Program in Molecular
and Translational Medicine
DIMET
(XXVII cycle, year 2013-2014)

University of Milano-Bicocca
Department of Biotechnologies and Biosciences

Functional characterization and targeting of CRLF2 gene alterations in pediatric High Risk Acute Lymphoblastic Leukemia

Angela Maria Savino
Matr. 716165

PhD Coordinator: Prof. Andrea Biondi
Tutor: Prof. Andrea Biondi
Co-Tutors: Dr. Giovann Cazzaniga
Dott.ssa Chiara Palmi
TABLE OF CONTENTS

CHAPTER 1: General introduction

- Acute lymphoblastic leukemia ... 1
- Genetic subtypes in ALL ... 2
- Risk factors and treatment response .. 9
- New prognostic markers in ALL .. 13
- Physiological role of CRLF2 in B cells ... 13
- New prognostic markers in ALL .. 15
- Physiological role of CRLF2 in B cells ... 16
- Disregulation of JAK-STAT pathway .. 21
- CRLF2 and Ph-like ALL ... 31
- CRLF2 and Down Syndrome ... 32
- Targeting of JAK/STAT pathway .. 34
- Novel therapeutic approaches ... 37
- Xenografts and Genetic Mouse Models to Study High-Risk Leukemias .. 42
- References .. 46
- Scope of the thesis ... 60

CHAPTER 2: Fine Tuning of Surface CRLF2 Expression and Its Associated Signaling Profile in Childhood B Cell Precursor Acute Lymphoblastic Leukemia 63

- References .. 76
- Supplemental methods ... 79
CHAPTER 3 : Role of the hystone deacetylase inhibitor Givinostat (ITF2357) in treatment of CRLF2 rearranged acute lymphoblastic leukemia

- Abstract 87
- Introduction 88
- Materials and methods 90
- Results 99
- Discussion 117
- References 121
- Supplementary figures and tables 127

CHAPTER 4: CRLF2 Over-expression is a Poor Prognostic Marker in Children with High Risk T-Cell Acute Lymphoblastic Leukemia.

- Abstract 138
- Introduction 139
- Patients and methods 141
- Results 145
- Discussion 163
- References 167
- Supplementary patients and methods 171
- Supplementary reference 177
CHAPTER 5: Conclusions and future perspectives 179-180

- Other publications 182
Chapter 1

General introduction
Acute lymphoblastic leukemia

Leukemias are the most frequent cancers in childhood. Acute leukemia is a malignant (clonal) disease of the bone marrow in which hematopoietic precursor cells over-proliferate replacing normal marrow elements, resulting in a marked decrease in the production of mature functional blood cells and accumulation of leukemic blasts in primary and secondary hematopoietic sites such as liver, spleen, lymph nodes and thymus (1). Depending on the lineage of origin of the malignant cell population (blasts), the disease is defined as Acute Myeloid Leukemia (AML), with involvement of uncommitted precursor of myeloid lineage, or Acute Lymphoblastic Leukemia (ALL), with involvement of the lymphoid lineage. The latter is more frequent among pediatric patients and accounts for 80% of all *de novo* leukemia cases during childhood. ALL derives from B- or T- lymphocyte progenitors, which are blocked in their maturation. Arrest of lymphoblasts in early developmental stages is caused by altered genetic expression, often as result of genomic alterations including chromosomal translocations. Newly diagnosed ALL bone marrow or peripheral blood specimens are routinely processed for cytomorphology, cytochemistry, immunophenotypic, cytogenetic and molecular characterization. Immunophenotyping at diagnosis is tested by flow cytometry using a panel of lymphoid specific Cluster of Differentiation (CD) markers. Approximately 85% of diagnosed ALL cases are a result of the expansion of B-cell precursors (BCP-ALL). It is possible to
further sub-classify the BCP-ALL in early pre-B cell or pro-B, common, pre-B cell, and B-cell ALL, according to the corresponding CD expressed by the leukemic cells (2). The differentiative stages of B-cell leukemia development, identified on the basis of the expressed antigens on the blast, are listed below:

- Early pre-B (or Pro-B): CD19+ CD10- HLA-DR+ CD7- SmIg-
- CALL (common): CD19+ CD10+ HLA-DR+ CD7- SmIg-
- Pre-B: CD19+ CD10+ HLA-DR+ CD7- SmIg+ (κ- e λ-)
- B: CD19+ CD10+/− HLA-DR+ CD7- SmIg+ (κ+ o λ+)

Fifteen per cent of ALL cases have a T cell origin. T-ALL is thought to arise from malignant thymocytes, corresponding to defined stages of intrathymic T-cell differentiation. Different maturation states of T lymphoblasts define the subtypes:

- Pre-T or Early T: CD1-CD2+/− cyCD3+CD3-CD7+
- Intermediate T: CD1+CD2+ cyCD3+CD3+CD7+
- Mature T: CD1-CD2+ cyCD3-/+CD3+CD7+

Genetic subtypes in ALL

Genetic abnormalities, such as aneuploidy, chromosome translocations, and/or deletions, but also point mutations, occur very frequently in ALL and are present in 80% of the patients.
These alterations are important indicators of prognosis and they could be divided into two groups: numerical and structural abnormalities (3).

The numerical chromosome abnormalities are very common in pediatric ALL and are investigated through evaluation of blasts DNA content. The ratio between DNA content of leukemic blasts and normal cells, defined as DNA Index, is a reliable method to evaluate the aneuploidy and is evaluated routinely in all new diagnosed patients. Unitary DNA Index indicates a cell population with chromosomal diploid arrangement. DNA Index values greater than 1,16 corresponding to a number of chromosomes ≥50 are used to define hyperdiploidy of the blasts population. DNA Index value below 1 reveals hypodiploidy of blasts population. Hyperdiploidy is associated with favorable prognosis whereas hypodiploidy is linked to unfavorable prognosis (4). The structural chromosome aberrations can be found through cytogenetic analysis, such as karyotyping and Fluorescence In Situ Hybridization (FISH), or through molecular screening (PCR detection of recurrent breakpoint regions). This cytogenetic characterization is commonly performed at diagnosis and several subtypes of leukemia can be distinguished based on cytogenetic analysis (Figure 1). Many translocations generate fusion genes, having in some cases a negative prognostic impact (2).
Figure 1: Estimated frequency of ALL genotypes in children and adult. T-ALL exclusive lesions are indicated in violet (2).

In the last years, a rapid progress has been made in high-throughput genomic technologies, not limiting the genetic analysis to cytogenetic but allowing more in depth studies. This has led to a very complex and heterogeneous picture of ALL genetics. Several groups have used high-resolution single
nucleotide polymorphism (SNP) arrays of diagnostic ALL samples and detected recurrent genetic aberrations. Often these were small genetic lesions, mostly deletions but also chromosomal translocations were detected. With increasing numbers of studies performed, it becomes clearer which cellular pathways are the targets of DNA copy number aberrations (CNA). Most often aberrations were observed in master regulators of lymphoid development, such as \textit{PAX5}, \textit{EBF} and \textit{IKZF1}. Other targets include regulators of the cell cycle (\textit{CDKN2A/B}), tumor suppressor genes (\textit{PTEN, BF1, RB1}) and regulators of apoptosis (\textit{BTG1}) (5-10).

\textbf{Genetic aberrations in B-ALL}

Among B-ALL the most common prognostic important structural aberrations are:

The t(12;21)(p13;q22), resulting in \textit{ETV6/RUNX1} gene rearrangement, fuses \textit{ETV6} gene, which encodes an ETS family transcription factor, and \textit{RUNX1} gene, which encodes a transcription factor with a DNA binding domain. The translocation t(12;21) is the most frequent structural aberration in childhood ALL and is found in around 20-25% of the cases. It is associated with favorable outcome.

The translocation t(1;19)(q23;p13) fuses the \textit{TCF3(E2A)} gene on 19p13 to the homeobox (HOX) gene \textit{PBX1} on 1q23 and can occur in a balanced or un-balanced form. E2A transcription
factor plays a role in lymphocyte development and as the translocation impairs one copy it is like to contribute to leukemogenesis. HOX family genes are known for their role in leukemogenesis and as PBX1 can alter the HOX regulated programs, it may contribute to malignant transformation of blasts (11).

This aberration is found in 5% of patients, it is more frequent in pre-B subtype ALL and seems not to have prognostic impact.

The translocation t(9;22)(q34;q11) generates the BCR/ABL fusion protein. It is the result of the fusion of the BCR signaling protein to the tyrosine kinase ABL1 causing constitutive active kinase activity. The BCR/ABL fusion protein acts as an oncoprotein by activating several signaling pathways an interacting with other transforming elements such as RAS, which contribute to the malignant transformation of the blast cells. The size of the BCR fragment included in the fusion protein differs because of splicing of different breakpoints in BCR locus. Three distinct protein products have been described: their difference in structure influences the biological and clinical phenotypes of the leukemia. The translocations occurs in 2-3% of children with ALL, frequency increases with patients’ age, and is associated with a very poor prognosis.

The translocation t(17;19) (E2A-HLF) occurs in around 1% of ALL patients. Like the t(1;19) rearrangement, t(17;19) contains the E2A transcription factor which plays a crucial role in
lymphocyte development (11). The fusion protein has been shown to be sufficient to immortalize lymphocyte precursors (12) and to up-regulate the anti-apoptotic protein Survivin (13). Both mechanisms could explain the resistance to treatment observed in patients positive for this translocation.

