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Momenta of a vortex tangle by structural complexity analysis
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Abstract

A geometric method based on information from structural complexity is presented to calculate linear and angular momenta of a tangle of
vortex filaments in Euler flows. For thin filaments under the so-called localized induction approximation the components of linear momentum
admit interpretation in terms of projected area. By computing the signed areas of the projected graph diagrams associated with the vortex tangle,
we show how to calculate the two momenta of the system by complexity analysis of tangle diagrams. This method represents a novel technique
to extract dynamical information of complex systems from geometric and topological properties and provides a potentially useful tool to test the
accuracy of numerical methods and investigate scale distribution of fluid dynamical properties of vortex flows.
c© 2008 Elsevier B.V. All rights reserved.
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1. Conservation of linear and angular momenta of a vortex
tangle

In this paper we present new mathematical results
concerning a method based on signed area of oriented graphs
developed to evaluate linear and angular momenta of a tangle
of vortex filaments in Euler’s flows. In paying our tribute to
celebrate more than 250 years of work on Euler’s equations,
we are particularly happy to present and discuss here new ideas
that rely not only on such a fruitful setting, but also on another
Euler’s remarkable contribution, rooted in his 1735 solution
of the famous Königsberg’s Bridge Problem [1], namely the
foundation of graph theory and what, arguably, we now call
topology [2]. The idea of using graph theoretical information
to study fluid dynamical properties was originally put forward
by Kelvin in 1867 [3], but it remained little explored. What
we present here benefits from the progress made in recent
years in algebraic topology and geometric fluid mechanics and,

∗ Corresponding address: Department of Mathematics and Applications,
University of Milano-Bicocca, Via Cozzi 53, 20125 Milano, Italy. Fax: +39
02 6448 5705.

E-mail address: renzo.ricca@unimib.it.

we believe, has great potential for further developments and
future applications in visiometric diagnostics of structural flow
complexity [4,5].

For simplicity, let us consider the evolution of a vortex
tangle in an unbounded, ideal fluid at rest at infinity, where
vorticity remains localized on thin filaments of infinitesimal
cross-sections. Such vortex tangles arise naturally in superfluid
turbulence [6], where indeed vorticity remains confined on
very thin filaments for very long time. In this context vortex
evolution may be approximated by the so-called localized
induction approximation, LIA for short [7,8]. The analytical
results presented here are rigorously valid for LIA evolutions,
and can, under mild assumptions, be adapted to evolutions of
vortex filaments governed by the full Biot–Savart law (see the
last section for a brief clarifying comment).

It is well-known that LIA is directly related to the nonlinear
Schrödinger equation, that in one dimension is completely
integrable, preserving an infinity of invariants of motion. It is
remarkable that among such invariants two classical invariants
of the Euler equations survive, namely the linear and angular
momenta [9,10]. Let us consider these invariants for a vortex
tangle. Let T = {

⋃
i Li }i=1,...,N denote a tangle of N vortex

lines Li , each line being a smooth curve in R3, parametrized by
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Fig. 1. The area A of the projected graph resulting from the projection pν of
a vortex line L on the plane Π is proportional to the component of the linear
momentum of L in the ν-direction.

arc-length s. Vorticity ω is defined onLi , and is simply given by
ω = ω̄X′, where, in general, X = X(s, t) denotes the position
vector, ω̄ a constant and t ≡ X′ the unit tangent to Li (the prime
denoting the derivative with respect to s, and t is time). The
linear momentum P = P(T ) corresponds to the hydrodynamic
impulse, which generates the motion of T from rest, and from
its standard definition [11] takes the form

P =
1
2

∫
T

X × ωd3X =
1
2

N∑
i=1

Γi

∫
Li

X × X′ ds, (1)

where P is here intended per unit density, and Γi represents
the circulation of Li . Similarly, for the angular momentum
M = M(T ), that corresponds to the moment of the impulsive
forces acting on T ; we have

M =
1
3

∫
T

X × (X × ω)d3X

=
1
3

N∑
i=1

Γi

∫
Li

X × (X × X′)ds, (2)

where, again, M is intended per unit density. We remark that
under both Euler’s equations and LIA, we have

dP
dt

= 0,
dM
dt

= 0. (3)

2. Interpretation of momenta in terms of projected area

Arms and Hama [8], who first proved the conservation of
the integral on the right-hand side of Eq. (1) for a single vortex
line, showed that this quantity admits interpretation in terms of
projected area (see Fig. 1). Indeed, by direct inspection of the
integrand above, it is evident that under LIA the plane projected
area of the vortex line is proportional to the component of
the linear momentum of the vortex along the direction of
projection.

