
ing number w with aspect ratio λ, is of non-vanishing torsion if and only if the
following two conditions are both satisfied:

(i) w2 > 1 ,

(ii)
1

w2 + 1
< λ <

w2 − 1

2w2 + 1
.

(1.23)

In [53] Rodriguez Costa considers also open, dense curves on the torus (that is
when w is irrational). Note that the lower bound in (ii) is the critical aspect ratio
λcr(w). Clearly, from

1

w2 + 1
<

w2 − 1

2w2 + 1
, (1.24)

we must have

w4 − 2w2 − 2 > 0 . (1.25)

By solving eq. (1.25), we obtain:

Corollary 1.7 (Rodriguez Costa, [53]). A torus knot/unknot Tp,q of winding
number w admits configurations of non-vanishing torsion for some aspect ratio λ
if and only if

w2 > 1 +
√

3 . (1.26)

The knot T2,11, for example, has w = 11/2 >
√

1 +
√

3 and hence admits config-
urations of non-vanishing torsion for 4/125 < λ < 39/82. A realization is given
by λ = 0.1 (Figure 1.5e, red). However, the torsion of T2,11 is non-vanishing also
for λ = λcr = 4/125 (black), while the left inequality in (ii) is strict.
Rodriguez Costa proves Theorem 1.6 by searching the conditions on λ and w for
which the vectors ẋ (R, λ,w;α), ẍ (R, λ,w;α) and

...
x (R, λ,w;α) are linearly in-

dependent for all α. However, the statement “ẋ(R, λ,w;α), ẍ(R, λ,w;α) and
...
x (R, λ,w;α) are linearly independent for all α” is equivalent to “torsion never
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vanishes for all α” if and only if ẍ (R, λ,w;α) 6= 0 for every α. From section 1.4
we know that for every w and λ = λcr(w) there exists α = αcr(w) for which
ẍ (R, λcr, w;αcr) = 0. Thus, Theorem 1.6 and Corollary 1.7 hold true if and only
if λ 6= λcr; for λ = λcr possible zeros of τ (R, λcr, w;α) should be studied by a
different approach. We can prove the following result:

Proposition 1.8. A Tp,q with winding number w and λ = λcr has everywhere
non-vanishing torsion if and only if

w2 > 1 +
√

3 . (1.27)

Proof. The numerator Nτ (R, λcr, w;α) of torsion is

4w2 + 6w4 + 2w6 − coswα
(
2 + 14w2 + 8w4

)
+ cos2wα

(
−2 + 2w2

)
; (1.28)

We search conditions on w for which Nτ (R, λcr, w;α) = 0 for some α. By setting
t = coswα, −1 ≤ t ≤ 1, we obtain a polynomial of degree at most two in t. If
w = ±1, the polynomial is reduced to

12− 24t = 0 , (1.29)

and the solution is t = 1/2.
Let us now assume w 6= ±1; the polynomial is given by

4w2 + 6w4 + 2w6 − t
(
2 + 14w2 + 8w4

)
+ t2

(
−2 + 2w2

)
= 0 , (1.30)

and solutions are given by

t+,− =
1 + 7w2 + 4w4

2 (−1 + w2)
±
√

1 + 22w2 + 61w4 + 48w6 + 12w8

2 (−1 + w2)
. (1.31)

We admit only those solutions for which

−1 ≤ t+,− ≤ 1 . (1.32)

Let us first consider
−1 ≤ t+ ≤ 1 . (1.33)

Solutions to the left-hand side inequality are w ∈ R\ {−1, 1}. Solutions to the
right-hand side inequality are −1 < w < 1. Hence, solutions to eq. (1.33) are
−1 < w < 1.
Let us now consider

−1 ≤ t− ≤ 1 . (1.34)

Solutions to the left-hand side inequality are w < −1, w > 1 or w = 0. Solutions

to the right-hand side inequality are −
√

1 +
√

3 ≤ w < −1 or 1 < w ≤
√

1 +
√

3.

Hence, solutions to eq. (1.34) are −
√

1 +
√

3 ≤ w < −1 or 1 < w ≤
√

1 +
√

3.

Thus, among the solutions eq. (1.31) we can admit only those for −
√

1 +
√

3 ≤
w ≤

√
1 +
√

3, w 6= ±1. Hence, Nτ (R, λcr, w;α) = 0 for some α if and only if

−
√

1 +
√

3 ≤ w ≤
√

1 +
√

3. Thus, τ (R, λcr, w;α) never vanishes if and only if

w < −
√

1 +
√

3 or w >
√

1 +
√

3.
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By Proposition 1.8, the revised version of Theorem 1.6 and Corollary 1.7 is:

Theorem 1.9. A torus knot/unknot Tp,q admits configurations of non-vanishing
torsion if and only if its winding number satisfies

w2 > 1 +
√

3 , (1.35)

and its aspect ratio satisfies

λcr ≤ λ <
w2 − 1

2w2 + 1
. (1.36)

1.6 Total length

In this section and in the following ones we investigate the relationship between
global geometric quantities and torus knots/unknots complexity, given by the
winding number.
The total length of a torus knot/unknot Tp,q is given by

L =

∫ 2πp

0
|ẋ(R, λ,w;α)|dα = R

∫ 2πp

0

√
(1 + λ coswα)2 + λ2w2 dα . (1.37)

We non-dimensionalize eq. (1.37) by normalizing it with respect to a reference
total length, which we choose to be L0 = 2πR, the total length of the centreline
of the mathematical torus. The non-dimensional total length is given by

L =
1

2π

∫ 2πp

0

√
(1 + λ coswα)2 + λ2w2 dα . (1.38)

Theorem 1.10. Let Tp,q be a torus knot/unknot of non-dimensional length L
given by eq. (1.38). We have:

(i) for given p, if q � p, then L ≈ λq ;

(ii) for given q, if p� q, then L ≈ (1 + λ)p .
(1.39)

Proof. By writing w = q/p in eq. (1.38), we obtain

L =
1

2π

∫ 2πp

0

√(
1 + λ cos

(
q

p
α

))2

+ λ2
q2

p2
dα . (1.40)

Let us fix p; for q � p we have

L ≈ 1

2π

∫ 2πp

0
λ
q

p
dα = λq . (1.41)

Let us fix q; for p� q, we have

L ≈ 1

2π

∫ 2πp

0
(1 + λ) dα = (1 + λ) p . (1.42)
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In Figure 1.7 we show the non-dimensional total length of several torus knots
for different aspect ratios. If the number q of poloidal wraps is fixed, then L grows
linearly with p. Conversely, if p is kept fixed, then L grows linearly with q.
L of a Tp,q with w < 1 is larger than L of its isotope, with w > 1. This is justified
by the presence of a further positive addendum in eq. (1.42) in comparison with
eq. (1.41). For torus knots with dominant poloidal wraps L is strongly influenced
by variation in λ, whereas for torus knots with dominant toroidal wraps it is
almost uninfluenced. The same holds true for torus unknots as well.

The minimum crossing number cmin of torus knots is simply given by [41]

cmin(Tp,q) = min (p(q − 1), q(p− 1)) . (1.43)

It is a topological invariant of torus knots (for example, cmin(T2,3) = cmin(T3,2) =
3) and it provides a useful measure of the topological complexity of torus knots.
For torus knots with q > p, it is q(p − 1) < p(q − 1); hence cmin = q(p − 1). For
torus knots with p > q, it is p(q− 1) < q(p− 1); hence cmin = p(q− 1). Let us fix
p; for q � p, by combining eq. (1.41) and cmin = q(p− 1), we obtain

L ≈ λ

p− 1
cmin . (1.44)

Let us fix q; for p� q, by combining eq. (1.42) and cmin = p(q − 1), we obtain

L ≈ 1 + λ

q − 1
cmin . (1.45)

Eqs. (1.44) and (1.45) provide a very simple linear relation between L and cmin of
torus knots (the linearity coefficients depending on the respective prevalence of
poloidal or toroidal wraps).

In Fig 1.8 we show L against w of several torus knots/unknots, for different
values of λ. Torus knots/unknots Tp,q are divided in two families, with w < 1 and
w > 1.

Lower and upper bounds on L are given here. Since, for every α and w,
−1 ≤ coswα ≤ 1, we have√

(1− λ)2 + λ2w2 ≤
√

(1 + λ coswα)2 + λ2w2 ≤
√

(1 + λ)2 + λ2w2 . (1.46)

Hence, by eqs. (1.46) and (1.38), we obtain

1

2π

∫ 2πp

0

√
(1− λ)2 + λ2w2dα ≤ L ≤ 1

2π

∫ 2πp

0

√
(1 + λ)2 + λ2w2dα . (1.47)

By direct integration of the left-hand side and right-hand side of eq. (1.47), we
have

p
√

(1− λ)2 + λ2w2 ≤ L ≤ p
√

(1 + λ)2 + λ2w2 , (1.48)

and, by writing w = q/p, we obtain√
(1− λ)2p2 + λ2q2 ≤ L ≤

√
(1 + λ)2p2 + λ2q2 . (1.49)
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(a) (d)

(b) (e)

(c) (f)

Figure 1.7: Non-dimensional total length L of torus knots Tp,2 and T2,q (left
column), and Tp,4 and T4,q (right columnn). Knots are equally spaced on the
x-axis. Interpolation is for visualization purposes only.
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(a)

(b)

(c)

Figure 1.8: Non-dimensional total length L against winding number w for several
torus knots/unknots with (a) λ = 0.25, (b) λ = 0.5 and (c) λ = 0.75. Tp,1 and
T1,q (p, q = 2, 3, 4, 5, 6, 7, 8); Tp,2 and T2,q (p, q = 3, 5, 7, 9, 11, 13, 15); Tp,3 and T3,q
(p, q = 4, 5, 7, 8, 10, 11, 13); Tp,4 and T4,q (p, q = 5, 7, 9, 11, 13, 15, 17). Interpolation
is for visualization purposes only.
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1.7 Total curvature

The total curvature of a torus knot/unknot Tp,q is given by

K =

∫ 2πp

0
c(R, λ,w;α) |ẋ(R, λ,w;α)|dα , (1.50)

where c(R, λ,w;α) is the pointwise curvature, defined in eq. (1.3). K is naturally
non-dimensional, since it is given by the integration of the pointwise curvature,
that is dimensionally an the inverse of a length, over the entire length.

In Figure 1.9 we show the total curvature against the winding number of sev-
eral torus knots/unknots, for different values of the aspect ratio. The variation
of λ influences K when poloidal wraps are dominant, whereas it leaves mostly

(a)

(b)

Figure 1.9: Total curvature K against winding number w of several torus
knots/unknots (R = 1) with (a) λ = 0.25 and (b) λ = 0.75. Tp,1 and T1,q
(p, q = 2, 3, 4, 5, 6, 7, 8); Tp,2 and T2,q (p, q = 3, 5, 7, 9, 11, 13, 15); Tp,3 and T3,q
(p, q = 4, 5, 7, 8, 10, 11, 13); Tp,4 and T4,q (p, q = 5, 7, 9, 11, 13, 15, 17). Interpola-
tion is only for visualization purposes.
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unchanged K when toroidal wraps are dominant. For λ small, poloidal wraps
contribute less to K than toroidal wraps (Figure 1.9a). The gradual increase of λ
leads to a gradual increase of the contribution from poloidal wraps and, for large
λ, poloidal wraps contribute most to K (Figure 1.9b).