Rearrangements of the *MLL* gene at 11q23 are found in 80% of infants (ALL patients younger than 1 year of age), in 2% of older children and in 7% of adults. *MLL* rearrangements involve about 50 different partner genes: t(4;11)(q21;q23) is the most common one. These rearrangements can occur in AML and ALL and some cases show both lymphocytic and monocytic involvement, which triggered the naming of *mixed-lineage-leukemia (MLL)* for the gene on 11q23. MLL is a DNA binding protein that is involved in hematopoiesis through the regulation of *HOX*-family genes and was shown to be a leukemia initiating event (14). The *MLL* prognosis is poor in infant patients, but better in older children (15).

Intrachromosomal amplification of 21q. The amplification has been associated with an adverse prognosis. The amplification of 21q is found in 2% of children patients (16).

In 60% of pre-B ALL cases, a loss of genes that regulate B-lymphoid development is observed and it was shown in experimental models that this leads to an acceleration of leukemogenesis (8,17,18) and thus these aberrations could also contribute in human leukemogenesis. The most frequent
deletion in this group was found in the *IKZF1* gene. It encodes the transcription factor Ikaros and was deleted in 76.2% of childhood BCR-ABL ALL and in 90.9% of adult BCR-ABL ALL cases. Further, *PAX5*, located on chromosome 9p, was frequently deleted (in 51% of samples), mostly occurring in cases also carrying the *IKZF1* deletion (8). Also located on chromosome 9p are the cell cycle regulators *CDKN2A* and *B*, which were frequently deleted and the whole 9p chromosome arm was lost in many cases. Overall, the average number of aberrations is limited to around six per case at diagnosis, demonstrating that there is no general chromosomal instability in ALL. On the other hand, the number of aberrations differs significantly between different subgroups of ALL (8). MLL-rearranged leukemias carried up to one CNA, indicating that only a limited number of lesions are necessary for leukemia initiation. In BCR-ABL and TEL-AML1 rearranged leukemias more than 6 CNAs were found, suggesting that disruption of multiple pathways is required for leukemia initiation and progression.

Genetic aberrations in T-ALL:

There are also some structural abnormalities in T-ALL, but since these leukemias are less frequent, they have been less studied. Generally, T-ALL patients have a worse outcome than BCP ALL (7,19,20). In about 40% of T-ALL cases, the identified translocation involve the TCR gene. The oncogenic potential
and the prognostic meaning depend on the partner gene (21). The translocation t(1;14)(p33;q11) juxtaposes TAL1 gene localized on chromosome 1p33, to TCRα (14q11) leading to TAL1 overexpression. TAL1 activation may also due to different deletions on Chromosome 1. Seven different deletions of more than 90 kb have been described. This deletion juxtaposes the 5’ portion of TAL1 gene with SIL, leading to TAL1 overexpression. The frequency of the translocation and deletions involving TAL1 is about 30% in T-ALL. This suggest the existence of other mechanisms as TAL1 gene resulted overexpressed in more than 60% on T-ALL cases (22). The translocations originating fusion genes are less frequent in T-ALL than in BCP-ALL. The t(10;11)(p12;q14), leading to PICALM e MLLT10 genes fusion and MLL gene rearrangement, in particular t(11;19) translocation, leading to MLL-ENL fusion are diffused only in 5-10% of patients. Finally, the amplification of 9q34 portion, leading to NUP214-ABL1 fusion gene, is found in 4% of patients. More than 50% of patients have activating mutations of NOTCH1 gene and the 70% of cases present the deletion of 9p21 region involving the oncosuppressor gene CDKN2A/B (23).

Risk factors and treatment response

In childhood ALL, a limited number of significant risk factors have been described with different clinical and biological
characteristics that are used for prognosis and adaptation of the treatment. From the end of eighties, in Italy, ALL patients are stratified according to guidelines of study protocols (named AIEOP ALL 88, 91, 95, 2000, R2006 and 2009) in collaboration with BFM (Berlin-Frankfurt-Munster) study group.

In the ALL 2009 protocol actually in use, numerous clinical and biological prognostic factors are used to stratify patients in risk classes, which are submitted to distinct therapeutic approaches. The risk classes are based on clinical features, such as age, White Blood Cells Count (WBC), and leukemic cells biological features, such as immunophenotype, karyotype, chromosomal abnormalities and response to initial therapy (Table 1), (24).

<table>
<thead>
<tr>
<th>Factors commonly used for risk stratification</th>
<th>Favorable</th>
<th>Adverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>1-9</td>
<td><1 or ≥10</td>
</tr>
<tr>
<td>Leukocyte count (<10^9/L)</td>
<td><50</td>
<td>>50</td>
</tr>
<tr>
<td>Immunophenotype</td>
<td>B-cell precursor</td>
<td>T-cell</td>
</tr>
<tr>
<td>Genotype</td>
<td>Hypodiploidy>50 chromosomes, Hyperdiploidy<44 chromosomes, TEL-AML1 (ETV6-RUNX1), SCR-ABL1, MLL-AF4</td>
<td><1%</td>
</tr>
<tr>
<td>MRD after induction</td>
<td><0.01%</td>
<td>≥1%</td>
</tr>
</tbody>
</table>

Table 1: Risk factors in childhood ALL (1).

Another leukemic prognostic factor, the *clearance*, is monitored by Minimal Residual Disease (MRD) evaluation. MRD is the name given to small numbers of leukemic cells that remain in the patient during treatment or after treatment when the patient is in remission (in the absence of signs of disease) and their quantification is a powerful method to follow the disease regression over treatment time.
In detail, MRD monitoring is a quantification of residual leukemic blasts in the bone marrow and peripheral blood of patients measured either by quantitative PCR of clone specific Immunoglobulin (Ig) and T-cell receptor (TCR) rearrangements and/or by flow cytometry of surface markers (25-28). Multi-parameter flow cytometry uses the atypical expression of leukemia associated surface proteins to distinguish between normal and malignant cells. For example, CD10 is often expressed at a higher level in precursor B-ALL than in normal B precursor cells. For detection of MRD, proteins that are aberrantly co-expressed on ALL cells, such as CD58 or CD9 for precursor-B ALL will be very useful to clearly distinguish a small population of blasts over the background of normal regenerating lymphoid cells. Other aberrantly expressed markers are cross-lineage expression of T-cell and myeloid cell markers including CD7, CD13 and CD33 (21). From a molecular point of view, the junctional regions of Ig and TCR gene rearrangements are suitable PCR targets as they represent unique sequences, which are created through deletions and random insertions of nucleotides during the rearrangement process of B- and T-cell receptors. Leukemic blasts, stalled in their maturation process have undergone the rearrangement process as normal lymphocytes, but often not until the complete V-D-J rearrangement. Unlike in healthy blood, where it is possible to detect multiclonal rearrangements, reflecting the diversity of B- and T-cells, leukemic blasts are more homogeneous and allow detecting strong signals of
monoclonal rearrangements. Extensive studies have established the time points and cut offs for MRD levels that are most suitable to distinguish between patients with a high risk or low risk to relapse with their disease. The AIEOP ALL protocol distinguishes three risk groups: High, Medium and Standard Risk. The patients are placed in one of the three groups, according to prednisone response at 7 day, complete bone marrow remission at 33 days, MRD at days 33 and 78 and to the presence of BCR/ABL or MLL/AF4 transcripts. Patients with MRD negative at 33 and 78 days, evaluated with at least two markers, are classified as Standard Risk (SR). Patients not classified as SR and MRD < 10^3 at 78 days are considered as Intermediate risk (IR). Patients with persisting MRD levels above the determined cut off (10-3 leukemic cells per one normal cell) after 78 days of chemotherapy, at the beginning of consolidation phase, have a high risk of relapse (MRD-HR, Figure 3 left panel). These patients, as well as few additional cases identified based on cytogenetic risk criteria (cases with the translocations t(9;22) or t(4;11), see below and Table1) will qualify for more intensive treatment after this time point. All the above described factors are used to stratify patients into different treatment groups and optimize their individual treatment. Thereby patients with unfavorable factors receive more intense chemotherapy, whereas those with “good prognosis” receive less or modified versions of the intensive treatment elements
New prognostic markers in ALL

Over the last decades therapies of pediatric ALL patients have led to improvement of remission induction and long-term survival presently achieving cure rates of over 80% (2). However a relapse incidence (20%) involving all three risk groups shows the limitation of current prognostic factors and emphasizes the need to identify new molecular prognosis factors which will allow to early recognize patients with high risk of relapse and to modify the protocol risk groups.

Recently some research groups (29) (30) identified a new player in childhood leukemia: CRLF2 (Cytokine Receptor like Factor 2). The presence of CRLF2 overexpression and rearrangements in ALL, suggest a possible role for CRLF2 signaling pathway in lymphoid malignancy and seem to identify high-risk patients not recognized by current high-risk parameters.