Let p = pν denote the orthogonal projection onto the plane
Π along the direction ν, and Lν = pν(L) be the graph diagram
of a smooth space curve L under pν . Evidently Lν depends on
ν. For the moment let Lν be a smooth planar curve with no

self-intersections, but in general Lν will be a nodal curve with
self-intersections, the latter resulting from the projection of the
apparent crossings of L, when L is viewed along the line of
sight ν.

By identifying the vortex line with its geometric support L,
the projected graph diagram Lν will be oriented, the orientation
being naturally induced by the vorticity vector. Let Lxy , Lyz ,
Lzx be the three graph diagrams of the projected vortex line
onto the mutually orthogonal planes x = 0, y = 0, z = 0,
and let Axy = A(Lxy), Ayz = A(Lyz), Azx = A(Lzx ) be the
corresponding areas of the plane regions bounded by Lxy , Lyz ,
Lzx , respectively.

By applying the results of Arms and Hama [8], from (1) we
have

Pxy = Γ Axy, Pyz = Γ Ayz, Pzx = Γ Azx , (4)

where Γ is vortex circulation. Moreover:

Definition 2.1. The resultant area Amax is the maximal area
obtained by maxν p(A) = pmax(A) (along the resultant axis
νmax) among all possible projected areas A.

The direction of the resultant axis νmax is clearly that of the
linear momentum. Hence, also from [8], we have

Theorem 2.2 (Maximal Area Interpretation). The resultant
linear momentum of a vortex line L, of circulation Γ , under
LIA is given by P = Γ Amaxνmax, where Amax is the resultant
area. The projected area of L on any plane perpendicular to
that of the resultant area is zero.

Similar results hold true for the angular momentum. With
reference to the right-hand side of Eq. (2), the second integral
can be interpreted in terms of areal moment, according to the
following definition:

Definition 2.3. The areal moment around any axis is the
product of the area A multiplied by the distance d between
that axis and the axis aG , normal to A through the centroid
G of A.

For a vortex line L, the centroid G of the projected area A is
the center weighted with respect to the vorticity distribution of
L. As for the linear momentum, the components of the angular
momentum are determined by the areal moments:

Mxy = Γdz Axy, Myz = Γdx Ayz, Mzx = Γdy Azx , (5)

where evidently dx , dy , dz are the distances between the
rotational axis and the centroid axes through Ayz , Azx , Axy ,
respectively. Similar considerations apply to define the resultant
areal moment of L:

Definition 2.4. The resultant areal moment of L is the areal
moment around the resultant axis aG of the projected areas of
L onto two mutually orthogonal planes, parallel to aG .

These observations are easily extended to a tangle T =⋃
i Li of N vortex lines Li , provided we carefully define the
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Fig. 2. (a) The number in the dashed region is the value of the index IP (C) according to the right-hand rule convention and the algebraic intersection number
calculated by Eq. (6). (b) The oriented nodal curve, resulting, for example, from the standard projection of a figure-8 knot, has 5 bounded regions. Note that one of
the interior regions has index 0, due to the opposite orientation of the strands crossed by ρ. (c) Contribution from each A(R j ) must be weighted according to the
circulations on the boundary ∂R j .

area of the resulting oriented graph diagram. The difficulty here
is precisely in the correct calculation of such area.

3. Signed area of oriented graph diagrams

The oriented graph diagram of a tangle of vortex lines
is an oriented nodal curve (i.e. the “underlying universe”
of the tangle) in R2, and this can easily attain considerable
complexity, particularly as regards the localization of self-
intersections. A necessary first step is to reduce nodal curves of
any complexity to good nodal curves, that have (at most) double
points. Nodal points are classified according to their degree of
multiplicity µ(P) given by the number of arcs incident at the
point of intersection P . If P is a double point, then µ(P) = 2.
If P is a point of multiplicity µ(P) = n (n > 2), we can always
reduce its multiplicity by “shaking” the graph diagram (actually
its pre-image) near P to get m =

1
2 (n2

− n) double points, by
virtual perturbations of the incident arcs from their location.
Thus, if h(n) is the total number of points of multiplicity n, by
applying this shaking technique we can always replace these
h(n) points with h(n) = mh(n) (m ≥ 3) double points. We say
that a graph diagram is a good projection, when it has at most
double points. Hence, by the shaking technique, we can always
reduce highly complex graph diagrams to good nodal curves.