A major contribution to K comes from L. For example, let us consider Tp,q1
and Tp,q2 , with p � q1 < q2, with λ large. As we observed in section 1.4, their
respective curvatures are almost constant (the constant value given by 1/λ). How-
ever, K(Tp,q2) > K(Tp,q1), due to the contribution of L, that grows linearly with
q. Thus, let us consider the total curvature per unit length (also a dimensionless
quantity)

K(Tp,q) =
K(Tp,q)
L(Tp,q)

. (1.51)

In Figure 1.10 we plot K against w for λ = 0.5 and R = 1. Note that the values of
all knots/unknots of a given family (w < 1 and w > 1) collapse to a single curve;
this behaviour is generic and independent of λ. When w → 0, K → 2π, that is
the total curvature per unit length of the torus axis. When w → ∞, K → 4π,
that is the total curvature per unit length of the cross-sectional circle of the torus.

Figure 1.10: Total curvature per unit length K against winding number w of the
torus knots/unknots considered in Figure 1.9, for λ = 0.5 and R = 1. Interpola-
tion is for visualization purposes only.

1.8 Total torsion

The total torsion of a torus knot/unknot Tp,q is given by

T =

∫ 2πp

0
τ(R, λ,w;α) |ẋ(R, λ,w;α)|dα (1.52)

where τ(R, λ,w;α) is the pointwise torsion (eq. (1.4)). T is non-dimensional, since
it is given by the integration of the pointwise torsion, that dimensionally is an
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inverse of a length, over the entire length.
In Figure 1.11 we show T against w of several torus knots/unknots, organized

in two families, with w < 1 (Figure 1.11a) and w > 1 (Figure 1.11b), for λ = 0.5.
Poloidal wraps generally contribute the most to total torsion (in absolute values),
except for a few torus knots/unknots of particular geometry. Indeed, for a very
thin or very thick torus, there exist pairs of isotopes whose total torsion has almost
the same value. As number of wraps increases, T tends to a constant.

In Figure 1.12 we show the total torsion per unit length T against the winding
number of all torus knots/unknots considered in Figure 1.11, according to the

(a) (b)

Figure 1.11: Total torsion T against winding number w of several torus
knots/unknots (R = 1) with (a) w < 1 and (b) w > 1. Tp,1 and T1,q
(p, q = 2, 3, 4, 5, 6, 7, 8); Tp,2 and T2,q (p, q = 3, 5, 7, 9, 11, 13, 15); Tp,3 and T3,q
(p, q = 4, 5, 7, 8, 10, 11, 13); Tp,4 and T4,q (p, q = 5, 7, 9, 11, 13, 15, 17). Interpola-
tion is for visualization purposes only.

Figure 1.12: Total torsion per unit length T against winding number w of the torus
knots/unknots considered in Figure 1.11, for λ = 0.5 and R = 1. Interpolation is
for visualization purposes only.
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following definition:

T (Tp,q) =
T (Tp,q)
L(Tp,q)

. (1.53)

The values of T for knots/unknots within each family w < 1 and w > 1 follow the
same power law, represented by the single interpolation curve. When w → 0 and
w → ∞, T → 0; this behaviour is generic and independent of λ. The presence
of a minimum in the interpolation curves (for both w < 1 and w > 1) is also
an interesting generic feature, observed for all λ considered. The position and
the value of the minimum, for both w < 1 and w > 1, are function of λ (see
Figure 1.13).

Figure 1.13: Total torsion per unit length T against winding number w of the
torus knots/unknots considered in Figure 1.11, for λ = 0.45 (red) and λ = 0.75
(blue); R = 1. Interpolation is for visualization purposes only.

1.9 Total squared curvature and torsion

Global functionals of curvature and torsion have been widely studied both in
differential geometry and topology [17, 35, 1], and in applications to many different
fields of natural sciences, when the curve is the skeleton of a tube-like structure
[43, 61, 47, 50]. In this section we shall consider the total squared curvature and
torsion of a Tp,q, that in first approximation are directly related to bending and
torsional energy of elastic filaments [16, 29], and are given by

Eb =

∫ 2πp

0
c2(α) |ẋ(α)|dα , Eτ =

∫ 2πp

0
τ2(α) |ẋ(α)|dα , (1.54)

where, for simplicity, we have omitted the dependence of c, τ and ẋ on the pa-
rameters R, λ and w.
In order to have non-dimensional quantities it is convenient to normalize both Eb
and Eτ a reference quantity E0, given by the total squared curvature of a circle of
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(a)

(b)

Figure 1.14: Non-dimensional total squared curvature Eb against winding number
w of several torus knots/unknots (R = 1) with (a) λ = 0.25 and (b) λ = 0.75.
Tp,1 and T1,q (p, q = 2, 3, 4, 5, 6, 7, 8); Tp,2 and T2,q (p, q = 3, 5, 7, 9, 11, 13, 15);
Tp,3 and T3,q (p, q = 4, 5, 7, 8, 10, 11, 13); Tp,4 and T4,q (p, q = 5, 7, 9, 11, 13, 15, 17).
Interpolation is for visualization purposes only.

(a) (b)

Figure 1.15: Non-dimensional total squared torsion Eτ against the winding
number w of several torus knots/unknots with (a) w < 1 and (b) w > 1,
for λ = 0.5 and R = 1. Tp,1 and T1,q (p, q = 2, 3, 4, 5, 6, 7, 8); Tp,2 and T2,q
(p, q = 3, 5, 7, 9, 11, 13, 15); Tp,3 and T3,q (p, q = 4, 5, 7, 8, 10, 11, 13); Tp,4 and T4,q
(p, q = 5, 7, 9, 11, 13, 15, 17). Interpolation is only for visualization purposes.
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radius R = 1, that is E0 = 2π. Thus, the non-dimensional total squared curvature
and torsion are given by

Eb =
Eb
E0

=
1

2π

∫ 2πp

0
c2(α) |ẋ(α)|dα , Eτ =

Eτ
E0

=
1

2π

∫ 2πp

0
τ2(α) |ẋ(α)|dα . (1.55)

In Figure 1.14 we show Eb against w of several torus knots/unknots. The
relative contribution of toroidal/poloidal wraps to Eb depends on λ, so that two
topologically equivalent torus knots/unknots with different aspect ratio may have
the same Eb. For Tp,q in the same family, say w > 1, it is not generally true that
higher values of Eb are attained for larger λ.

In Figure 1.15 we show Eτ against w of several torus knots/unknots, with
w < 1 and w > 1. When w → 0 and w → ∞, Eτ → 0, in analogy with
the total torsion per unit length T . Generally poloidal wraps give the dominant
contribution to Eτ , except for a few torus knots/unknots with large aspect ratio
(for example with λ = 0.75, not shown here). The contribution from Eτ of Tp,1–
Tp,4 is one order of magnitude smaller than that from Eb.

1.10 Writhing number

The writhing number Wr of Tp,q is given by

Wr =
1

4π

∫ 2πp

0

∫ 2πp

0

(ẋ(α)× ẋ(α∗)) · (x(α)− x(α∗))

|x(α)− x(α∗)|3
dαdα∗ , (1.56)

where x(α) and x(α∗) are two points on Tp,q. The writhing number is a non-
dimensional, global geometric quantity associated with a closed, simple curve and

Figure 1.16: Writhing number Wr against the winding number w of several torus
knots/unknots with λ = 0.5 and R = 1. Tp,1 and T1,q (p, q = 2, 3, 4, 5, 6, 7, 8);
Tp,2 and T2,q (p, q = 3, 5, 7, 9, 11, 13, 15); Tp,3 and T3,q (p, q = 4, 5, 7, 8, 10, 11, 13);
Tp,4 and T4,q (p, q = 5, 7, 9, 11, 13, 15, 17). Interpolation is only for visualization
purposes.
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it is a measure of the coiling of the curve.
In Figure 1.16 we show Wr against w of several torus knots/unknots with λ =

0.5 and R = 1. The negative value of Wr is due to the parametrization chosen. By
replacing the third equation of eqs. (1.2) with z = −Rλ sinwα, we obtain diagrams
that are axially symmetric with respect to the x-axis. Generally a variation in
λ produce a modest variation in the writhing number values, especially for torus
knots/unknots with w < 1. Topologically equivalent torus knots/unknots have
almost the same writhing number for λ ≈ 0.75.

1.11 Spherical indicatrices

Let C be a regular, closed curve in R3 of class C3, with arc-length s and Frenet
frame (t,n,b) defined everywhere. Each of the three vectors of the Frenet frame
maps points of the curve C to points on the unit sphere. In particular, the tip of
the tangent vector describes with the variation of s a closed curve on the sphere.
This curve is called spherical indicatrix of the tangent vector or tangent indicatrix
(tantrix). In the same way the normal and binormal vectors describe two closed
curves on the sphere, called spherical indicatrices of the normal and binormal
vectors, or normal and binormal indicatrices. We shall denote these three curves
with It, In and Ib, respectively (see Figure 1.17, where C = T2,3). Note that the
tangent vector of the tantrix is n.
Information on the local and global geometry of the curve C can be deduced from
information on the spherical indicatrices. We have (see, for example, [17, 35])

L(It) =

∫
C
c(s) ds , (1.57)

L(In) =

∫
C
|τ(s)| ds , (1.58)

L(Ib) =

∫
C

√
c2(s) + τ2(s) ds . (1.59)

where c and τ are the pointwise curvature and torsion of C and L(Ij) is the total
length of Ij, j = t,n,b.
If C has inflection point, It is still well-defined. A point of C with c = 0 corresponds
to a cusp of It (see Figure 1.18b). A point of C with τ = 0 corresponds to an
inflection of It and to a cusp of Ib (see Figure 1.17c). The curve In has no cusps.
See, for example, [18] and references within.

Let us define the spherical area A enclosed by the tantrix by the following pro-
cedure (see also [4]). The tantrix It naturally inherits an orientation from the
arc-length parametrization of C and generally present points of self-intersection.
Let us divide It into a finite family of non self-intersecting, coherently-oriented,
closed curves. Let us consider the geodesic normal vector U of the Darboux frame
(T,U,N) of It, where T is the unit tangent to It, N is the outer-pointing unit
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(a)

(b)

(c)

Figure 1.17: Spherical indicatrices of (a) the tangent, (b) the normal and (c) the
binormal vectors of T2,3 with λ = 0.5 and R = 1.
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(a)

(b)

(c)

Figure 1.18: Tantrix of T2,3 (R = 1) with (a) λ = 0.2 < λcr, (b) λ = 4/13 = λcr
and (c) λ = 0.5 > λcr.
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normal to the sphere and U = N × T. Note that U varies continuously as it
pass through an inflection of It. For each curve of the family choose the enclosed
spherical region such that U is directed towards its interior. Let A be the sum
of the areas of these regions. Note that two regions can intersect and the area of
their intersection has to be counted once for each region (see, for example, the
top row of Figure 1.19). Moreover, if a region is encircled more than once by its
enclosing curve, then its area has to be counted with multiplicity given by the
number of times the curve encircles the region. The spherical area of the tantrix
is related to the writhing number Wr of C, according to

Theorem 1.11 (Fuller, [20]). Let A be the spherical area enclosed by the tantrix
of C, as defined above. Then the writhing number of C is given by

Wr ≡ A

2π
+ 1 mod 2 . (1.60)

Figure 1.19: Tantrix area contributing to Wr of the torus knot T2,3 with R = 1
and (top row) λ = 0.2 < λcr, (central row) λ = 4/13 = λcr and (bottom row)
λ = 0.5 > λcr.
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Let us consider C = Tp,q. The presence of inflectional configurations has conse-
quences for writhe, which become evident by its interpretation in terms of tantrix
area. Since the unit tangent T to the tantrix is the unit normal vector n to Tp,q, q
inflection points on Tp,q are mapped to q cusps on the corresponding tantrix. By
considering the deformation of the tantrix as λ increases, first we see the develop-
ment of q cusps (at λ = λcr, Figure 1.18b), then the development of q loops (for
λ > λcr, Figure 1.18c), enclosing a larger spherical region as λ → 1, whose addi-
tional total area contributes to the writhe according to eq. (1.60), as visualized in
the bottom row of Figure 1.19.