Physiological role of CRLF2 in B cells

Cytokines and their receptors play an important role in cell survival, proliferation, and differentiation during hematopoiesis (31). Cytokine receptors share common extra-cellular domain structural features and homologies in the primary amino acid sequence. In 2000, Pandey and colleagues reported the isolation of a new Type I cytokine receptor subunit (32). Later on Tonozuka and colleagues and Zhang et. al, identified this
novel type I cytokine receptor based on homology searches, in cDNA libraries of human T lymphocytes and dendritic cells respectively (33,34). Thus the newly discovered cytokine receptor has common characteristics of type I cytokine receptor family members and was termed CRLF2, which stands for cytokine receptor-like factor 2 (33). CRLF2 gene is localized at the end of the petit arm of the chromosome X or Y (ChrX-1,314,890-1,331,616; ChrY-1,264,890-1,281,616; ENSG00000205755) in the Pseudoautosomal Region 1 (PAR1) (29). Binding and cross-linking experiments demonstrated that this protein is the receptor for a recently described interleukin 7 (IL-7)-like factor, Thymic Stromal Lymphopoietin (TSLP). Most of type I cytokine receptor systems, require at least two distinct receptor chains for high affinity binding with the ligands and subsequent signal transduction. The heterodimeric complex formed by the CRLF2 subunit and IL-7Rα was demonstrated to be a functional receptor for TSLP. CRLF2 itself has low affinity for TSLP but in combination with IL-7Rα generates high affinity binding for TSLP, called TSLP-R, which triggers signaling transduction (He R. et al., 2010). TSLP ligand is produced by epithelial cells in order to activate dendritic cells, and is involved in inflammation and allergic responses (35). Moreover, this cytokine mediates also B-cell precursor proliferation and survival (36). Demehri et al showed that endogenously overexpressed or exogenous TSLP supplemented during neonatal hematopoiesis results in drastic expansion of peripheral pre- and immature B cells, thus causing B-cell
lymphoproliferative disorders. (37). The binding of TSLP to its receptor mainly activate signaling networks involving several key proteins, namely Janus kinases (JAK) 1, 2, and 3, and STAT proteins, mainly STAT5a/b (38).

Overview of JAK-STAT signaling pathway

The Janus kinase (JAK)/ Signal Transducer and Activator of Transcription (STAT) pathway has a central role in the signaling of cytokines by regulating cell proliferation, survival, differentiation and immune response. This pathway begins by the binding of cytokine to its cognate receptor, which basally is completely inactive. Cytokine binding induces a conformational change that either reorients a preformed dimer (ref 3-6 vainchenker) or induces receptor dimerization/oligomerization (39). As a consequence, JAKs prebound to the receptor’s cytoplasmatic region, become activated, leading to cross-phosphorylation and receptor tyrosine phosphorylation, thus creating binding sites for cytoplasmic proteins such as the STAT proteins, which becomes substrates of JAKs (40). Phosphorylation leads to STAT homodimerization and translocation to the nucleus, where they act as transcription factors prompting cell proliferation, survival and differentiation.
Figure 2: JAK/STAT signaling cascade. The binding of a ligand to its receptor induces a conformational change in the preformed dimer, leading to tyrosine phosphorylation and cross-activation of JAKs, which phosphorylate intracellular receptor tyrosine residues (Y-P). Various adaptor proteins become substrates of JAKs, triggering signaling cascades. Cytokine receptors are linked to the STAT, Ras–MAPK, and phosphatidylinositol-3′-kinase (PI3K)–AKT pathways, which converge at the nucleus and regulate gene expression.

Main actors of JAK/STAT pathway and their aberrancies in leukemia

JAK kinases and STAT transcription factors

The JAK family of non-receptor tyrosine kinases comprises four members: JAK1, JAK2, JAK3, and TYK2, all of which signal
aberrantly in different malignant contexts. The JAKs are crucial modulators of signal transduction pathways. They associate with the cytoplasmic tails of cytokine receptors, and ligand-induced reorientation of receptor places the JAKs in adequate proximity for transphosphorylation of the partner JAK. In JAK2, this occurs at residues Y1007 and Y1008 (41). The JAK family of kinases contains a C-terminal kinase domain (JH1) adjacent to a pseudokinase domain (JH2).

Figure 3: JAK2 structure: JAK2 has seven domains (JH7–JH1) including a FERM domain (cytokine receptor interaction), a SH2 domain (recruitment of interacting proteins), a pseudokinase domain, and a kinase domain.

It is predicted that this JH2 domain acts as an autoinhibitory domain because its loss renders the protein constitutively active (42). Recent purification of the JH2 domain led to the observation that it may have catalytic activity, even though the study demonstrated that this domain has only 10% activity compared to the JH1 domain when assessed in vitro (43). In fact, in vitro kinase studies have revealed that the purified JH2 domain can phosphorylate itself on S523 and Y570 as a way of negatively regulating the protein. Mutation of the predicted catalytic lysine in the JH2 domain resulted in loss of activity and in increased downstream STAT activation (44). Additional
functional studies are needed to show if this domain can serve as a kinase in physiological and pathophysiological states. The JH2 domain adopts a typical protein kinase fold with an activation loop that cannot be phosphorylated and with varied residues in sites critical for canonical kinase function. Successful crystallization of the entire JAK2 kinase will provide more definitive evidence to finally elucidate the complete structure of the protein. To date, only the JH1 domain of JAK2 and JAK3 and the JH2 domain of JAK2 have been individually crystallized (45-47). Phosphorylation of JAK2 is integral for its regulation. JAK2 is phosphorylated on many sites, and it has been shown that phosphorylation of different residues within JAK2 can negatively or positively regulate JAK kinase activity. Phosphorylation at Y221, Y637, Y813, Y868, Y966, Y972, Y1007, and Y1008 enhances JAK2 activity, whereas phosphorylation of S523, Y119, Y317, Y570, and Y912 favors an inactive conformation (Figure 5) (48-52).

![Figure 4: Phosphorylation sites identified for JAK2. Green residues indicate that phosphorylation is required for optimal activation of the kinase activity of JAK2. Red residues indicate that phosphorylation results in negative regulation of JAK2 activity. Y1007 and Y1008 are indicated in purple and are the activation loop](image)
Phosphorylation of residues on cytokine receptors by activated JAKs results in the generation of docking sites for downstream signaling mediators that contain Src homology 2 (SH2) domains, including the STAT family of transcription factors. The STAT family comprises seven members STAT1,2,3,4,5A,5B and 6. They are phosphorylated by JAKs and dissociate from the receptor to form homo and heterodimers with other STAT proteins. The STATs then translocate to the nucleus, bind to STAT DNA-binding sequences, and activate cytokine-dependent transcription factors, gene related to proliferation, cell growth and division, programmed cell death, cell specialization and differentiation.

In addition, it has been shown that JAK2 itself is able to translocate to the nucleus and directly phosphorylate Y41 on histone H3, resulting in disruption of heterochromatin protein 1 alpha (HP1a)-mediated epigenetic repression and ultimately in the activation of leukemic transcription factors (54). This novel mechanism may be important in explaining how JAK2 regulates the transcription of downstream targets, and recent work has suggested that this leads to a feed forward loop by which JAK2 activity can enhance JAK2 transcription (55).
JAK /STAT negative regulators

The JAK/STAT pathway is negatively regulated by several types of proteins acting on the degradation of JAKs and STAT proteins (SOCS, PIAS), on JAKs or receptor phosphorylation (LNK, phosphatase), or on the degradation of the cytokine receptors (Casitas B-cell lymphoma (CBL)). Genes coding for most of these proteins can be considered tumor suppressor genes, and their inactivation (mutations, silencing) potentiates JAK/STAT signaling when mutations of JAK are present. However, some of these molecules may also have the opposite effect. For example, SOCS proteins modulate signaling by binding to JAK kinase thus inactivating it and their overexpression can be observed in some malignancies, allowing, for example, for resistance to the antiproliferative effect of interferons (56). LNK, also called SH2B3, is a member of the SH2B family, an adaptor protein family that does not possess any enzymatic activity. This family contains two other members (57) and has an important role in hematopoiesis by negatively regulating JAK2 activation through its SH2 domain (58,59).

In murine models, the knockout of LNK leads to myeloproliferation associated with myelofibrosis (MF) (60). In humans, rare mutations in LNK have been found in patients with essential thrombocytopenia (ET) and primary myelofibrosis (PMF) without other mutations in signaling molecules (61). LNK mutations lead to loss of regulatory functions and consequently
to increased JAK2/STAT signaling. LNK mutations have also been described during disease progression to AML (62).

Disregulation of JAK-STAT pathway

A number of genetic lesions in hematopoietic disorders cause hyperactivation of the JAK-STAT pathway and thereby mimic the survival and proliferation signals from constitutively active cytokine receptors. Genetic lesions that activate this pathway occur at three different levels: cytokine receptor chains themselves (e.g. CRLF2 and IL/RA); activating mutations of JAKs or deletion of inhibitory molecules (e.g. SH2B3) that regulate JAK activity; oncogenic tyrosine kinase, that can target STAT5 (e.g. ABL1) (63).

CRLF2 chromosomal rearrangements leading to its overexpression

The first report about the involvement of CRLF2 overexpression in leukemia came from two groups in 2009 (29,30). Russell and colleagues used FISH analysis on leukemic cells of BCP-ALL patients and identified chromosomal abnormalities involving this gene. The overexpression of CRLF2 gene arises from a translocation juxtaposing CRLF2 to the Immunoglobulin Heavy Chain (IGH@) locus of chromosome 14 or from an interstitial deletion of the pseudoautosomal region 1 (PAR1) (29,30).
The \textit{IGH\@} is a locus involved in several common translocations and rearrangements involving \textit{IGH\@} locus have been identified as a new cytogenetic subgroup in BCP-ALL, occurring predominantly among older children and young adults. Translocation of \textit{CRLF2} with the \textit{IGH\@} locus leads to expression of \textit{CRLF2} via \textit{IGH\@} enhancer elements as the entire \textit{CRLF2} gene has relocated to the chromosome 14 (Figure 5) (29).