Let C denote one such good nodal curve on Π , and let A(C)

be the corresponding total area. In order to calculate this area,
first we need to define the index IP (C) of C at the point P (for
this see, for example, [12]). Let P 6∈ C, t the tangent to C and ρ

the radiant vector with foot at P , that intersects C transversally.
At each intersection point X ∈ ρ ∩ C assign the algebraic
sign ε(X) = ±1, according to the standard convention given
by the right-hand rule, that is ε(X) = +1 when the frame
{ρ, t} is positive (see Fig. 2(a)). If X is a double point, then
the intersection is computed with one of the neighbouring pairs
of the incident, equi-oriented arcs.

Definition 3.1. The index IP (C) of C at P is the algebraic
intersection number given by

IP (C) =

∑
X∈ρ∩C

ε(X). (6)

Hence, IP (C) ∈ Z.

Let us now consider the Z sub-domains {R j } j=1,...,Z
determined by C ∩ Π and bounded by C, and let A(R j ) > 0
denote their standard area. Since every point P ∈ R j has the
same IP (C), we shall call I j the index associated with any
point P ∈ R j and assign this value to each sub-domain R j
of C∩Π (see Fig. 2(b)). The signed area of an oriented graph, a
concept that can be traced back to Gauss [13], is thus given by
the following rule.

Rule 3.2 (Signed Area). The signed area A(C) of an oriented,
planar nodal curve C, is given by

A(C) =

Z∑
j=1

I j A(R j ), (7)

where A(R j ) > 0 is the standard area of R j .

4. Linear and angular momenta of a vortex tangle by
structural complexity analysis

By the signed area rule we can calculate the projected
area of any nodal curve, be it the graph of a single vortex
line, or that of a complex tangle of vortices. If the vortices
have different circulations, a weighting factor defined in terms
of contributions from each arc of ∂R j must be assigned to
A(R j ) (see Fig. 2(c)). The simplest correction comes from the
algebraic weighting γ j . Let L j = L(∂R j ) =

∑
k=1,...,M Lk, j

denote the total length of the boundary curve ∂R j made of M
oriented arcs, the k-th arc having length Lk, j and circulation
Γk . We have

Definition 4.1. The circulation weighting factor γ j of R j is
given by

γ j =

M∑
k=1

Γk Lk, j

L j
. (8)

If all the vortices have same circulation Γ , then evidently
γ j = Γ . Appropriate weighting of circulation is necessary to
determine the correct location of the centroid of the projected
area. To summarize, we have the following result.
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Theorem 4.2 (Signed Area Interpretation). Let T be a vortex
tangle evolving under LIA. Then, the linear momentum
P = P(T ) has components

Pxy =

Z∑
j=1

γ jI j Axy(R j ), Pyz = · · · , Pzx = · · · , (9)

and the angular momentum M = M(T ) has components

Mxy = dz

Z∑
j=1

γ jI j Axy(R j ), Myz = · · · , Mzx = · · · ,(10)

where Axy(R j ), . . . , etc. denotes standard area of R j .

Proof of the above theorem is based on direct applications of
(4) and (5), by using the signed area Rule 3.2.

5. Dynamical aspects based on signed area information

Signed area contributions provide useful information, that
can be applied, predictively, to estimate and, postdictively,
to understand some dynamical properties of the system.
Remember that: (i) areas with index 0 do not contribute
to the momentum; (ii) areas with high index (in absolute
value) weight more and, proportionally, contribute more to
the dynamical impulse of the system; (iii) areas of opposite
sign determine contributions in opposite directions. Additional
information on dynamical aspects may also come from index
gradient analysis. Take the case of Fig. 2(b): here the alignment
of regions, where the index gradually changes from −1 to +2,
indicates the presence of a principal axis of revolution. The
exact location of this axis, placed orthogonally to the alignment
of such regions, is determined by an accurate estimate of the
weighted areas and, in any case, it can be determined by signed
area information.

Let us consider two other examples, assuming, for
simplicity, equal circulations and maximal projected areas. In
Fig. 3(a) we have the projection of a single coiled filament, that
in space is wound up 5 times around a circular axis (not shown).
Contribution from the 5 negative areas exceeds that from the
positive area, hence the resultant momentum is oriented in
the negative direction. If such a vortex configuration existed,
it would propagate backwardly in space. Such an unusual
behaviour may not be so unrealistic, as recent analytical
solutions [14,15] and numerical tests [16] seem to suggest.