1.12 Pohl self-linking number

Let us consider the quantity

SL = Wr + T , (1.61)

where Wr and T = T/2π are the writhing number and the normalized total
torsion of a closed curve C of class C3, free from cusps and self-intersections; let
us call SL the Pohl self-linking number of C. SL is an integer and is invariant for
continuous deformations of C that do not pass through inflectional configurations
[14, 45]. Notice that both Wr and T are neither integers, nor invariant under
such deformations.
When C = Tp,q we have the following result.

Theorem 1.12 (Fuller Jr, [21, 22]). Let Tp,q be a torus knot/unknot with λ 6= λcr.
Then

SL =

{
−q(p− 1) if 0 < λ < λcr

−pq if λcr < λ < 1
. (1.62)

The negative values of SL are given by the parametrization associated with the
handedness of Tp,q. Direct computation of Wr and T for all knots/unknots
considered in sections 1.8 and 1.10 are in good agreement with the results of The-
orem 1.12.

By considering the deformation of Tp,q as λ increases, when Tp,q goes through
the inflectional configuration at λ = λcr, SL jumps from −q(p − 1) to −pq
and the jump is given by bSLc = −pq + [q(p− 1)] = −q. Conversely, by con-
sidering the deformation of Tp,q as λ decreases, the jump in SL is given by
bSLc = − [q(p− 1)] + pq = q. This jump discontinuity is due to the jump discon-
tinuity of T as Tp,q passes through the inflectional state.

Since for w > 1 it is λcr(w) < 1/2, whereas for w < 1 it is λcr(w) > 1/2, the
following result is straightforward:
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Corollary 1.13. Let Tp,q be a torus knot/unknot with λ = 1/2. Then

SL =

{
−q(p− 1) if w < 1

−pq if w > 1
. (1.63)

1.13 Framed curves and Călugăreanu invariant

Let us consider a Tp,q endowed with a framing (given by a ribbon unit vector
field N = N(α), pointwise normal to the curve). The Călugăreanu self-linking
number Lk of the framed Tp,q is defined as [15]

Lk(Tp,q) = lim
ε→0

Lk(Tp,q, Tp,q + εN) , (1.64)

where Lk(Tp,q, Tp,q +εN) is the Gauss linking number between Tp,q and Tp,q +εN;
the limit exists finite and is an integer, and Lk(Tp,q) is an isotopy invariant of the
framed Tp,q [15].
The Călugăreanu-White-Fuller theorem [15, 64, 19] relates the Pohl’s geometric
self-linking number to the Călugăreanu’s topological self-linking number Lk by

Lk = Wr + T + N = SL+ N , (1.65)

where the intrinsic twist N is the number of full rotations of N around the base
curve of the ribbon, all along the curve (since Tp,q is a closed curve, N is an
integer). The quantity T + N = Tw is the total twist number.
The role of N when the framed Tp,q passes through the inflectional state at
λ = λcr is made clear by comparing the right-hand side of eq. (1.65) to eq. (1.62).
Since Lk is a topological invariant of the framed Tp,q, it remains unchanged when
Tp,q goes through the inflectional configuration. This, however, produces a jump
in SL, given by bSLc = ±q, that must be compensate by an equal and opposite
jump in N , given by bN c = ∓q, according to

Lk − SL = N . (1.66)

Hence, we can state the following:

Corollary 1.14. For any Tp,q parametrized by eqs. (1.2) and endowed with a
framing, the jump in the intrinsic twist, given when Tp,q goes through the inflec-
tional configuration at λ = λcr, is equal to bN c = ∓q, where q is the number of
poloidal wraps.

This result justifies the conjecture made by Moffatt & Ricca ([39], p. 426), as
regards the transition of a torus unknot through an inflectional state given by a
critical aspect ratio.

Let us show that the normal and binormal framing are two natural choices for
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which N = 0. For this purpose, let us generally consider a framed closed curve
C. Let s be the arc-length of C and (t,n,b) its Frenet frame, satisfying the Frenet
equations (prime denotes derivative with respect to s)

t′ = cn
n′ = −ct + τb ,
b′ = −τn

(1.67)

and let N = N(s) = n cos Θ + b sin Θ be the framing unit vector field, with
Θ = Θ(s) ∈ [0, 2π). By choosing Θ(s) at each point of the base curve, we have a
unique choice of framing. Following [19, 39], the total twist number is given by

Tw =
1

2π

∫
C

(N×N′) · t ds . (1.68)

Let us suppose N = n (that is, Θ = 0). By the Frenet equations (1.67) we obtain
N′ = −ct + τb. Hence, N×N′ = τt + cb and (N×N′) · t = τ . Thus,

Tw =
1

2π

∫
C
τ ds = T . (1.69)

Let us suppose N = b (that is, Θ = π/2). By the Frenet equations (1.67) we
obtain N′ = −τn. Hence, N ×N′ = τt and (N ×N′) · t = τ . Thus, the total
twist number is reduced to normalized total torsion only, as in eq. (1.69).
In general, if Θ = const, then N = 0 and Lk = SL. In order to have non zero
intrinsic twist, Θ needs to be a non trivial function of s.





Chapter 2

The Biot-Savart integral:
winding number effects,
helicity and energy

In this chapter we present new numerical results on the Biot-Savart induction
effects of a steady field in the shape of a torus knot/unknot. Field patterns of
the induced field represented on cross-sectional planes are shown in Section 2.4,
where their dependence on knot complexity is analysed. The influence of winding
number on the induction is investigated in Section 2.5, where we show that the
intensity of the induced field at the origin of the reference system is linearly
dependent on the number of toroidal coils and dominated by length contribution.
In Section 2.6 we discuss the presence of maxima in the mean intensity of the
induced field (analysed over families of knots/unknots) for induction points inside
the mathematical torus, near to the boundary. Three different approaches to
calculate helicity are compared in Section 2.7, where we show that helicity of
toroidal knots/unknots is dominated by writhe contribution. In Section 2.8 we
find estimates for the magnetic energy of magnetic torus knot/unknot and an
analytic lower bound, in terms of helicity and a quantity that depends only on
the geometry of the torus knot/unknot.

2.1 The Biot-Savart induction law

Given a steady vector field j = j(x), x ∈ R3, defined over a volume V = V (x)
in a domain D ⊆ R3, we want to find a vector field B such that

∇×B = j , ∇ ·B = 0 . (2.1)

We shall call j the source field and B the induced field. To do this we must
invert the curl operator of eq. (2.1) and express B in terms of j. Let us suppose
satisfied the list of sufficient conditions for which the inversion is possible [54] and
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B uniquely determined.
The solenoidal condition on B implies that there exists a vector field A = A(x),
called vector potential of B, such that

B = ∇×A , ∇ ·A = 0 , (2.2)

where the second equation is a choice of gauge. Thus, from eq. (2.1) and (2.2) we
have

j = ∇× (∇×A) = ∇(∇ ·A)−∇ · (∇A) = −∇2A . (2.3)

Equation (2.3) is the Poisson equation for j and has a well-known solution (see,
for example, [54]) given by

A(x) = − 1

4π

∫
V (x∗)

j(x∗)

|x− x∗|
dx∗ . (2.4)

By taking the curl of eq. (2.4), we have

B(x) =
1

4π

∫
V (x∗)

j(x∗)× (x− x∗)

|x− x∗|3
dx∗ . (2.5)

For brevity, let us call the right-hand side of eq. (2.5) BS(j)(x). Equation (2.5)
is the inverse of the curl operator and gives the law of induction for the field B
by the source field j. Note that BS is a three-component vector with integrand
singular when the induction point x reaches the source point x∗.
In ideal MHD theory (electrically neutral, incompressible medium, with zero re-
sistivity) B is the magnetic field induced by a given electric current distribution
j. The first of eqs. (2.1) is the Ampère’s law (where the magnetic permeability
µ = 1). In ideal, classical fluid mechanics (incompressible, inviscid fluid), given a
non-zero vorticity field ω, by the analogy ω ↔ j, the rotational velocity field u
induced by ω is simply obtained by replacing B with u. Equations (2.1) become
ω = ∇× u and ∇ · u = 0, and we obtain u = BS(ω). Likewise, by the analogy
ω ↔ B, the vector potential A associated with the magnetic field B is simply
given by A = BS(B).

2.2 Reduction to a line integral

Let us suppose that the source field j is confined to a thin tube of circular,
infinitesimal cross-section S and centreline C. Let us suppose that j is uniform
over S and directed along the unit tangent t to C. The flux of j through S is
given by

Φ =

∫
S

j · t dA . (2.6)
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Since S is very small, we identify the thin tube with its centreline. Under these
assumptions the Biot-Savart integral of eq. (2.5) can be reduced to the line integral
along C, given by

B(x) =
Φ

4π

∫
C(x∗)

t(x∗)× (x− x∗)

|x− x∗|3
dx∗ . (2.7)

2.3 Source field in the shape of a torus knot/unknot

Now, let us take C = Tp,q, where Tp,q is the torus knot/unknot parametrized
by eqs. (1.2). Let us denote by xk a point on Tp,q and by xo the induction point.
The Biot-Savart line integral takes the form

B(xo) =
Φ

4π

∫ 2πp

0

t(α)× (xo − xk(α))

|xo − xk(α)|3
|ẋk(α)|dα , (2.8)

where t = ẋk/|ẋk| is the unit tangent vector to Tp,q, ẋk denotes derivative with
respect to α; note that xk, ẋk and t depend on R, λ and w. The integrand is
singular when xo ∈ Tp,q. For simplicity, let us set Φ/4π = 1.

2.4 Field lines patterns of the induced field

By performing numerical integration of eq. (2.8), we obtain visualizations of
the field lines patterns of the induced field B due to the source field j on Tp,q in
different cross-sectional planes. The visualizations are obtained by the following
steps:

• we numerically solve each of the three components of the right-hand side of
eq. (2.8) for a given Tp,q, thus obtaining the vector field B = B(xo);

• we project B onto a given cross-sectional plane;

• we compute the field lines of the projection of B on the cross-sectional plane.