\textbf{Figure 5}: translocation t(X;14) t(Y;14). The enhancer regions of the locus are colored in pink (adapted from (64)).

The PAR1 deletion is an intra-chromosomal deletion of Xp22.3 or Yp11.3 that seems to be the result of aberrant use of recombinant signals (Figure 7).
Figure 6. P2RY8-CRLF2 fusion gene. The idiograms of X and Y chromosomes show the location of the PAR1 region. Breakpoint locations are marked with red arrows. PAR1 deletion juxtaposes the first non-coding exon of P2RY8 gene (in green) to the first coding exon of CRLF2 (in pink), resulting in high expression of chimeric transcripts, P2RY8-CRLF2 fusion gene.

The region of the PAR1 deletion involved at least five genes (P2RY8, ASMTL, SLC25A6, IL3RA and CSF2RA). The deletion juxtaposes the first non-coding exon of P2RY8 gene to the first exon of CRLF2. P2RY8 encodes a purigenic receptor (P2Y, G-protein coupled, 8) that is expressed at high levels in many tissues, including leukemic cells. A single case of rearrangement of P2RY8 to SOX5 has been reported in primary splenic follicular lymphoma (65). CRLF2 expression from this chimeric locus is driven by the constitutively active P2RY8 promoter resulting in high expression of chimeric transcripts, P2RY8-CRLF2.
The frequency of translocations and deletions involving CRLF2 that lead to CRLF2 overexpression seems to be dependent on the cohort of samples studied. In unselected B-progenitor ALL cases, PAR1 deletions are more common than CRLF2 translocations (approximately 2:1). In contrast, the IGH-CRLF2 alteration is much more frequent than PAR1 deletions in a cohort composed of high-risk B-precursor ALL (10).

CRLF2 activating mutations

Recently, it has been reported that aberrant expression or activating mutations of a heterodimeric receptor components, may induce homodimer formation. Sequencing of CRLF2 in childhood B-ALL specimens, including over-expressing cases, identified in some cases a point mutation changing the phenylalanine 232 to cysteine. This mutation was also detected in several adult B-ALL patients that showed overexpression of CRLF2. The CRLF2 Phe232 residue is near the junction of the extracellular and trans-membrane domains. Mutations that introduce cysteine residues in this region of other receptors can activate signal transduction through intermolecular disulfide-bonded dimers. To confirm that CRLF2 Phe232Cys promotes constitutive dimerization, Yoda and colleagues performed immunoblots in BaF3 cells expressing wild type (WT) CRLF2 or CRLF2 Phe232Cys. Under non-reducing conditions, the molecular weight of CRLF2 Phe232Cys band, but not the WT band, was doubled, consistent with constitutive dimerization
through the cysteine residues. Moreover, it has been demonstrated that, CRLF2 may signal independently of TSLP as a homodimer when harboring the F232C mutation inducing a strong constitutive Stat5 phosphorylation. Anyway, cells expressing CRLF2 Phe232Cys are still sensitive to enzymatic JAK inhibitors arguing that JAKs are involved in signaling even when CRLF2 is mutated (66).

It is reasonable to hypothesize that CRLF2 Phe232Cys could also interact with unknown partners to create a mutant heterodimer, leading to activation of signal transduction in absence of TSLP.

JAK mutations and their cooperation with CRLF2 alterations:

In 2005, an acquired mutation in exon 14 of JAK2, V617F was found in 90% of patients with the classical non BCR-ABL myeloproliferative disorder (MPN) polycythemia vera (PV) and 50% of those with essential thrombocytopenia (ET) and primary MF (PMF). The JAK2V617F mutation is located in the pseudokinase domain. Structural modeling predicts that F617 is involved in stacking interactions with the aromatic residues F594 and F595, which probably stabilize the JAK2 V617F protein (43). Bandaranayake et al. proposed a bimodal activation mechanism by JAK2 V617F: (i) loss of JH2 catalytic activity and (ii) gain of a stimulatory JH1 interaction (45). V617F is a gain of function mutation, which requires activation of cytokine receptors such as G-CSFR, EPOR and MPL/TPOR.
This includes the activation of STATs, PI3K and MAP/ERK pathways respectively. The choice of activated STATs may largely depend on the receptor type, for example, essentially STAT5 for EPO-R and STAT3, STAT5 and STAT1 for MPL. In in vitro experiments, the EPO independence induced by JAK2 V617F required both STAT5 and PI3K activation (67) (68). However, JAK2 V617F can also induce the canonical pathways of these receptors in absence of cytokine.

Although JAK2 mutations are most common in MPN patients, recent genetic and functional studies have implicated dysregulated JAK–STAT signaling in patients with ALL. Izraeli and colleagues first identified JAK2 mutations in Down syndrome-associated ALL (69). Flex et al. identified somatic activating JAK1 mutations in patients with ALL and suggested that these mutations are associated with adverse outcomes similar to the presence of the BCR–ABL1 translocation (70).

A deletion in pseudokinase domain of JAK2 called JAK2ΔIREED including R683 was initially discovered in a patient with DS and BCP-ALL (71). Expression of JAK2ΔIREED in Ba/F3 cells induced constitutive activation of JAK/STAT pathway and growth factor-independent cell proliferation (71). Subsequently JAK2R683 mutations were found in about 20% of Down syndrome patients with ALL. These JAK2 mutants are associated with CRLF2 rearrangements leading to overexpression of this receptor (30). Mullighan and colleagues showed coimmunoprecipitation of human CRLF2 and phosphorylated mutant JAK2, suggesting that these proteins
physically interact. (30). Consequently, JAK gain-of-function mutants do not confer a transformed phenotype in the absence of a compatible cytokine receptor. This situation would be analogous to JAK2 interaction with cytokine receptors in myeloproliferative neoplasms (MPN), in which MPN associated with JAK2 mutants requires expression and interaction with a cytokine receptor to induce transforming signals (58). To test this idea, several groups expressed CRLF2 and JAK2 Arg683 mutants in combination and alone in BaF3 cells, and determined the ability of these proteins to transform cells to cytokine independence. The combination of WT CRLF2 and WT JAK2 provided a growth advantage versus JAK2 alone, and JAK2 Arg683 mutation alone was insufficient to confer IL-3 independence (66,72). Cells overexpressing CRLF2 and expressing JAK2 Arg683 mutants had constitutively phosphorylated JAK2 and induced activation of transforming signals in the presence or absence of IL-7R (72) (Figure 7). The reason why most JAK2 Arg683 mutations are not transforming in absence of CRLF2 overexpression is still unclear (72).
Figure 7. JAK2 and the gain of function mutant JAK2 R683. In absence of the ligand TSLP there is no signal transduction. When TSLP binds the CRLF2/IL7-Rα receptor, JAK2 is activated through phosphorylation, and can recruit STAT5 to allow signal transduction. In presence of JAK2 R683 and CRLF2 overexpression, the signal transduction can be performed even in absence of TSLP ligand.

As described above, also CRLF2 point mutation are able to trigger the signal through JAK2 independently from cytokine binding (Figure 8)
Figure 8. Aberrant CRLF2/JAK2 signaling in ALL. Overexpression of CRLF2 may lead to aberrant signaling through homodimeric or heterodimeric receptor configurations of wild type (blue) or mutated (green) CRLF2 protein and IL-7Rα or an unknown partner receptor (violet), via action of mutant (pink) or wild-type (yellow) JAK2 or other unknown kinases, as indicated.

IL7R function and alterations

The over expression of CRLF2 can be associated with mutations in other genes such as IL7Rα (73). CRLF2 dimerizes with IL-7Rα to form the receptor for TSLP. The IL-7Rα is a component of both the IL-7 and TSLP receptors and this suggests that the activation of these two receptors may trigger a common signaling pathway.
Human IL-7 and TSLP use two different but complementary mechanisms to regulate peripheral T cell homeostasis. IL-7 has a potent and direct effect on T cells activation and displays a limited effect on DCs, whereas TSLP predominantly acts on DCs and has a moderate direct effect on T cells (74). A dominant role of TSLP in human B-lymphoid development has been highlighted by a recent study showing that CRLF2 and not IL7R signaling induces proliferation of human fetal liver-derived multi-lineage progenitors, pro-B and pre-B cells. The authors observed that human CD34+CD38-HSCs display a short wave of precursor B-cell expansion with IL7, followed by extended CRLF2 signaling that increases the absolute numbers of mature human B cells (75).

Both receptors activate the transcription factor STAT5 (Signal Transducer And Activator of Transcription 5), but they use two distinct mechanisms of activation. Signaling from the IL-7 receptor is known to involve JAK1 and JAK3 whereas intracellular signaling by the TSLP receptor is poorly characterized, and involves JAK2 (Janus Kinase 2) activation through phosphorylation.

Somatic gain-of-function IL7Rα exon 6 mutations have been found in B and T-ALL.

In most cases, these mutations introduce an unpaired cysteine in the extracellular juxtamembrane-transmembrane region and promote dimerization of the receptor, inducing constitutive JAK1 activation. In B-ALL these mutations are sometimes associated
with an overexpression of CRLF2 forming a functional, spontaneously activated receptor for TSLP (76).

STAT alterations

Although constitutive STAT activation is very frequent in hematological malignancies, very few mutations in STAT genes have been described yet. Mutation in the STAT6 DNA-binding domain have been found in primary mediastinal B-cell lymphoma which may lead to a loss-of-function (77). However the oncogenic properties of these mutants remain to be determined.