Another interesting case is illustrated by the following
example. Consider the head-on collision of two anti-parallel
vortex rings, propagating co-axially one against the other.
The linear momentum of the two-ring system (as a whole) is
obviously zero, and in ideal conditions this value is conserved
until collisional time. In the case of real dynamics at sufficiently
high Reynolds number, slight perturbations of the circular
axes are likely to develop and, upon collision, we can expect
that these will trigger sinusoidal disturbances along the two
colliding ring axes. Here, analysis of the projected diagram
may be rather illuminating. Without loss of generality and for
the sake of simplicity, let us drastically simplify the situation
and consider the perturbed circular axes as the elliptical curves

Fig. 3. (a) Projected diagram of a coiled vortex filament: contribution from
negative areas (light grey) exceeds that from positive area (dark grey); hence,
the resultant linear momentum of the vortex is negative. (b) Graph of the
projection of two anti-parallel, elliptical vortex rings: opposite contributions
from regions of index of alternating sign (light grey) cancel out; hence, the
resultant linear momentum of the two-ring system is zero.

sketched in Fig. 3(b) (realistic perturbations would obviously
generate a far more complex diagram). The central region
has index 0 and is surrounded by four regions (light grey) of
alternating sign. Consistently with what we expect from the
annihilation of the rings velocity, this gives zero contribution
to the resultant linear momentum of the two-ring system.

When the two rings collide, the alternating sign of the four
surrounding regions is an indicator of an imminent structural
instability, that produces the shoot-off of a pair of small
vortex rings on either side of the collisional plane. In a
realistic scenario, the precise number of surrounding regions
will depend on geometric details of the perturbation, but in
any case the production of an equal number of secondary
small rings on either side of the collisional plane must be
expected. These considerations seem confirmed by direct
inspection of experimental results (see, for instance, [17]). In
real experiments a diadem of a large number of secondary
small vortex rings is clearly visible. This diadem grows from
the instability of a fluid membrane that is produced in the
collisional plane, upon collision of the primary large vortex
rings. These secondary rings appear to be alternately distributed
on either side of the collisional plane, surviving just for a short
time before final dissipation.

6. Concluding remarks

The geometric method based on the signed area interpreta-
tion summarized by Theorem 4.2 provides a new and poten-
tially useful tool for fluid dynamics research. The method ex-
ploits information from structural complexity analysis of a tan-
gle of vortex filaments to estimate linear and angular momenta
of the system. This is done by computing the signed areas of
the projected graph diagrams associated with the vortex tangle,
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after application of appropriate shaking and weighting tech-
niques. The results are rigorously valid in the LIA context, but,
as mentioned earlier, in principle they could be extended to thin
vortex filaments governed by the Biot–Savart law. This exten-
sion seems plausible as long as vorticity remains localized in a
tubular domain of volume small compared with the fluid vol-
ume ‘embraced’ by the tangle. In terms of projected areas, this
corresponds to assuming that the (standard) area of the vortic-
ity domain is much smaller compared with the overall area en-
closed by the outermost boundary projected curve, the order of
approximation depending presumably on this ratio. Physically,
this simply means that the higher the localization of vorticity,
the most efficacious is the production and transfer of hydrody-
namic impetus and moment, two quantities that are conserved
under Euler’s equations, regardless of the validity of the local-
ized induction approximation.

In any case, for LIA systems the geometric method proposed
here provides a potentially useful tool for predictive and
postdictive diagnostics. By analyzing projected areas, it can
be applied to implement tests of accuracy of numerical
methods simulating vortex tangles. In superfluids, in particular,
by analyzing the area distribution of the vortex projection
one can judge about the scale distribution of linear and
angular momenta, and compare this with the expected
values of the spectrum of turbulence (Kolmogorov’s two-
thirds law). Moreover, since LIA preserves an infinity of
invariants of motion, all of these admitting a geometric
interpretation in terms of global curvature, torsion and higher-
order gradients [18,10], these can be implemented to supply
further information on dynamical properties (for instance,
kinetic energy and helicity). Other features associated with the
analysis of projected graphs can be related to dynamical issues,
but this is beyond the scope of this article. We just like to
conclude mentioning that the famous relation [19] χ(G) =

v − e + r , between the Euler characteristic χ(G) of a graph
G (associated with vortex topology), of v vertices, e edges
and r regions, may find also useful applications in the study
of complex systems [20] and in the advanced diagnostics of
complex flow patterns.
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