2.4.1 Numerical computation and visualization

The numerical computation of the field lines has been performed by using
Mathematica [65]. In particular, the B-field lines are visualized by the routine
StreamPlot, which takes as arguments a vector field v = (vx(x, y), vy(x, y)) in
R2 and intervals for x and y, and returns the plot of the v-field lines, drawn as
the envelope of the vectors obtained by appropriate evaluations of v at points
(x, y) ∈ R2 within the given intervals.
The routine plots the B-field lines straightforwardly onto the cross-sectional planes
(x, z) and (y, z). Indeed, let B = (Bx, By, Bz) and consider, for example, the plot
onto the (y, z)-plane. The projection of B onto this plane is given by P (B) =
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(0, By, Bz), hence we can set v = (By, Bz), to be evaluated at points (0, y, z) in the
(y, z)-plane, for given intervals of y and z. Plots in other cross-sectional planes are
not straightforward, since P (B) on other planes has three non zero components.
In this case a standard rendering procedure is needed. Let us denote by

R(φ) =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 (2.9)

the matrix performing a counter-clockwise rotation of angle φ about the z-axis,
and by θ the angle by which a cross-sectional plane is rotated with respect to the
(x, z)-plane. Let us consider, as example, the plot on the cross-sectional plane at
θ = π/6:

1. We rotate a point in the (y, z)-plane by φ = θ − π/2, so that it lies on the
cross-sectional plane at θ = π/6, obtaining the new point

xθ =

(√
3

2
y,

1

2
y, z

)
. (2.10)

2. We project B onto the plane at θ = π/6, with orthonormal basis vectors
w1 = (

√
3/2, 1/2, 0) and w2 = (0, 0, 1), obtaining

P (B) = (B ·w1) w1 + (B ·w2) w2

=

(
3

4
Bx +

√
3

4
By,

√
3

4
Bx +

1

4
By, Bz

)
,

(2.11)

where B ·wi denotes the standard scalar product.

3. We rotate P (B) by π/2− θ, so that it lies on the (y, z)-plane, obtaining the
new vector

Bθ =

(
0,

√
3

2
Bx +

1

2
By, Bz

)
. (2.12)

4. The arguments for StreamPlot are thus given by

v =

(√
3

2
Bx(xθ) +

1

2
By(xθ), Bz(xθ)

)
, (2.13)

with appropriate intervals of variation for y and z.
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2.4.2 Numerical results

In Figure 2.1 we show the B-field lines on the cross-sectional plane at θ = π/6
for several torus knots/unknots (R = 1 and λ = 0.75). The geometric reference
system (cross-sectional axes and torus) and the cross-section of Tp,q (2p points)
are shown in yellow and red, respectively. For induction points at a distance of
O(λ) or greater, the field lines configuration resembles that of the field induced by
a circular electric wire (electric dipole). Thus, from a distance of O(λ) or greater
there is no possibility to detect the geometric and topological complexity of the
source field by means of information from the induced field.
Let us consider the field lines patterns in a neighbourhood of the source field.
When p is small the B-field lines configuration is analogous to that of the field
induced by a system of 2p (parallel and anti-parallel) straight lines orthogonal
to the cross-sectional plane (Figure 2.1a–e). In this case the local contribution of
the source field to the cross-sectional components of B is dominant with respect
to the global contribution. Conversely, when p is large the global contribution of
the source field dominates: the B-field line are like those of the field induced by a
toroidal hollow ring and the poloidal component of B is dominant (Figure 2.1f).
The poloidal wraps q do not give an evident contribution to the components
of B in the cross-sectional plane (compare Figure 2.1c with e and Figure 2.1b
with d). This is due to the fact that a dominant poloidal source field induces
a dominant toroidal field and the toroidal component of B is stronger in the
direction orthogonal to the cross-sectional plane.

In Figure 2.2 we show visualizations of the B-field lines for the torus knot T2,3
(R = 1 and λ = 0.75) in several cross-sectional planes. The field-lines pattern
not only translates along the torus central axis as we move along this axis, but
also turns about this axis. The morphism relating the field lines on two different
cross-sectional planes is not simply a rotation, but is also function of the reciprocal
positions of the cross-sectional points of Tp,q. When p is larger, field lines on
different cross-sections show the same pattern. Indeed, the larger is the number
of toroidal wraps, the more the source field tends to a configuration with circular
symmetry in cross-section.

2.5 Influence of winding number

In Figure 2.3 we show the norm (intensity) |B| of the induced field against
the winding number w of several torus knots/unknots (R = 1 and λ = 0.75)
at the induction point xo = (xo, 0, 0) for different positions on the x-axis. Let
xo be at the origin of the reference system; for a toroidal source field |B| grows
with the number of toroidal wraps, whereas for a poloidal source field it is almost
constant (Figure 2.3a). When xo is moved away from this symmetric position, for
unknots Tp,1 |B| shows a different behaviour depending on the parity of p and the
interpolation curve splits into two different branches (Figure 2.3b and c). This is
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: B-field lines on the cross-sectional plane at θ = π/6 for several torus
knots/unknots (R = 1 and λ = 0.75). The geometric reference system and the
cross-section of Tp,q are shown in yellow and red colours, respectively.
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Figure 2.2: B-field lines for T2,3 (R = 1 and λ = 0.75) on several cross-sectional
planes. The geometric reference system and the cross-section of Tp,q are shown in
yellow and red, respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.3: Intensity |B| of the induced field against winding number w. Torus
knots/unknots with R = 1 and λ = 0.75. Tp,1 and T1,q (p, q = {2, 3, 4, 5, 6, 7, 8});
Tp,2 and T2,q (p, q = {3, 5, 7, 9, 11, 13, 15}). Induction points xo = (xo, 0, 0) at
different positions on the x-axis. Interpolation is for visualization purposes only.
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essentially due to the different local geometry of Tp,1 in a neighbourhood of xo.
As xo is in the region occupied by the mathematical torus (next to its boundary),
also |B| of a poloidal source field grows with the number of poloidal wraps and can
reach very high values (Figure 2.3c). In general, if the source field is toroidal, the
induced field is weaker inside the torus than on the outside, whereas if the source
field is poloidal, the induced field is weaker outside the torus. The more xo moves
away along on the x-axis, the lower |B| becomes. For xo in a neighbourhood
of the centre of the torus, |B| for toroidal and poloidal source fields is of the
same order (Figure 2.3d and e). As xo approaches the torus boundary from the
interior, |B| suddenly increases (Figure 2.3f) and then gradually decreases as xo is

(a) (b)

Figure 2.4: Intensity |B| for unknots Tp,1 and T1,q (p, q = {2, 3, 4, 5, 6, 7, 8}, left),
and knots Tp,2 and T2,q (p, q = {3, 5, 7, 9, 11, 13, 15}, right); R = 1 and λ = 0.75.
Knots/unknots are equally spaced on the x-axis. Induction point at the origin of
the reference system. Interpolation is for visualization purposes only.

Figure 2.5: Intensity per unit length |B| against winding number w for several
torus knots/unknots with w < 1 and w > 1 (R = 1 and λ = 0.75). Induction point
at the origin of the reference system. Interpolation is for visualization purposes
only.
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in the exterior of the torus (Figure 2.3g), with |B| → 0 as xo →∞ (Figure 2.3h).
Note that the induction of a poloidal source field has very different behaviours for
different xo.

Diagrams in Figure 2.4 show |B| at the origin of the reference system for
several torus knots/unknots (R = 1 and λ = 0.75) equally spaced on the x-axis.
For knots/unknots with w < 1, |B| at the origin is proportional to total length
(see Figure 1.8) and linear in p. In the limit p → ∞ (q fixed), B develops a
strong poloidal component, and hence |B| → ∞. When w > 1, since poloidal
wraps on opposite sides of the torus have opposite source field orientation, their
induction effects at the origin cancel out: by comparing the plots of T1,q and T2,q
(Figure 2.4a and b), we see that the contribution from poloidal wraps is absent
as the intensity of the induced field for unknots with 1 toroidal coil is half of that
due to knots with 2 toroidal coils. Let us consider the intensity per unit length,
given by

|B|(Tp,q) = 2πR · |B|(Tp,q)
L(Tp,q)

, (2.14)

where |B|(Tp,q) and L(Tp,q) denote the intensity of the field induced by Tp,q and

the total length of Tp,q, respectively. Figure 2.5 shows |B| at the origin for sev-
eral knots/unknots. This study can find applications to the problem of plasma
confinement in experimental devices with toroidal geometry like tokamaks and
stellarators [31, 26, 24].

2.6 Plots of mean B intensity

Let us consider the values of |B| for some unknots Tp,1, for a given position
xo of the induction point on the x-axis. Let us denote by |B|m the arithmetic
mean of these values over the unknots considered. Diagrams in Figure 2.6 show
|B|m for several positions xo of the induction point, where the mean is taken over
7 unknots within the classes Tp,1 and T1,q, respectively, and 7 knots within the
classes Tp,2 and T2,q, respectively. The yellow region shows the positions where xo
is inside the mathematical torus. The presence of two maxima of |B|m at xo = 0.3
and xo = 1.7 (inside the torus, next to its boundary) is a general feature of all
the classes Ti,q (i fixed) (Figure 2.6b and d). For classes Tp,i (i fixed), |B|m has
generically a maximum at xo = 1.7, but it has a different behaviour for xo ∈ [0, 0.3]
depending on the parity of i (Figure 2.6a and c). This seems to be due to the
dominant contribution of the local geometry of Tp,i in a neighbourhood of xo.
This study can find applications to magnetic confinement of plasma, where the
problem of the maintenance of the magnetic field’s intensity within a safety range
is crucial, and where the shaping of the device and the magnetic geometry are
central for the control and optimization of plasma fusion [8, 67, 11].
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(a) (b)

(c) (d)

Figure 2.6: Mean intensity |B|m against position xo of the induction point on the
x-axis. The mean is taken over (a) Tp,1 and (b) T1,q (p, q = {2, 3, 4, 5, 6, 7, 8}), (c)
Tp,2 and (d) T2,q (p, q = {3, 5, 7, 9, 11, 13, 15}); R = 1 and λ = 0.75. Yellow region
for positions xo inside the mathematical torus. Interpolation is for visualization
purposes only.

2.7 Helicity

Helicity has a peculiar role in fluid dynamics (including MHD) since it is an
invariant of the Euler and ideal MHD equations and a robust quantity of non-
ideal flows; it admits a topological interpretation in terms of linking numbers
associated with magnetic/vortex lines in ideal fluids. Its conservation was proved
by Woltjer [66] in the context of ideal MHD (magnetic helicity). Its topological
characterization in terms of Gauss linking number was first established by Moffatt
[36] in the context of vortex dynamics (kinetic helicity) for a collection of thin
unknotted vortex filaments and then extended by Berger & Field [10], Moffatt
& Ricca [39] to a general collection of knotted magnetic flux tubes. A recent
breakthrough by Liu & Ricca [28] provides a relationship between helicity and
another isotopy invariant, the HOMFLYPT polynomial, stronger than the Gauss
linking number in detecting topological properties of fluid knots.
If B = B(x) is a magnetic vector field over a volume V = V (x) and conditions [54]
are satisfied, being A = A(x) the vector potential of B, subject to the Coulomb
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gauge, then magnetic helicity is given by

H =

∫
V (x)

A ·B dx . (2.15)

Note that A = BS(B). By the analogy ω ↔ B, kinetic helicity is simply obtained
by replacing A · B with u · ω, where ω is the vorticity field defined over V and
u = BS(ω) is the rotational velocity field, with ∇ ·u = 0. By the analogy ω ↔ j,
by replacing u ·ω with B · j, we obtain the helicity of the electric current j (where
B = BS(j) is the induced magnetic field), a useful quantity for understanding
physics of solar processes, but not an invariant of the MHD equations [55, 44].