Like for some solid tumors, recurrent activating mutations of STAT3 have been found in large granular lymphocytic leukemia (78). No recurrent mutations in STAT1, STAT3 and STAT5 have been found yet in other hematological malignancies.

CRLF2 and Ph-like ALL

Recent reports described a subgroup of B-ALL patients with a gene expression signature similar to Philadelphia positive ALL (Ph+), carrying the typical the translocation t(9;22) encoding for BCR/ABL1 fusion gene (79-81). Although the gene expression profile of this new patient subgroup was able to classify them together with Ph+ ALL, this novel group of patients was actually negative for the fusion gene BCR/ABL1, therefore they were defined as Ph-like or BCR/ABL1-like. They account for 15% of
BCP-ALL and had a particular poor prognosis (6,79,81,82). These patients share multiple genetic and biological functions with Ph+ALL patients. Deletions or mutations of the lymphoid transcription factor gene IKZF1 (encoding Ikaros), for example, are a hallmark of both BCR– ABL1–positive ALL and Ph-like ALL (7). To further characterize the full spectrum of kinase-activating genetic alterations in Ph-like ALL, Roberts et al performed a detailed genomic analysis of 1725 children, adolescents, and young adults with precursor B-cell ALL (83).

CRLF2 rearrangement and JAK mutations are found in approximately 50% of Ph-like cases (84), identified in a group of patients with JAK- associated fusion leading to hyperactivation of JAK/STAT pathway and the majority of the remaining cases is characterized by activation of ABL1-associated signaling pathways (85). Among these newly identified genetic abnormalities, EBF1-PDGFRB or NUP214-ABL1 fusion responded to known TKIs, while BCR-JAK2 responded to JAK2 inhibitor in preclinical studies (85,86). These findings, including recent case-reports translated in the clinic, open the possibility to include Phlike-ALL either into the current approach of combination of chemotherapy and TKI inhibitors or into new protocols using JAK2 inhibitors.

CRLF2 and Down Syndrome

Down Syndrome (DS) is one of the most common genetic disorders (87). Children with DS have a dramatically 20-150
increased risk for acute myeloid and lymphoid leukemias (ML-DS and DS-ALL, respectively) (88,89,Vyas, 2007 #664,90). Leukemia, especially DS-ALL, is the third cause of death in children with DS after congenital heart disease and respiratory infections (91,92). Interestingly the risk for common cancers is lower in DS (88,93). Thus, the association between DS and childhood leukemias suggests that constitutional trisomy 21 (cT21) is leukemogenic. In case of ALL, DS is associated with higher risk than non-DS, and DS-ALL is a clinical and biological distinct subset from non-DS ALL patients (94). DS-ALLs are almost exclusively of B cell precursor immunophenotype and, unlike the myeloid leukemias in DS, there are no infant leukemias. The genetic profile of DS-ALL differs from non-DS ALLs. The more common cytogenetic subtypes of childhood ALL, especially the good prognosis hyperdiploid (HD) and ETV6/RUNX1, are less common in DS comprising only 17% compared with 55% in non-DS ALL (30,95).

CRLF2 alterations have an incidence of 55% in these patients and they seem to occur exclusively in cases in which recurring ALL-associated chromosomal translocations are absent. Several groups have reported the presence of somatic activating mutations in the Janus kinase JAK2 in approximately 20% of DSALLs (69,72,96).
Targeting of JAK/STAT pathway

As described above, STAT proteins are constitutively activated in the majority of hematological malignancies. However, only in a minority of them it could be demonstrated that JAK/STAT signaling is directly altered, such as in BCR-ABL–negative MPN, a subset of T- and B-ALL, very rare AML, Hodgkin lymphoma, B-cell mediastinal lymphoma, and multiple myeloma. The discovery of JAK2 mutants linked to MPNs prompted the development of JAK2 inhibitors as targeted therapy for MPNs. Several JAK2 inhibitors are being tested in clinical trials for primary and secondary myelofibrosis (MF) in patients positive or negative for JAK2 mutations (97-99). Ruxolitinib has recently been approved by the Food and Drug Administration for treatment of intermediate- or high-risk MF, and the Committee for Medicinal Products for Human Use of the European Medicines Agency recently recommended the approval of Ruxolitinib for the treatment of MF-related splenomegaly or symptoms. Because none of the present compounds discriminate between wild-type and mutated JAK2, as a consequence of efficacy and their mechanism of action, JAK2 inhibitors may induce significant levels of anemia and thrombocytopenia, which is considered a toxic effect and can lead to treatment interruption. Additionally, it is unknown whether these inhibitors can target heterodimers such as JAK1/JAK2 and JAK2/TYK2, which may participate in G-CSF or TPO signaling.
Treatment of patients with MF with Ruxolitinib has a modest impact in reducing JAK2 allele burden and decreasing marrow fibrosis. Strikingly, and particularly in Ruxolitinib treatment, two important positive effects of JAK2 inhibitors are the substantial and rapid reduction of spleen size and decrease in constitutional symptoms (99,100,Tefferi, 2012 #675,101-103). These effects are exerted both by JAK1/JAK2 inhibitors such as Ruxolitinib and by other JAK2-specific inhibitors, as the SAR302503 (TG101348). For constitutional symptoms, inhibitors might prove beneficial in preventing the cytokine storm present in MF (99). In contrast, the molecular basis for the spleen-reducing effects of JAK2 inhibitors remains unexplained. Several evidences in literature shows the employment of JAK inhibitors to target JAK/STAT pathway also in ALL. Maude et al. (80) showed the efficacy of JAK1/2 inhibitors, in in vivo xenograft models of Ph-like B-ALL and in a subset of T-ALL, ETP-ALL, in which the hyperactivation of JAK/STAT pathway is a common feature (104). However, the development of new resistance mechanisms to JAK inhibitors is growing and impairing their efficacy thus emphasizing the need for novel approaches (105).

Clearly, the understanding of the players involved in JAK2 signaling network and how the mutants exactly interact with the cytokine receptors, will be important for future therapeutic improvement. It is possible that the combination of JAK2 inhibitors with inhibitors of downstream targets of STAT5 including BCL2/BCL-XL (ABT-737) might be more effective
Certainly, it may be important to directly target STAT5 and STAT3. Recently, it was shown that a molecule already developed, Pimozide, was capable of inhibiting STAT5 activation in BCR-ABL cell lines (107). Furthermore, a promising approach may be represented by the combination of JAK inhibitors with epigenetic therapy. Inhibitors of histone deacetylase 6, which is involved in deacetylation of HSP90, are attractive because acetylated HSP90 can no longer associate with JAK2 and this leads to JAK2 degradation via ubiquitination (108). This effect takes on great importance in hematological diseases characterized by JAK2 mutations leading to its hyperactivation, such as MF. A recent phase II clinical trial demonstrates the efficacy of a pan-histone deacetylase inhibitor, in inducing a hematological response in most patients with PV and some patients with MF (109). This introduces the concept of specifically targeting mutant JAKs for degradation, especially in the case of mutants of JAK2 as JAK2 V617F that are resistant to JAK inhibitors. Moreover, HSP90 inhibitors are extremely efficient in murine models of MPNs including those driven with JAK2 inhibitor-resistant mutants (108) (110).

JAK inhibitors and such combined therapeutic strategies might be extended in the future to other subsets of ALL with dysregulation of the JAK/STAT signaling and eventually to therapy-refractory malignancies.

For DS-ALL patients for example, the great diffusion of CRLF2 rearrangements leading to hyperactivation of JAK/STAT signaling, suggests that therapeutically targeting this pathway
could be of potential benefit. Moreover, the poor outcome of DS-ALL compared with ALL in children without DS increases the urgent need for safer therapies. The high fatality rate for these patients is not only because of enhanced toxicity of chemotherapy but also primarily because of intrinsic resistant of DS-ALL to therapy. Hence, ALL is a major and fatal problem of DS children and deciphering its biology is urgently needed for rational effective therapy.

Novel therapeutic approaches

Role of Hystone deacetylase inhibitors in treatment of cancer and non-cancer diseases

Acetylation and deacetylation of histones help to regulate gene expression with remodeling of chromatin, allowing the binding of transcription factors. The acetylation of histones is regulated by two classes of enzymes: histone acetyltransferases and histone deacetylases (HDACs) (111) (112). Whereas the base pair sequence of DNA provides the fundamental code for proteins, posttranslational modification of proteins plays a major role in the control of gene transcription. HDACi’s were initially studied for their ability to increase gene expression. Today, the increasing number of orally active, synthetic HDACi’s are primarily developed to treat cancer by modulating the gene expression of pro-apoptotic genes that have been suppressed in malignant cells (112,Marks, 2003 #687). The development of
HDACi’s for treatment of cancer is based on de-repression of genes that participate in endogenous proapoptotic pathways and bring about a selective death of malignant cells while sparing healthy cells. With hyperacetylation of nuclear histones, chromatin unravels and transcription factors can now bind to DNA and initiate the synthesis of RNA coding for proapoptotic genes. By use of this mechanism, HDACi’s would avoid the toxic effects of many chemotherapeutic drugs. Presently, HDAC inhibitors are used to treat patients with advanced solid and hematological tumors (113) (i.e. the HDAC inhibitor Suberoylanilide hydroxamic acid was approved for the treatment of cutaneous T-cell lymphoma). In general, HDAC inhibition selectively alters the transcription of few of the expressed genes (approximately 2% to 10% of expressed genes are increased or decreased in their rate of transcription) (114-117). Knowing the concentration of a particular HDACi for inducing apoptotic cell death in primary tumor cells in vitro is often not possible, and the success of any HDACi in the treatment of humans with cancer is thus measured by a reduction in the tumor burden. Moreover, at concentrations lower than those used for antitumor effects, HDAC inhibitors can modulate inflammation primarily by reducing cytokine production as well as immune responses (118-122). Indeed, it has been reported that Suberoylanilide hydroxamic acid can suppress acute graft versus host disease after allergenic bone marrow transplantation, in part, by reducing proinflammatory cytokine production (121) (123).
HDAC inhibitors have also been shown to reduce in mouse models the severity of inflammatory bowel disease (124) and of other inflammatory and immune-mediated diseases such as lupus (120,122,125). Thus, inhibitors of HDAC represent a new class of therapeutic options for these diseases. The attractive aspect of HDACi’s is that they are orally active, and low concentrations are effective in reducing inflammation in humans (126) and animal models (127). One unifying property of all HDAC inhibitors is the reduction in cytokine production as well as inhibition of cytokine signaling.