If B is confined to a single thin flux tube T centred on Tp,q, with flux Φ and
satisfying the assumptions of section 2.2, then eq. (2.15) becomes

H =

∫
T (x)
BS(B) ·B dx , (2.16)

and H is related to the Călugăreanu self-linking number Lk (eqs. (1.64) and
(1.65)), according to [39]

H = Φ2Lk . (2.17)

In order to have a non-dimensional quantity, we shall consider

H =
H

Φ2
. (2.18)

Since we have supposed B directed along the tangent of Tp,q, the intrinsic twist N
(given by the number of full rotations of the field lines of T around its centreline
Tp,q) is zero and no contribution comes from the distribution of the field lines of
T . Hence, by eq. (1.65) we have Lk = SL and, in particular,

H = SL , (2.19)

where SL is the Pohl self-linking number of Tp,q (see eq. (1.61)).
We have three different approaches to calculate H. For ease of presentation,

let us consider |H|, the negative values being due to the handedness associated
with the parametrization of Tp,q chosen, and let us take λ = 0.5.

1. By eq. (2.19) and Corollary 1.13, we have the analytical result:

|H| =

{
q(p− 1) if w < 1

pq if w > 1
. (2.20)

2. By eqs. (2.19) and (1.61) we compute the quantity |Hg| = |Wr + T | as the
sum of the numerical data on the writhing number Wr and the normalized
total torsion T of Tp,q (see sections 1.10 and 1.8).
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(a) (b)

Figure 2.7: Torus knot T2,3 (red) for R = 1, λ = 0.5 and curves (a) T n
2,3 and (b)

T b
2,3 (blue) for ε = 0.3.

3. We evaluate the integral in the right-hand side of eq. (2.16). Since this
integral is singular, due to the singularity of the Biot-Savart operator BS
when evaluated on T , we de-singularize it by the following easy technique.
Let us consider the second curve T n

p,q = T n
p,q(ε) = Tp,q + εn, where Tp,q is

parametrized by eqs. (1.2), n is its unit normal vector and ε is a small real
number (see Figure 2.7a). We write the Biot-Savart integral (eq. (2.8)) by
identifying T with T n

p,q instead of Tp,q, and the helicity integral (eqs. (2.16))
by identifying T with Tp,q. Thus, we have

H
n

=
1

4π

∫ 2πp

0
ẋ(α) ·

(∫ 2πp

0
ẋn(α∗)× x(α)− xn(α∗)

|x(α)− xn(α∗)|3
dα∗

)
dα

=
1

4π

∫ 2πp

0

∫ 2πp

0

(ẋ(α)× ẋn(α∗)) · (x(α)− xn(α∗))

|x(α)− xn(α∗)|3
dαdα∗ ,

(2.21)

where H
n

= H
n
(ε), x(α) and xn(α∗) are points on Tp,q and T n

p,q, respec-
tively, ẋ (resp. ẋn) denotes derivative with respect to α (resp. α∗) and a
standard vector equality is used to obtain the second line from the first.
When ε → 0, T n

p,q → Tp,q and H
n → H. Indeed, this technique is the

direct application of Călugăreanu’s definition of Lk as the limit for ε → 0
of the Gauss linking number between Tp,q and T n

p,q (see eq. (1.64)), and
of the Călugăreanu-White-Fuller theorem (see eq. (1.65)) realizing Lk as
Lk = SL + N . Note that the contribution given by the rotation of T n

p,q

around Tp,q is zero, coherently with the assumption N = 0 (see section 1.13
for a proof that the normal framing gives N = 0). We then numerically
evaluate |Hn| for ε = 0.1.
Since the binormal framing gives N = 0 as well, we can also consider the
curve T b

p,q = T b
p,q(ε) = Tp,q + εb, where b the unit binormal vector of Tp,q
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(see Figure 2.7b) and, by applying the same technique, we obtain

H
b

=
1

4π

∫ 2πp

0

∫ 2πp

0

(
ẋ(α)× ẋb(α∗)

)
·
(
x(α)− xb(α∗)

)
|x(α)− xb(α∗)|3

dαdα∗ , (2.22)

where H
b

= H
b
(ε), xb(α∗) is a point on T b

p,q, ẋb denotes derivative with

respect to α∗, and when ε → 0, H
b → H. We numerically evaluate |Hb|

for ε = 0.1.
More generally, any choice of the type Tp,q + εN, where N is a linear combi-
nation of n and b with constant coefficient all along Tp,q, gives N = 0 and
can be used to calculate |H| by applying the technique described. However
note that these curves have different lengths: in general, T n

p,q is obtained

through a shrinking deformation of Tp,q, whereas T b
p,q through an expansion.

In Figure 2.8 we compare the methods in 2. and 3. with the theoretical result
eq. (2.20), by showing the log-plot of ∆g = |H − H

g| (blue), ∆n = |H − H
n|

(red) and ∆b = |H − Hb| (black) for torus knots (a) Tp,2 and (b) T2,q (p, q =
{3, 5, 7, 9, 11, 13, 15}, R = 1 and λ = 0.5). All three methods give very satisfactory
results and generally the error is smaller than 2% of the expected value for all
knots/unknots tested. Results are particularly good for knots/unknots of low

complexity. Still, note that H
n

and H
b

depends on the choice of ε. By taking

ε < O(10−1), the features ofH
n

andH
b

are qualitatively preserved, but numerical
values can be quite different from the expected ones, certainly due to the numerical
error in evaluating the Biot-Savart integral over a curve very close to Tp,q. For
this approach, hence, a careful balance between an ε too small, which may cause
numerical error, and too large, which may produce an unlinking of the two curves,
is needed.

(a) (b)

Figure 2.8: Log-plot of ∆g = |H −Hg| (blue), ∆n = |H −Hn| (red) and ∆b =

|H −Hb| (black) for torus knots (a) Tp,2 and (b) T2,q (p, q = {3, 5, 7, 9, 11, 13, 15},
R = 1 and λ = 0.5); ε = 0.1. Knots are equally spaced on the x-axis.
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(a) (b)

(c) (d)

Figure 2.9: (a) non-dimensional helicity |H|, (b) writhing number |Wr| and
(c)–(d) normalized total torsion |T | (absolute values) against winding num-
ber w of several torus knots/unknots (R = 1 and λ = 0.5; Tp,1 and T1,q,
p, q = {2, 3, 4, 5, 6, 7, 8}; Tp,2 and T2,q, p, q = {3, 5, 7, 9, 11, 13, 15}; Tp,3 and T3,q,
p, q = {4, 5, 7, 8, 10, 11, 13}; Tp,4 and T4,q, p, q = {5, 7, 9, 11, 13, 15, 17}). Interpola-
tion is for visualization purposes only.

Figure 2.10: Log-plot of ∆Wr = (|H| − |Wr|)/|H| for the torus knots/unknots
Tp,1–Tp,4 and T1,q–T4,q as in Figure 2.9. Knots/unknots are equally spaced on the
x-axis. Interpolation lines are only for visualization purposes.
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Figure 2.9a shows |H| against w for several torus knots/unknots. Quali-
tative features of |H| are fully captured by the writhing number |Wr| (con-
front Figure 2.9b). For toroidal knots/unknots the contribution from |T | is
negligible (Figure 2.9c) and |H| is well approximated by |Wr|: indeed the er-
ror ∆Wr = (|H| − |Wr|)/|H| is generally far smaller then 9%. Conversely, the
mean error over the poloidal knots/unknots considered is 25%. See Figure 2.10 for
the log-plot of ∆Wr for the knots/unknots Tp,1–Tp,4 and T1,q–T4,q as in Figure 2.9
(knots/unknots are equally spaced on the x-axis).

2.8 Magnetic energy

Let B = B(x) be a magnetic vector field confined to a domain D ⊆ R3 of
volume V = V (x) in a perfectly conducting, incompressible fluid, and such that
B · ν = 0 on ∂D (where ν is the unit normal to ∂D). The magnetic energy is
given by

M =
1

2

∫
V (x)

B2 dx , (2.23)

and a lower bound for M is given by [7, 37, 38]

M ≥ v |H| , (2.24)

where H is the magnetic helicity (eq. 2.15) and v depends on the geometry of D.
For example, if D is given by a collection of linked thin magnetic flux tube such
that each component of the link has Călugăreanu self-linking number Lk = 0,
then we have [49]

v =

(
2

π

)1/3 1

V 1/3
. (2.25)

If B is confined to a single thin flux tube centred on Tp,q (parametrized
by eqs. (1.2)), with flux Φ and satisfying the assumptions of section 2.20, then
eq. (2.23) becomes

M =
Φ2

2

∫ 2πp

0
|ẋ(α)|dα =

Φ2

2
L , (2.26)

where L is the total length of Tp,q (eq. (1.37)). In order to have a non-dimensional
quantity, we consider

M =
M

2πRΦ2
. (2.27)

By Theorem (1.10) and by eqs. (2.26) and (2.27), we have

Theorem 2.1. Let M be the non-dimensional magnetic energy of a Tp,q parametrized
by eqs. (1.2). Then

M ≈


λq

2
if q � p (p given) ;

(1 + λ)p

2
if p� q (q given) .

(2.28)
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Figure 2.11: Non-dimensional magnetic energy M against winding number w
for several torus knots/unknots (R = 1 and λ = 0.5; Tp,1 and T1,q, p, q =
{2, 3, 4, 5, 6, 7, 8}; Tp,2 and T2,q, p, q = {3, 5, 7, 9, 11, 13, 15}; Tp,3 and T3,q, p, q =
{4, 5, 7, 8, 10, 11, 13}; Tp,4 and T4,q, p, q = {5, 7, 9, 11, 13, 15, 17}). Interpolation is
for visualization purposes only.

Moreover, by the bounds on L (eq. (1.48)) and by eqs. (2.26) and (2.27), we have

p

2

√
(1− λ)2 + λ2w2 ≤M ≤ p

2

√
(1 + λ)2 + λ2w2 , (2.29)

and can prove the following result:

Theorem 2.2. Let M be the non-dimensional magnetic energy of a magnetic
Tp,q parametrized by eqs. (1.2), with non-dimensional helicity H, in a perfectly
conducting, incompressible fluid under steady conditions. Then we have

M ≥ v |H| , with v =
1

2

√
(1− λ)2

q2
+
λ2

p2
. (2.30)

Proof. By eqs. (1.62) and (2.19), if λ > λcr we have |H| = pq. Thus, by the
left-hand side of eq. (2.29) we obtain

M ≥ p

2

√
(1− λ)2 + λ2w2 =

1

2

√
(1− λ)2

q2
+
λ2

p2
|H| . (2.31)

Conversely, if λ < λcr we have |H| = q(p − 1), and by the left-hand side of
eq. (2.29) we obtain

M ≥ p

2

√
(1− λ)2 + λ2w2

≥ p− 1

2

√
(1− λ)2 + λ2w2 =

1

2

√
(1− λ)2

q2
+
λ2

p2
|H| .

(2.32)
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Figure 2.11 shows M against w for several torus knots/unknots (R = 1 and
λ = 0.5). Comparison between Figure 2.9 and 2.11 shows that |Wr| capture
some qualitative features of M ; in particular, for Tp,2 and T2,q |Wr| and M
have the same functional behaviour. In Figure 2.12 we show the log-plot of
∆lb = (M − lb)/M , where lb denotes the lower bound for M given by eq. (2.30).
When w > 1 and the knots/unknots complexity is high, lb becomes actually a
good approximation to M . When w < 1, ∆lb is on average 56% of M for the
knots/unknots considered.

Figure 2.12: Log-plot of ∆lb = (M − lb)/M for the torus knots/unknots Tp,1–Tp,4
and T1,q–T4,q as in Figure 2.11. Knots/unknots are equally spaced on the x-axis.
Interpolation is for visualization purposes only.



Chapter 3

The Biot-Savart integral:
local and global contributions

In this chapter we compare the winding number effects on the local and global
contributions of the Biot-Savart induction, by providing asymptotic expansions
of the integrand function. For this purpose, we introduce the pseudo-toroidal
reference system, by proving that it is orthonormal and by writing the toroidal,
poloidal and radial components of the integrand for a given location of the in-
duction point. By comparing the asymptotic expansion of these components with
their global contributions, obtained by numerical integration, we show that lead-
ing order local terms do not generally provide sufficient information to capture
global induction effects. Nevertheless, we show that for some orders of magnitude
of the winding number local and global behaviours are in good agreement.

3.1 Pseudo-toroidal reference system

Let us consider the pseudo-toroidal coordinates (α, β, r), related to the carte-
sian coordinates by

x = x(α, β, r) =


x = (R+ r cosβ) cosα
y = (R+ r cosβ) sinα
z = r sinβ

, (3.1)

where α, β ∈ [0, 2π) are toroidal and poloidal angles, R, r > 0 are the toroidal and
poloidal radii of the torus; we set R = 1 and we take r < R for the coordinate
system to be well-defined. By this coordinate system, we can describe every point
x in the interior of the degenerate torus with r = R, except for its centreline. If
we allow r ≥ R, the coordinate system is not monodromic. However, if we fix α
and β, then we can take 0 < r <∞ and monodromy is satisfied.
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Figure 3.1: Pseudo-toroidal basis {êαo , êβo , êro} at the point xo(αo, βo, ro).

By differentiating eqs. (3.1), we obtain

dx =


dx = −(R+ r cosβ) sinα dα− r cosα sinβ dβ + cosα cosβ dr
dy = (R+ r cosβ) cosα dα− r sinα sinβ dβ + sinα cosβ dr
dz = r cosβ dβ + sinβ dr

. (3.2)

Hence, by denoting {ê1, ê2, ê3} the canonical cartesian basis in R3, we have

dx = dα [−(R+ r cosβ) sinα ê1 + (R+ r cosβ) cosα ê2]
+ dβ [−r cosα sinβ ê1 − r sinα sinβ ê2 + r cosβ ê3]
+ dr [cosα cosβ ê1 + sinα cosβ ê2 + sinβ ê3]

= dα eα + dβ eβ + dr er ,

(3.3)

where

eα=

−(R+ r cosβ) sinα
(R+ r cosβ) cosα

0

 , eβ =

−r cosα sinβ
−r sinα sinβ

r cosβ

 , er=

cosα cosβ
sinα cosβ

sinβ

 (3.4)

are the basis vector of the pseudo-toroidal reference system. Note that these
vectors are function of the coordinates (α, β, r) of the point x. The metric tensor
is given by

gij =

 (R+ r cosβ)2 0 0
0 r2 0
0 0 1

 , i, j = α, β, r . (3.5)

Hence, the system is orthogonal and we have

|eα|=R+ r cosβ, |eβ|=r, |er|=1, (3.6)
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where the first equality holds true because R+r cosβ > 0 for all β. By normalizing
eqs. (3.4), we obtain the orthonormal basis vectors

êα=

− sinα
cosα

0

 , êβ =

− cosα sinβ
− sinα sinβ

cosβ

 , êr =

cosα cosβ
sinα cosβ

sinβ

 . (3.7)

Let us consider a point xo, given by

xo = R

 (1 + λo cosβo) cosαo
(1 + λo cosβo) sinαo

λo sinβo

 , (3.8)

where λo = ro/R, λo ∈ (0, 1). Let us set the orthonormal basis eqs. (3.7) at
the point xo and denote it by {êαo , êβo , êro} (see Figure 3.1). By projecting xo
on {êαo , êβo , êro}, we obtain the toroidal, poloidal and radial components of xo,
given by

xo · êαo =0, xo · êβo =−R sinβo, xo · êro =R(cosβo + λo) . (3.9)

Let us now denote the integrand function of BS (eq. (2.8)) by

dBS(α) =
t(α)× (xo − xk(α))

|xo − xk(α)|3
|ẋk(α)|dα , (3.10)

where we take xo as in eq. (3.9) and λo > λ (note that dBS depends on R, λ,
w, and αo, βo, λo). By projecting dBS on {êαo , êβo , êro}, we obtain the toroidal,
poloidal and radial components of dBS, denoted by

dBSαo = dBS · êαo , dBSβo = dBS · êβo , dBSro = dBS · êro . (3.11)

Notice that, since dBS is singular only when xo ∈ Tp,q, by taking λo > λ we have
no singularity.

3.2 Toroidal, poloidal and radial contributions from
Biot-Savart integration

The toroidal, poloidal and radial components of the induced field B are given
by

Bαo =

∫ 2πp

0
dBSαo , Bβo =

∫ 2πp

0
dBSβo , Bro =

∫ 2πp

0
dBSro . (3.12)

Numerical integration of eqs. (3.12) plotted against the winding number w is
shown in Figures 3.2 and 3.3. When βo = 0, the component Bβo is dominant,
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and as w →∞ (dominant poloidal source field) Bβo tends to an almost constant
value, whereas as w → 0 (dominant toroidal source field) Bβo increases. Indeed, a
poloidal source field induces a toroidal field, mostly confined inside the mathemat-
ical torus, while weak and almost independent of q on the outside. Conversely, a
toroidal source field induces a poloidal Bβo . When βo = π/2, contributions from

(a)

(b)

Figure 3.2: Components Bαo (solid dot), Bβo (cross shape) and Bro (empty
square) of the induced field B against winding number w of knots Tp,2 and T2,q
(R = 1, λ = 0.5, p, q = {3, 5, 7, 9, 11, 13, 15}) for induction points with λo = 1
and (a) αo = 0, βo = 0, (b) αo = 0, βo = π/2. Interpolation is for visualization
purposes only.
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Bβo and Bro are of the same order. When (αo = 0, βo = 0), Bro is zero for every
Tp,q (Figure 3.2a): this is due to the antisymmetric configuration of every Tp,q
with respect to the cross-sectional plane at αo = 0. Results in Figure 3.2a are
in good agreement with the observed higher intensity |B| for dominant toroidal
source fields (see, for example, Figure 2.3h).

(a)

(b)

Figure 3.3: Components Bαo (solid dot), Bβo (cross shape) and Bro (empty
square) of the induced field B against winding number w of knots Tp,2 and T2,q
(R = 1, λ = 0.5, p, q = {3, 5, 7, 9, 11, 13, 15}) for induction points with λo = 1 and
(a) αo = π/2, βo = 0, (b) αo = π/2, βo = π/2. Interpolation is for visualization
purposes only.
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3.3 Asymptotic expansions and local contributions

Let us suppose αo = βo = 0. By eqs. (3.11) we have

dBSαo(α) = Nαo(α) ·D(α) dα ,

dBSβo(α) = Nβo(α) ·D(α) dα ,

dBSro(α) = Nro(α) ·D(α) dα ,

(3.13)

where

D(α) = 2−3/2 R−1

·
{

1 +
λ2

2
+
λ2o
2

+ λo − cosα [1 + λo + λ coswα(1 + λo)] + λ coswα

}−3/2
,

(3.14)

and

Nαo
(α) = −wλ cosα (λ+ coswα)− λ sinα sinwα (1 + λ coswα)

+ wλ coswα (1 + λo) ,
(3.15)

Nβo
(α) = 1− cosα [1 + λo + λ coswα (1 + λo)] + λ coswα (2 + λ coswα)

+ wλ sinα sinwα (1 + λo) ,
(3.16)

Nro(α) = −λ cosα sinwα (1 + λ coswα) + wλ sinα (λ+ coswα) . (3.17)

We shall produce the Taylor series centred at α = 0 of eqs. (3.13). Let us first
calculate the Taylor series of D(α). We have (primes denote derivatives with
respect to α): 

D(0) =
1

R(λo − λ)3
,

D′(0) = 0 ,

D′′(0) = −3(1 + λ+ λo + λλo + w2λλo)

R(λo − λ)5
,

D′′′(0) = 0 .

(3.18)

Thus, we obtain

D(α) =
1

R(λo − λ)3
− 3(1 + λ+ λo + λλo + w2λλo)

2R(λo − λ)5
α2 +O(α4) . (3.19)
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Let us now calculate the Taylor series of Nαo(α), Nβo(α) and Nro(α). We have:



cosα = 1− α2

2
+O(α4) , sinα = α− α3

6
+O(α4) ,

coswα = 1− w2

2
α2 +O(α4) , sinwα = wα− w3

6
α3 +O(α4) ,

cos2 wα = 1− w2α2 +O(α4) , sin2 wα = w2α2 +O(α4) ,

cosα coswα = 1− 1 + w2

2
α2 +O(α4) , sinα sinwα = wα2 +O(α4) ,

cosα sinwα = wα− 3w + w3

6
α3 +O(α4) , sinα coswα = α− 1 + 3w2

6
α3 +O(α4) ,

cosα cos2 wα = 1− 1 + 2w2

2
α2 +O(α4) , cosα sin2 wα = w2α2 +O(α4) ,

cosα coswα sinwα = wα− 3w + 4w3

6
α3 +O(α4) , sinα coswα sinwα = wα2 +O(α4) .

(3.20)

Thus, we obtain

Nαo(α) = wλ (λo − λ)

− wλ (1 + λ) + w3λλo
2

α2 +O(α4) ,
(3.21)

Nβo(α) =
(
λ− λo + λ2 − λλo

)
+

(1 + λ+ λo + λλo) + w2λ (1− 2λ+ 3λo)

2
α2 +O(α4) ,

(3.22)

Nro(α) =
wλ (1 + λ) + w3λ (−1 + 2λ)

3
α3 +O(α4) . (3.23)

By multiplying eq. (3.19) with eqs. (3.21)– (3.23), respectively, we obtain

dBSαo(α) =

[
wλ

R(λo − λ)2
− wA(λ, λo) + w3B(λ, λo)

2R(λo − λ)4
α2 +O(α4)

]
dα , (3.24)

dBSβo(α) =

[
− 1 + λ

R(λo − λ)2
+
C(λ, λo) + w2D(λ, λo)

2R(λo − λ)4
α2 +O(α4)

]
dα , (3.25)

dBSro(α) =

[
wE(λ)− w3F (λ)

3R(λo − λ)3
α3 +O(α4)

]
dα , (3.26)
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where 

A(λ, λo) = λ
(
3 + 2λ+ 4λo − λ2 + 4λλo

)
,

B(λ, λo) = λλo (2λ+ λo) ,

C(λ, λo) =
(
3 + 5λ+ 4λo + 2λ2 + λ2o + 6λλo + λλ2o + 2λ2λo

)
,

D(λ, λo) = λ
(
−λ+ 4λo + 2λ2 + 3λ2o − 2λλo

)
,

E(λ) = λ (1 + λ) ,

F (λ) = λ (1− 2λ) .