Givinostat (ITF2357) and treatment of a wide spectrum of diseases

Among the new synthetic HDAC inhibitors, the class I/II orally active Givinostat (ITF2357) is widely used for a broad spectrum of diseases. As demonstrated by Leoni et al., Givinostat is effective in reducing inflammatory cytokines *in vitro* and *in vivo* models (128) having a potential and important role in treatment of chronic inflammatory and degenerative diseases. The molecular mechanisms of action related to anti-inflammatory properties are broad. Because HDACi’s increase gene expression, one possible mechanism of action is the induction of genes that are themselves inhibitors of inflammation: transforming growth factor (TGF)-β, IL-10 or IL-1 receptor antagonist. Moreover, Givinostat, as many other HDAC inhibitors has the property to increase the acetylation of non-
histonic proteins such as transcription factors. STAT3, for example, suppresses inflammatory cytokines such as INFγ and IL-17. Activation of STAT-3 can take place by acetylation, and it has been reported that Givinostat induces acetylation of STAT-3 in dendritic cells at concentrations that are achievable in humans (129). Givinostat has also an effect in reducing chemokine receptors such as CXCR4 in PBMCs of healthy donors (130), thus impairing the response to inflammation. Moreover, Givinostat is prove to be protective on cartilage catabolism in a mouse model of non-autoimmune inflammatory arthritis induced by Streptococcus pyogenes cell walls (131) and provides benefits in treatment of GvHD after allogeneic bone marrow transplantation, probably due to decreased cytokine production (129). In oncology, the activity of Givinostat was studied on multiple myeloma and acute myelogenous leukemia cells. In particular, in these tumors, Givinostat induced hyperacetylation of histone H3, H4 and tubulin and caused apoptosis at an IC50 of 0.2 µM in vitro (132). In vivo in mice models, Givinostat, at a dose of 10 mg/kg, significantly prolonged survival of severe combined immunodeficient mice inoculated with acute myelogenous leukemia cells and inhibited the production of growth and angiogenic factors by bone marrow stromal cells, in particular IL-6 and VEGF (132). These results suggest that part of the mechanism of action of HDACi’s in these diseases may be due to a reduction in cytokine production, since these hematopoietic malignancies are driven by IL-1β and IL-6 as growth factors (52,133-135).
In addition, Givinostat down-modulated the IL-6 receptor α transcript and protein in KMS18 myeloma cell lines and freshly isolated patient cells (136). The decrease in the IL-6 receptor expression was accompanied by decreased signaling, as measured by STAT-3 phosphorylation. These data support the previous studies that ITF2357 inhibits cytokine-mediated myeloma cell growth and survival.

A phase II, multiple-dose clinical trial in 19 patients with relapsed or progressive multiple myeloma was carried out but Givinostat showed a modest clinical benefit (137). It appears that the optimal use of HDACi’s in multiple myeloma would be in smoldering myeloma, where the combination of IL-1β blockade by Givinostat plus Dexamethasone significantly delays or even prevents the progression to full-blown multiple myeloma (133). Givinostat exerts efficacy also in myeloproliferative disorders. The efficacy of Givinostat in 12 patients with polycythemia vera (PV) and in 16 patients with myelofibrosis, bearing the JAK2V617F mutation, has been reported (109). Givinostat was well tolerated and could induce hematological response in most PV patients alone or in combination with hydroxycarbamide, especially in patients unresponsive to hydroxycarbamide monotherapy (138). In vitro, the clonogenic activity of JAK2 (V617F) mutated cells was reduced by low concentrations of 1–10 nmol/L of Givinostat, which is 100- to 250-fold lower than concentrations that are traditionally required to inhibit the growth of tumor cells lacking this mutation. By Western blotting, Givinostat resulted in the
disappearance of total and phosphorylated pSTAT5 and pSTAT3 (139). Furthermore, Calzada et al demonstrated that Givinostat was able to modulate the hematopoietic transcription factor NFE2 and C-MYB in JAK2 (V617F) subset in vitro and to synergize with Hydroxyurea to efficiently kill JAK2 (V617F) cell lines (140).

Together, these studies provide evidence that, in some hematopoietic disorders, the efficacy of HDACi’s is in part due to a reduction in either cytokine production or cytokine signaling. Clinically, acute myelogenous leukemia, polycythemia vera and multiple myeloma are associated with markers of systemic inflammation such as recurrent fevers. The low concentrations effective in vitro and in vivo also support the concept that the cytokine-reducing properties of HDACi’s contribute to controlling disease activity rather than direct tumor cell death. To accomplish tumor cell death, Dexamethasone or another proapoptotic regimen is required. To date, efficacy of Givinostat in lymphoblastic leukemia have not been jet investigated even if other HDAC inhibitors have been already demonstrated to be effective alone or in combination with proteasome inhibitors (Bortezomib) in in vitro and in vivo models of ALL (141).

Xenografts and Genetic Mouse Models to Study High-Risk Leukemias

Genetic engineered mouse models mimic known genetic aberrations and allow investigating their importance for the
biology of the tumor. In the field of leukemia, only a few models could be established. There is a model for BCR-ABL ALL, where the transduction of arf-null murine bone marrow progenitors with BCR-ABL was enough to induce lymphoblastic leukemia. These leukemias were highly tumorigenic in serial transplantations and resistant to imatinib in presence of cytokines (142).

There are also models for MLL-AF9 leukemias, which result in myeloid, but not lymphoid leukemias in mice (143,144). Other models cover T-cell lymphomas, B-lymphomas, CML and AML (145,146), illustrating the variety of tumors that can be modeled but also showing the lack of a representative model for high-risk B-ALL. A general disadvantage of genetic models is that they investigate single genetic aberrations and not the full genetic complexity. Therefore, they represent only a minor fraction of patients. In future, it will be a challenge as it is time consuming, but necessary to generate more genetic mouse models for the characterization of relevant genetic aberrations and their role in tumorigenesis and drug resistance.

For preclinical drug testing, xenografts have been more widely used. In that approach, primary patient material is transplanted into immunodeficient mice and is then recapitulating the original leukemia. The advantages of xenografts are – that the starting material is usually from advanced cancers, - that the tumors represent the original tumor in the patient, including the genetic complexity – and that you can test multiple drugs in different settings against the same set of cells or against different tumors.
from different patients. Therefore, by using xenograft models all relevant patient groups can be modeled.

The recipient mice must be immunodeficient to allow the engraftment of human cells without developing an immune response against them. Progress in the development of humanized mouse models was advanced by the discovery of the severe combined immunodeficiency (scid) gene mutation, which occurs spontaneously on the CB17 strain background. The CB17-scid mouse was the first immunodeficient mouse model shown to engraft with human haematopoietic cells. The mutation involves \textit{Prkdc}^{scid} (protein kinase, DNA activated, catalytic polypeptide) gene coding for an enzyme involved in rearrangement of Immunoglobulins loci and TCR genes. This mutation causes the block of lymphocyte maturation and the absence of mature B and T cells. These mice were shown to support the engraftment of some transplantable human haematological neoplasms, but tumour growth was limited by the high levels of host NK-cell activity (147). Another important advance in the development of humanized mice came from crossing mice with the scid mutation onto the non-obese diabetic (NOD) strain, which led to improved engraftment of human haematopoietic cells owing to decreased natural killer (NK)-cell activity and decreased innate immunity. A breakthrough in the effectiveness of humanized mice came from crossing immunodeficient mice homozygous for targeted mutations at the interleukin-2 receptor (IL-2R) \(\gamma\)-chain locus (Il2rg; also known as the common cytokine receptor \(\gamma\)-chain, \(\gamma_c\),
part of the high affinity receptor for different cytokines IL-2, IL-4, IL-7, IL-9, IL-15 e IL-21, required for their cellular signaling) onto the NOD/LtSz-scid, NOD/Shi-scid, NOD-Rag1−/− (recombination-activating gene-1-deficient) and BALB/c-Rag2−/− strain backgrounds, also termed NSG. This resulted in mouse strains with a complete absence of NK-cell activity, further decreases in innate immunity and a greatly increased ability to support the engraftment of human hematopoietic cells and tissues (52,148,149).

Additional crosses have generated scid or Rag1−/− mice expressing transgenes or mutant alleles, to produce mouse models of human diseases for use in studying regenerative medicine.

For human leukemia studies, the NOD/SCID and NSG model is widely used. In this model, once engrafted in bone marrow or other hematopoietic organs, leukemia cells recapitulate the main characteristics of human leukemia as phenotype, cytomorphology, antigenic profile, clonality and caryotype (150,151). Blast growth and expansion in hematopoietic compartment of the mouse leads to the typical symptoms of the disease in the mouse (leukocytosis, splenomegaly, lethargy and anorexia) and finally to the death of the animal. In the last decades, the xenograft models have been employed for studying the leukemogenesis biological processes allowing the in vivo expansion of leukemic cells generating a powerful source of leukemic stem cells that could be used for further
transplantation and represent an important tool for efficacy studies of novel therapies.

REFERENCES

45. Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR. Crystal structures of the JAK2

132. Golay J, Cuppini L, Leoni F, Mico C, Barbui V, Domenghini M, et al. The histone deacetylase inhibitor ITF2357 has anti-leukemic activity in vitro and in vivo and inhibits IL-6 and
VEGF production by stromal cells. Leukemia 2007;21(9):1892-900.

Scope of the thesis

Novel genomic abnormalities of CRLF2 gene leading to its overexpression have been recently reported in about 10% of pediatric BCP-ALL patients without known chromosomal aberrations and in 60% of ALL patients with Down syndrome (DS). CRLF2 associates with IL7Ra to form the heterodimeric receptor for TSLP, whose binding results in downstream activation of JAK2/STAT5 pathway. CRLF2 overexpression leads to the deregulation of this pathway and is a poor prognostic marker identifying a subset of BCP-ALL patients that could benefit from alternative therapy targeting the CRLF2-related pathway.

Interestingly, in T-ALL, another subtype of ALL which accounts for about 15% of pediatric cases, alterations of CRLF2 have not been reported yet, while recently mutations in its partner IL7Ra have been identified in about 10% of cases. This observation makes it relevant to investigate if CRLF2 could also be affected in T-ALL. Indeed, this subtype of patients have a general worse outcome compared with BCP-ALL ones and therefore would benefit of the identification of new prognostic markers for a better therapeutic stratification.

In this work, we focused on refining the characterization, dissecting the biology and pointing out the clinical relevance of B and T ALL with CRLF2 rearrangements, focusing on therapeutic interventions for this particularly poor prognosis subgroup of patients.
Specifically, three major lines of research have been investigated in this PhD thesis:

1. Fine tuning of surface CRLF2 expression and its associated signaling profile in childhood BCP-ALL (Chapter 1)

In this chapter we focused on refining the identification of patients with CRLF2 alterations. We aimed to demonstrate that screening of CRLF2 expression on surface of BCP-ALL patients can be successfully performed by standardized flow cytometry (FCM) protocols, allowing to identify also patients with weak or partial CRLF2 surface expression. We will also investigate whether FCM data are concordant with \(CRLF2\) transcript level performed by RQ-PCR.

2. Role of the histone deacetylase inhibitor Givinostat (ITF2357) in treatment of \(CRLF2\) rearranged BCP-ALL (Chapter 2)

In this chapter we aim to investigate the efficacy of Givinostat, an histone deacetylase inhibitor, in \textit{in vitro} and \textit{in vivo} models of \(CRLF2\) rearranged BCP-ALL, alone or in combination with chemotherapeutic agents currently in use for induction-remission therapy. Results from this study will provide the basis for the introduction of Givinostat in the current protocols, allowing combined therapies in patients, reducing doses and relative-associated toxicity thus maintaining therapeutic efficacy. This would provide particular benefits for that patients
which particularly suffers of chemotherapy-related toxicity (i.e. DS-ALL)

3. **CRLF2** Over-expression is a Poor Prognostic Marker in Children With High Risk T-ALL (Chapter 3)

In the last part of our work, we will investigate the incidence and prognostic impact of *CRLF2* overexpression in T-ALL. The results of this study could permit the identification of a subset of T-ALL patients that could benefit from alternative therapy.
Fine Tuning of Surface CRLF2 Expression and Its Associated Signaling Profile in Childhood B Cell Precursor Acute Lymphoblastic Leukemia

Cristina Bugarin¹, Jolanda Sarno¹, Chiara Palmi¹, Angela Maria Savino¹, Geertruy te Kronnie², Michael Dworzak³, Angela Shumich³, Barbara Buldini², Oscar Maglia¹, Simona Sala¹, Ilaria Bronzini², Jean-Pierre Bourquin⁴, Ester Mejstrikova⁵, Ondrej Hrusak⁵, Drorit Luria⁶, Giuseppe Basso², Shai Izraeli⁶, Andrea Biondi¹,⁷, Giovanni Cazzaniga¹ and Giuseppe Gaipa¹.

On behalf of the I-BFM study group

1. Pediatric Clinic, University of Milano Bicocca, M. Tettamanti Research Center, Monza, Italy
2. Lab. Hemato-Oncology, University of Padua, Padua, Italy
3. Children’s Cancer Research Institute and St. Anna Children’s Hospital, Dept. of Pediatrics, medical University of Vienna, Vienna, Austria.

4. University of Zurich, CH-8006 Zurich, Switzerland

5. Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Charles University Prague, 2nd Medical School, Czech Republic

6. Pediatric Hematology Oncology, Schneider Children’s Medical Center of Israel, Israel

7. Dept. Department of Pediatrics, Hospital San Gerardo/Fondazione MBBM

CORRESPONDING AUTHOR
Andrea Biondi,
Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, via Pergolesi 33, 20900 Monza (MB), Italy.
E-mail: abiondi.unimib@gmail.com
Tel: +39 (0)39 2333661; Fax: +39 (0)39 2332167.

ACKNOWLEDGEMENTS
This work was supported by Fondazione Tettamanti, Fondazione Benedetta è la Vita ONLUS, Comitato M.L. Verga, Fondazione Città della Speranza and Grant Ric. Corrente OBG 2006/02/R/001822, Associazione Italiana per la Ricerca sul Cancro (AIRC; to ABi and FL), Fondazione Cariplo (ABi), Ministero dell’Istruzione, Università e Ricerca (MIUR; ABi). We also thank the AIEOP centers for their support. We would like to
thank Dr. Chiara Buracchi for her technical support in preparing the manuscript.

Genomic rearrangements of the cytokine receptor-like factor 2 (CRLF2) gene (1, 2), which is part of the thymic stromal lymphopoietin receptor (TSLPR), result in overexpression of CRLF2 itself leading to JAK2-mediated activation of STAT5, which regulates cell proliferation, survival, and apoptosis (3,4,11-13). In this regard, childhood B-cell precursor acute lymphoblastic leukemias (BCP-ALLs), bearing a rearranged CRLF2, display a high rate of relapse (5-10). Furthermore, CRLF2 genomic rearrangements are strictly associated with its surface overexpression, rendering this marker suitable for detection by flow cytometry (FCM) (14).

To determine CRLF2 expression in childhood BCP-ALLs, we first assessed TSLPR surface expression. For this purpose, we carried out, at diagnosis, standard multiparametric FCM (Dworzak et al., manuscript in preparation) on 421 consecutive diagnostic bone marrow (BM) samples from BCP-ALL children (256 males and 165 females), enrolled in six centers of the AIEOP-BFM-ALL-2009 trial between December 2010 and June 2013. Our gating strategy used to measure TSLPR surface expression (Supplemental Figure 1) allowed us to distinguish three blast subpopulations according to the intensity of TSLPR staining: the first one was defined as negative (i.e. positivity <10%), the second one was moderately positive (i.e. positivity ≥ 10% to <50%), and the third one was strongly positive (i.e.
positivity ≥ 50%). We found 383 (91.2%) negative samples, 8 (1.9%) moderately positive, and 29 (6.9%) strongly positive.

Supplemental Figure 1. Gating strategy employed to measure TSLPR surface expression in blast cells. Immature cells (black) were distinguished from mature lymphocytes (red) in SCC/CD45 dual dot plot (panel A). Within immature cells leukemic blasts (blue) are distinguished by CD19+/CD10+/CD45 intermediate immunophenotype (panel B). Based on CD19/CD45 expression (panel C), TSLPR expression is assessed as % of positive cells by setting the histogram marker exactly at the right end of mature lymphocytes peak (panel D). In all samples prevalence of mature lymphocytes was always ≥ 1.5%. Staining to measure TSLPR surface expression was performed using the combination: CRLF2PE/CD45PerCP/CD19APC/CD10PE-cy7/CD7ECD.
Inter-center distribution of patient’s subgroups is shown in Table 1.

Table 1: TSLPR reactivity in BCP-ALL blasts at diagnosis analyzed in six different centers.

<table>
<thead>
<tr>
<th>TSLPR profile</th>
<th>Centers #</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 (n=86)</td>
<td>2 (n=28)</td>
</tr>
<tr>
<td>Negative</td>
<td>79 (91.8%)</td>
<td>25 (89.3%)</td>
</tr>
<tr>
<td>Moderately positive</td>
<td>1 (1.2%)</td>
<td>1 (3.6%)</td>
</tr>
<tr>
<td>Strongly Positive</td>
<td>6 (7.0%)</td>
<td>2 (7.1%)</td>
</tr>
</tbody>
</table>

Centers:
1. M. Tettamanti Research Center, Monza, Italy.
2. Lab. Hemato-Oncology, Padua, Italy.
3. Children’s Cancer Research Institute and St. Anna Children’s Hospital, Vienna, Austria.
4. University of Zurich, Zurich, Switzerland.
5. Pediatric Hematology Oncology, Schneider Children’s Medical Center of Israel, Israel.
6. Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Czech Republic.