(3.27)

Let us first consider eq. (3.24) and discuss case by case w < 1 and w > 1. For
given R, λ and λo such that R = O(1), λo = O(1) and 0 < λ < O(λo), to the
leading order, we have:

1. w < 1 : dBSαo ∼
wλ

R(λo − λ)2
;

2. 1 < w < O(1/α2/3) : dBSαo ∼
wλ

R(λo − λ)2
;

3. 1 < w = O(1/α2/3) : dBSαo ∼
wλ

R(λo − λ)2
− B(λ, λo)

2R(λo − λ)4
;

4. 1 < w = O(1/α) : dBSαo ∼
wλ

R(λo − λ)2
− wB(λ, λo)

2R(λo − λ)4
.

(3.28)

We shall not consider the case when w > O(1/α). Indeed, since the remainder
term in the Taylor expansion contains powers of w, eq. (3.24) will not be a good
approximation of dBSαo for large w. Moreover, for w > O(1/α2/3) terms of
order k ≥ 4 in α (not written in eq. (3.24)) may also be relevant at leading
order. In general, for each order k of α we have a term of type lkw

k+1αk, where
lk = lk(R, λ, λo). Thus, for example, if w = O(1/α), in 4. we have an additional
term lkw for each k ≥ 4. Let us define

L = L(R, λ, λo) =

∞∑
k=0

lk ; (3.29)

we cannot prove that L is finite.
Let us take R = 1, λ = 0.5 and λo = 1, and compare behaviours of dBSαo and
Bαo (see Figure 3.2a, solid dot). We have:

1′. w < 1 : dBSαo ∼ 2w ;

2′. 1 < w < O(1/α2/3) : dBSαo ∼ 2w ;

3′. 1 < w = O(1/α2/3) : dBSαo ∼ 2w − 8 ;

4′. 1 < w = O(1/α) : dBSαo ∼ Lw .

(3.30)

By 1′., we have
dBSαo ∼ 2w → 0 as w → 0 , (3.31)
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thus, behaviours of dBSαo and Bαo (see Figure 3.2a, solid dot) are in good agree-
ment for knots Tp,2. Conversely, for knots T2,q the leading order local terms
generally overestimate the global contribution and non-local contributions need
to be taken into account as well.

Let us now consider eq. (3.25) and discuss the cases w < 1 and w > 1. For
given R, λ and λo such that R = O(1), λo = O(1) and 0 < λ < O(λo), to the
leading order, we have:

5. w < 1 : dBSβo ∼ −
1 + λ

R(λo − λ)2
;

6. 1 < w < O(1/α) : dBSβo ∼ −
1 + λ

R(λo − λ)2
;

7. 1 < w = O(1/α) : dBSβo ∼ −
1 + λ

R(λo − λ)2
+

D(λ, λo)

2R(λo − λ)4
.

(3.32)

We shall not consider the case w > O(1/α), where knot complexity is too high for
eq. (3.25) to be a good approximation of dBSβo . When w = O(1/α) terms of order
k ≥ 4 in α (not written in eq. (3.25)) are relevant to leading order, as well. Indeed,
for each order k of α we have a term of type mkw

kαk, where mk = mk(R, λ, λo).
Thus, in 7. we have an additional term mk for each k ≥ 4. Let us define

M = M(R, λ, λo) =
∞∑
k=0

mk ; (3.33)

we cannot prove that M is finite.
Let us now take R = 1, λ = 0.5 and λo = 1. We have:

5′. w < 1 : dBSβo ∼ −6 ;

6′. 1 < w < O(1/α) : dBSβo ∼ −6 ;

7′. 1 < w = O(1/α) : dBSβo ∼M .

(3.34)

By 5′., behaviours of dBSβo and Bβo (see Figure 3.2a, cross shape) disagree for
w < 1 and higher order local terms together with non-local contributions need to
be considered. Conversely, by 6′. local and global behaviours for 1 < w < O(1/α)
are in agreement.

Finally let us consider eq. (3.26) for given R, λ and λo such that R = O(1),
λo = O(1) and 0 < λ < O(λo). For w < 1 or 1 < w < O(1/α) the leading order
term is of third order in α and its integration over a small interval centred at α = 0
gives zero, in agreement with the values of Bro (see Figure 3.2a, empty square).
If w = O(1/α), the leading order term is given by the sum of the contribution of
each term of type nkw

kαk of the Taylor expansion (where nk = nk(R, λ, λo)), and
we have dBSro ∼ N , where N = N(R, λ, λo) =

∑∞
k=0 nk and we cannot prove

that it is finite. In this case higher order terms are clearly relevant as well, and
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w is too large for eq. (3.26) to be a good approximation of dBSro .
Let us consider eqs. (3.24) and (3.25) truncated at the second order and denote

them, respectively by dBS(2)αo and dBS(2)βo . Let us consider the quantities

Bloc
αo =

∫ π/30

−π/30
dBS(2)αo , Bloc

βo
=

∫ π/30

−π/30
dBS(2)βo . (3.35)

In Figure 3.4 we compare the local and global contributions Bloc
i and Bi (i =

αo, βo) by showing the log-plot of ∆i = |(Bloc
i −Bi)/Bi|. For knots T2,q, Bloc

βo
is on

average 47% of Bβo , whereas for knots Tp,2, it is 24%. Bloc
αo generally overestimate

Bαo for both classes of knots. In particular, ∆αo becomes very large for Tp,2 when
w → 0 because Bαo is two to three orders smaller than Bloc

αo .

Figure 3.4: Log-plot of ∆αo (solid dot) and ∆βo (cross shape) for torus knots Tp,2
and T2,q (R = 1, λ = 0.5 and p, q = {3, 5, 7, 9, 11, 13, 15}) at the induction point
αo = 0, βo = 0, λo = 1. Knots are equally spaced on the x-axis. Interpolation
lines are for visualization purposes only.



Chapter 4

Self-induction effects by
asymptotic analysis

In this chapter we investigate the influence of the winding number on the
self-induction of the Biot-Savart integral at a point asymptotically near to the
source field. Since this study is important for vortex motion in ideal flows, we
analyse the binormal component of the self-induced velocity, responsible for the
vortex motion in the ambient fluid. The logarithmic singularity developing as
the induction point approaches the source point is regularized by applying the
analytical technique of Moore & Saffman (1972). While to leading order the self-
induction is proportional to local curvature, we derive an integral formula for next
terms, including higher-order local terms and non-local terms, and we study its
dependence on the winding number by showing that the dominant contribution
is generally given by non-local effects.

4.1 Asymptotic formula and leading order terms

The analysis of the Biot-Savart self-induction effects has important applica-
tions in the study of vortex dynamics. Here we investigate the winding number
effects on the induction of torus knotted vortex filaments for a point asymptot-
ically near to the source field. For this, we consider a thin vortex filament of
constant, circular cross-section centred on Tp,q (tk unit tangent), with vorticity
ω = ω0tk (ω0 constant) and vortex flux Φ. By identifying the vortex filament
with its centre-line, the self-induced velocity of Tp,q (parametrized by eqs. (1.2))
is given by

u(xo) =
Φ

4π

∫ 2πp

0

tk(α)× (xo − xk(α))

|xo − xk(α)|3
|ẋk(α)|dα , (4.1)

in the limit case when xo → xk ∈ Tp,q. The logarithmic singularity that develops
as xo approaches the source field is the main cause of difficulties in the analy-
sis of eq. (4.1), and several de-singularization techniques have been developed to
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regularize the integral (see, for example, [46] for a comparison of different de-
singularization techniques applied to the case of helical vortex filaments). Here
we shall apply the analytical prescription proposed by Moore & Saffman [40], that
has been proven to give correct results to leading orders [46].

An asymptotic formula of u for a thin vortex filament of general cross-section
and vorticity distribution was derived by Levi-Civita as an application of his re-
sults on asymptotic potential theory (see [27], chapter 4, for a comprehensive
treatment of several results published from 1908 to 1912; see also [48]). Given a
point Q on the vortex centre-line C , with Frenet frame (t,n,b) and local radius
of curvature ρ, the induced velocity at a point xo asymptotically near to Q is
given by (cfr. [27], p. 26, eq. (6))

u(xo) =
Φ

2πδ
q +

Φ

4πρ
kb + G , (4.2)

where δ � 1 is a length parameter that depends on the filament cross-section and
on xo, q is a unit vector orthogonal to t, function only of xo, k is a dimensionless
term that depends on the shape of the filament cross-section at xo and on the
vorticity distribution on it, and G denotes the finite-term contribution due to
non-local effects.
By assuming the cross-section to be circular of radius ε, eq. (4.2) reduces to

u(xo) =
Φ

2πε
q +

Φ

4πρ

[
ln
(ρ
ε

)
+ F

]
b + G , (4.3)

where F depends on the vorticity distribution over the cross-section and on the
local geometry of C . Finally, by assuming the vorticity distribution constant over
the cross-section, F and G become function only of the local and non-local geom-
etry, respectively. Equation (4.3) was then independently re-derived by Batchelor
in 1967 (see [9], p. 510). The first term of eq. (4.3) yields a circulatory motion
about C and gives no contribution to the displacement of the vortex in the fluid;
the second term is the leading order term responsible for the vortex displacement.
By taking the binormal component of the drift velocity v(xo) = u(xo)−Φ/(2πε)q,
that to leading order is responsible for the vortex propagation, we have

vb(xo) = v(xo) · b =
Φ

4πρ
ln
(ρ
ε

)
+ C , (4.4)

where C = Φ/(4πρ)F + G ·b. is a function of the (local and non local) geometry
of C . Following [46], we can apply the Moore & Saffman prescription to eq. (4.1)
to study C = C(w) in the case C = Tp,q.

4.2 Application of Moore & Saffman’s prescription

Let us consider xo ∈ Tp,q of coordinates αo = βo = 0 and λo = λ (see eq. (3.8)),
that is xo = (R(1 + λ), 0, 0). This choice is guided by the particular symmetry
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Figure 4.1: Geometric presentation of the Moore & Saffman’s prescription. To
the contribution due to Tp,q is first subtracted and then added the contribution
of the vortex ring C osculating Tp,q at xo.

of torus knots/unknots: evaluations for xo are valid for any point x′o with α′o =
2kπ/w, k = 0, ..., q − 1, as well; however features of any other x′o are related to
features of xo by general deformations.
We regularize the Biot-Savart integral eq. (4.1) by applying the prescription by
Moore & Saffman. The de-singularization is obtained by subtracting and adding
to eq. (4.1) the contribution of a circular vortex ring C that osculates the original
vortex filament Tp,q at xo, with equal vorticity ω and equal local vortex core
(Figure 4.1): we have

v(xo) =
Φ

4π

[∫
Tp,q

tk × (xo − xk)

|xo − xk|3
dxk −

∫
C

tc × (xo − xc)

|xo − xc|3
dxc

]
+ vc(xo) , (4.5)

where xc and tc denote point and unit tangent vector on C, and, by Kelvin’s
formula (see, for example, [54])

vc(xo) = vcbo =
Φ

4πρo

[
ln
(ρo
ε

)
+ ln 8− 1

4

]
bo , (4.6)

where ρo and bo are the radius of curvature and the unit binormal of Tp,q at xo,
respectively. Note that the circulatory motion term Φ/(2πε)q is the same for Tp,q
and C.

Let us first calculate the parametric equations for the osculating circle. At xo
the Frenet frame of Tp,q is given by

to=
1

A(λ,w)

 0
1 + λ
λw

 , no=

−1
0
0

 , bo=
1

A(λ,w)

 0
−λw
1 + λ

 , (4.7)

where A(λ,w) =
√

(1 + λ)2 + λ2w2, and the local radius of curvature is given by

ρo =
R
[
(1 + λ)2 + λ2w2

]
1 + λ+ λw2

. (4.8)
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The osculating circle has centre

O = xo + ρono =

(
Rλw2

1 + λ+ λw2
, 0, 0

)
, (4.9)

and it is the locus of the points xc = O + ρo (to sin θ − no cos θ), that is

xc(θ) :



x =
R

1 + λ+ λw2

[
λw2 + F 2(λ,w) cos θ

]
y =

R

1 + λ+ λw2
[(1 + λ)A(λ,w) sin θ] , θ ∈ [0, 2π) .

z =
R

1 + λ+ λw2
[λwA(λ,w) sin θ]

(4.10)

Hence, we have |ẋc| = ρo and

tc =
ẋc
|ẋc|

=


sin θ

1 + λ

A(λ,w)
cos θ

λw

A(λ,w)
cos θ

 , (4.11)

from which we find correctly tc(θ = 0) = to.
By eqs. (1.2) and (4.10), eq. (4.5) is now given by

v(xo) =
Φ

4π

[∫ 2πp

0

tk(α)× (xo − xk(α))

|xo − xk(α)|3
|ẋk(α)|dα

]

− Φ

4π

[∫ 2π

0

tc(θ)× (xo − xc(θ))

|xo − xc(θ)|3
|ẋc|dθ

]
+ vc(xo) .

(4.12)

We are interested in the contribution of v along the binormal direction, hence
by eqs. (4.12) and (4.6), and by simply renaming θ as α, we have

vb(xo)=v · bo=
Φ

4π

[∫ 2πp

0
bo ·

tk(α)× (xo − xk(α))

|xo − xk(α)|3
|ẋk(α)|dα

]

− Φ

4π

[∫ 2π

0
bo ·

tc(α)× (xo − xc(α))

|xo − xc(α)|3
|ẋc|dα

]
+vc(xo) .

(4.13)

Let us now set
dBSk :=

bo · tk(α)× (xo − xk(α)) |ẋk(α)|
|xo − xk(α)|3

=
N

D
,

dBSc :=
bo · tc(α)× (xo − xc(α)) |ẋc|

|xo − xc(α)|3
=
N ′

D′
,

(4.14)
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where tk(α) |ẋk(α)| is given by the first of eqs. (1.5). We take Taylor’s expansions
of eqs. (4.14) at α = 0 to compare the local behaviour of dBSk and dBSc near the
osculation point xo. For this, we apply the following technique first to dBSk:

1. We take the Taylor expansions of N and D, given by N = n2α
2 + n4α

4 + ... ,

D = d3α
3 + d5α

5 + ... ,
(4.15)

where ni = ni(R, λ,w) and di = di(R, λ,w).

2. We search for a Taylor expansion of N/D in the form

N/D = ...+
c−3
α3

+
c−2
α2

+
c−1
α

+ c0 + c1α+ c2α
2 + c3α

3 + ... , (4.16)

with ci = ci(R, λ,w) to be found.

3. We write the equation N = (N/D) · D, where N is given by the first of
eqs. (4.15), and (N/D) ·D by the product of the formal expression eq. (4.16)
and the second of eqs. (4.15). By matching the coefficients term by term we
obtain a set of 7 equations in the cis in terms of the known coefficients nis
and dis, finding that the only non-zero cis are c−1, c1 and c3.

4. By recursion, we can prove that ci = 0 for i < −1 and for i ≥ 0, i even.

By applying the same technique to dBSc as well, we obtain
dBSk =

c−1
α

+ c1α+ c3α
3 + ... ,

dBSc =
c′−1
α

+ c′1α+ c′3α
3 + ... ,

(4.17)

with, in particular,

c−1 = c′−1 =
1

2ρo
, (4.18)

thus proving that to leading order dBSk and dBSc have the same singular be-
haviour near xo, and hence that the Moore & Saffman technique indeed regularize
eq. (4.1). Moreover, since the higher order terms are all odd powers of α, the inte-
gration of the expansion of dBSk − dBSc over a neighbourhood of xo (i.e. a small
interval centred at α = 0) gives 0, proving that C is locally a good approximation
for Tp,q (note that dBSk and dBSc have periods 2πp and 2π, respectively).
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4.3 Winding number effects on next terms

We prove the following symmetry properties of dBSc and dBSk in order to
simplify eq. (4.13): {

dBSc(π − α) = dBSc(π + α) ,

dBSk(πp− α) = dBSk(πp+ α) .
(4.19)

Let us prove the first of eqs. (4.19): by eqs. (4.11) and (4.10), and by using the
equalities cos(π − α) = cos(π + α) and sin(π − α) = − sin(π + α), we obtaintxctyc

tzc

(π−α) =

−txctyc
tzc

(π+α),

xxo − xxc−xyc
−xzc

(π−α) =

xxo − xxcxyc
xzc

(π+α), (4.20)

where superscripts denote the x, y, z components of tc, xo and xc. Hence, by
the second of eqs. (4.14) we have N ′(π − α) = N ′(π + α) and D′(π − α) =
D′(π + α). By applying the same method to the first of eqs. (1.5) and to (1.2),
and by using the equalities cos(πp− α) = cos(πp+ α), sin(πp− α) = − sin(πp+
α), cos [w(πp− α)] = cos [w(πp+ α)] and sin [w(πp− α)] = − sin [w(πp+ α)], we
obtain for tk(α) |ẋk(α)| and xo − xk equations similar to (4.20), and the second
of eqs. (4.19) is proven, as well.

By eqs. (4.19), eq. (4.13) now becomes

vb(xo) = 2 · Φ

4π

[∫ πp

0
bo ·

tk(α)× (xo − xk(α))

|xo − xk(α)|3
|ẋk(α)|dα

]
−2 · Φ

4π

[∫ π

0
bo ·

tc(α)× (xo − xc(α))

|xo − xc(α)|3
|ẋc|dα

]
+ vc(xo)

=
Φ

4π
(I1 + I2) + vc(xo) ,

(4.21)

where

I1 = 2

∫ π

0

bo ·
[

tk(α)× (xo − xk(α))

|xo − xk(α)|3
|ẋk(α)| − tc(α)× (xo − xc(α))

|xo − xc(α)|3
|ẋc|
]
dα ,

I2 = 2

∫ πp

π

bo ·
tk(α)× (xo − xk(α))

|xo − xk(α)|3
|ẋk(α)|dα .

(4.22)

By normalizing eqs. (4.21) and (4.6) by the reference velocity Φ/(4πR), we obtain

vb(xo) =
4πR

Φ
vb(xo) = R(I1 + I2) +

R

ρo

[
ln
(ρo
ε

)
+ ln 8− 1

4

]
, (4.23)

and by eq. (4.4) we have that vb takes the form

vb(xo) =
R

ρo
ln
(ρo
ε

)
+ C , (4.24)
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where C = C(4πR/Φ) is thus given by

C = R(I1 + I2) +
R

ρo

(
ln 8− 1

4

)
. (4.25)

Figures 4.2–4.4 show K = R/ρo (ln 8− 1/4) and I1, I2, and C, respectively,
against w for several knots/unknots with R = 1 and three different values of λ. I1
measures he difference between Tp,q and its osculating circle C over [−π, π]. For
toroidal Tp,q I1 ≈ 0, whereas as q increases |I1| increases as well, with a neat rate
for small λ and an oscillatory rate for larger λ. I2 gives the “non-local” effects.
For dominant toroidal Tp,q, contribution from I2 for small λ is one order larger
than λ = 0.5, whereas I2 ≈ 0 (as I1) for larger λ. For T1,q, I2 = 0 by definition
for every λ (see eq. (4.22)). For λ > 0.5, given i1 < i2 it is I2(Ti1,q) < I2(Ti2,q),
however for λ ≤ 0.5 the existence of a critical w for which I2(Ti1,q) > I2(Ti2,q)
seems to be a generic feature due to the effects of different knot geometries.
The dominant contribution to C is generally given by the non-local term I2 for
most of the knots/unknots tested (confront Figures 4.3 and 4.4). For dominant
poloidal Tp,q with small λ, contributions from I1 and K generally cancel out, hence
C ≈ I2, whereas for large λ it is I1 ≈ −K + 1, hence C ≈ I2 + 1. For dominant
toroidal Tp,q, since I1 ≈ 0 and K ≈ 1, it is C ≈ I2 + 1, and for large λ, since
I2 ≈ 0, it is C ≈ 1.

Numerical simulations of the time evolution of torus knotted vortex filaments
in the context of the Euler equations has been performed in [52], where the evo-
lutions under the Biot-Savart law and the localised induction approximation are
compared, and a stabilizing effect of the Biot-Savart law due to global geometric
contributions is discovered. The translational velocity and kinetic energy of vor-
tex torus knots/unknots, calculated by numerical integration of the Biot-Savart
law, are related in [30] to knot complexity, given by the winding number. Here
we have derived for the first time by analytical means an integral formula for
higher-order terms of the binormal component of the self-induced velocity at a
given point, and we have confirmed the importance of global geometric contribu-
tions by showing the dominance of non-local terms. Moreover, since for w > 1
and λ small, C is generally small (Figure 4.4a), the main contribution to the drift
velocity is given by the leading order term (eq. (4.4)), in good agreement with
[30], where small-amplitude vortex torus knots/unknots with w > 1 are found to
move essentially as fast as the reference vortex ring of same size and vorticity.
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(a)

(b)

(c)

(d)

Figure 4.2: (a) K and (b)–(d) I1 against w of several torus knots/unknots with
R = 1 and different λ. Tp,1 and T1,q (p, q = 2, 3, 4, 5, 6, 7, 8); Tp,2 and T2,q (p, q =
3, 5, 7, 9, 11, 13, 15); Tp,3 and T3,q (p, q = 4, 5, 7, 8, 10, 11, 13); Tp,4 and T4,q (p, q =
5, 7, 9, 11, 13, 15, 17). Interpolation is for visualization purposes only.
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(a)

(b)

(c)

Figure 4.3: I2 against w of several torus knots/unknots with R = 1 and different
λ. Tp,1 and T1,q (p, q = 2, 3, 4, 5, 6, 7, 8); Tp,2 and T2,q (p, q = 3, 5, 7, 9, 11, 13, 15);
Tp,3 and T3,q (p, q = 4, 5, 7, 8, 10, 11, 13); Tp,4 and T4,q (p, q = 5, 7, 9, 11, 13, 15, 17).
Interpolation is for visualization purposes only.
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(a)

(b)

(c)

Figure 4.4: C against w of several torus knots/unknots with R = 1 and different
λ. Tp,1 and T1,q (p, q = 2, 3, 4, 5, 6, 7, 8); Tp,2 and T2,q (p, q = 3, 5, 7, 9, 11, 13, 15);
Tp,3 and T3,q (p, q = 4, 5, 7, 8, 10, 11, 13); Tp,4 and T4,q (p, q = 5, 7, 9, 11, 13, 15, 17).
Interpolation is for visualization purposes only.
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