Representative examples are reported in Figure 1 panels A, B, and C.
Figure 1. Different patterns of TSLPR expression in representative BCP-ALL cases: Strongly positive (positivity ≥50%, panel A), moderately positive (positivity ≥10% - <50%, panel B), and negative (positivity <10%, panel C). Fine tuning of TSLPR negative cases revealed three possible patterns of TSLPR positivity below the threshold of 10%: TSLPR fully negative (Panel D); moderately positive (Panel E); and partially positive (Panel F). The blue histograms represent the blast cells, the red ones represent the normal residual lymphocytes. Mean fluorescence intensity (MFI) of lymphocytes vs blasts were measured in each representative case: Panel A: 174.0 vs 3.899; Panel B: 149.0 vs 333; Panel C and panel D (same representative patient): 93.0 vs 97.0; Panel E: 88.0 vs 175.0; Panel F: 48.0 vs 1001.0

We then studied the immunophenotypic profile of TSLPR among the 86 patients enrolled in Center 1 during initial screening. Fine tuning of fluorescence distribution of 79/86 patients that had been previously found negative for TSLPR (i.e. positivity <10%, Table 1) allowed us to further distinguish three different expression patterns: 1) TSLPR-stained blasts
overlapping with control fluorescence (n 72, mean positivity 0.52% ± 0.52%, range 0.0% – 2.2%); 2) a second population of TSLPR-stained blasts clearly shifted to the right (n 5, mean % positivity 2.72% ± 0.16%, range 2.5% – 2.9%), which was identical to the TSLPR moderate pattern we observed previously in the diagnostic screening apart from TSLPR positivity being less than 10%; 3) a third pattern showing two clearly distinct blast populations: a larger one, TSLPR fully negative, and a smaller one positive, shifted to the right (n 2, positivity was 1% and 3.5%, respectively). Hereinafter, we will refer to these three patterns as fully negative, moderately positive (<10%), and partially positive, respectively. Representative examples are shown in Figure 1 panels D, E and F. Interestingly, one TSLPR moderately positive (<10%), and two TSLPR partially positive patients (UPNs 016, 013, and 039, respectively) showed low levels of P2RY8-CRLF2 expression (F.C. < 0.50), suggesting the presence of a minor CRLF2 sub clone (Supplemental Table 2).
Supplemental Table 2: Phenotypic, molecular, and signaling features in 101 patients according to surface TSLPR expression.

<table>
<thead>
<tr>
<th>UPN</th>
<th>TSLPR expression (Intensity)</th>
<th>CD38/CD190 expression (%)</th>
<th>CD47/CD150 expression (%)</th>
<th>CD8/CD147 expression (%)</th>
<th>CD137L expression (%)</th>
<th>IL-22 expression (%)</th>
<th>pSTAT5 expression (%)</th>
<th>IL-10 response (%)</th>
<th>IL-22 response (%)</th>
<th>p220 response (%)</th>
<th>p166 response (%)</th>
<th>p140 response (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>024</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>025</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>026</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>027</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>028</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>029</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>030</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>031</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>032</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>033</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>034</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>035</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>036</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>037</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>038</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>039</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>040</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>041</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>042</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>043</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>044</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>045</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>046</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>047</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>048</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>049</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>050</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>051</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>052</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>053</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>054</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>055</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>056</td>
<td>99.9</td>
<td>Yes (122.6)</td>
<td>52%</td>
<td>96%</td>
<td>92%</td>
<td>97%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
<td>99%</td>
</tr>
</tbody>
</table>
Next, CRLF2 transcripts levels, CRLF2 aberrations (P2RY8-CRLF2, IGH@-CRLF2, CRLF2 F232C), and JAK2 and IL7R mutations were analyzed in 86 of our BCP-ALL samples collected in Center 1 as described previously (9). We detected CRLF2 overexpression in 9.3% of BCP-ALL patients. Seventy-nine of these patients (91.8%) were negative for surface TSLPR expression as assessed by both FCM (<10%) and RQ-PCR (<20 FC), while only seven (8.1%) were concordantly positive. Intriguingly, one patient (UPN 084) showed overexpression of CRLF2, whereas TSLPR expression levels were undetectable (FC 33.2). However, this patient did not display P2RY8-CRLF2 gene fusion. Two of the 7 patients with CRLF2 overexpression (UPN 30 and UPN 62), as assessed by both techniques, were negative for P2RY8-CRLF2 fusion and IGH@-CRLF2 translocation. Conversely, 5 non-overexpressed cases showed barely detectable levels of P2RY8-CRLF2 gene fusion. Thus,
while our results seem to indicate a lack of correlation between genomic rearrangement and CRLF2 overexpression, as assessed by PCR, they clearly show that CRLF2-overexpressing BCP-ALLs are characterized by a strong positivity for TSLPR when analyzed by FCM.

To determine a functional read out CRLF2 genomic rearrangements, MUTZ5 cells (IGH@-CRLF2; JAK2 R683G), MHH-CALL4 cells (IGH@-CRLF2; JAK2 I682F), or primary thawed cells were subject to phospho flow cytometric assay (see supplemental materials). Likewise, a total of 41 cryopreserved BCP-ALL samples obtained according to their availability in cell banks – 28 were obtained from the consecutive series of Center 1 (total of 86) and 15 from a local cell bank – and viability after thawing (cut off ≥80%) were subject to phospho flow assay. Twenty-four BCP-ALL samples were TSLPR fully negative, 5 moderately positive (all of them <10%), and 12 strongly positive.

Next, we sought to determine basal and TSLP-induced pSTAT5 expression in CD45 intermediate/ CD10+/ CD7- blasts. The mean level of basal pSTAT5 detected in the three subgroups fully negative, moderately positive, and strongly positive for TSLPR was 0.71% ± 1.03% (range 0.0% – 4.0%), 2.64% ± 3.64% (range 0.2% – 9.0%), and 11.30% ± 18.31% (range 0.0% – 65.6%). Statistical differences were calculated by one-way ANOVA analysis of variance (p=0.0200). As expected, we observed much higher phosphorylation of STAT5 in the TSLPR strongly positive samples than the fully negative ones, with a
mean of pSTAT5+ cells of 60.79% ± 12.79% (range 37.0% – 83.6%) and 2.95% ± 3.26% (range 0.2% – 11.0%), respectively (p<0.001 by Bonferroni’s test) (Figure 2, Panel A). Furthermore, CRLF2-rearranged MUTZ5 and MHH-CALL4 cells showed aberrant TSLP-induced pSTAT5 compared with CRLF2 wild-type REH cells (data not shown). Interestingly, the group of 5 patients that were TSLPR moderately positive (<10%) showed enhanced pSTAT5 response with a mean of 22.36% ± 7.63% (range 16.0%– 34.3%), significantly higher than TSLPR fully negative patients (Figure 2, panel A, p< 0.001 by Bonferroni’s test).

We also studied TSLP-induced signaling through the PI3K/AKT/mTOR pathway (S6, 4EBP1 and AKT) in 36 out of 41 BCP-ALL patients [9 TSLPR strongly positive, 5 moderately positive (i.e. <10%), and 22 fully negative]. TSLP stimulation led to a significant increase in phosphorylation levels of S6, 4EBP1, and AKT in TSLPR strongly positive samples as compared to both the fully negative and moderately positive cases (one-way ANOVA p<0.0001, p= 0.0119, and p= 0.0065, respectively), in good agreement with Tasian et al (14). Differences between groups are detailed in Figure 2, panels, B, C and D. Contrary to what reported by Tasian et al, in our samples, we observed no significant difference in basal phosphorylation of S6, 4EBP1, and AKT-S473 that could be ascribed to differences in TSLPR expression levels.
Figure 2. TSLP-induced phosphoprotein responses in BCP-ALL patients according to TSLPR expression (fully negative, moderately positive, or strongly positive). Distribution of positive cells is represented as whiskers plot of 5th and 95th percentile with means and Standard Deviations. Statistical significance among groups was determined by one-way ANOVA analysis of variance followed by post hoc Bonferroni’s multiple comparison test (*p < 0.05, **p < 0.01, ***p < 0.001). Panel A shows pSTAT5 response (n 41) ; panels B, C, and D show TSLP-induced pS6, p4EBP1 and pAKT expression (n 36, 35, and 35 respectively). All groups were compared, but only those with statistical significance are indicated by stars and horizontal bars. Data were normalized to the basal phosphorylation level of each phosphoprotein.

Strikingly, neither TLSPR fully negative nor TSLPR moderately positive cases showed mutations in JAK2, CRLF2, or IL7RA. However, the observation of enhanced level of basal pSTAT5 in TSLPR moderately positive as compared to the fully negative patients may indicate the presence of a CRLF2 rearranged subclone below the level of detection in this latter subgroup of
patients. In favor of this hypothesis, TSLPR strongly positive patients displayed an heterogeneous mutational profile: 10/12 carried \textit{P2RY8-CRLF2} rearrangement - one of these also carrying a mutation in JAK insertion L681-I682 insEA and another one carrying the IL7RA mutation S185C; 1/12 displayed \textit{IGH@-CRLF2} translocation and JAK2 point mutation R683G; 1/12 was wild type also for \textit{P2RY8-CRLF2} and \textit{IGH@-CRLF2} rearrangements. SNP at codon 244 (rs151218732) of \textit{CRLF2} as well as SNP at codon 244 (rs6897932) of \textit{IL7RA} were randomly distributed independent of TSLPR overexpression. A summary of phenotypic, molecular and signaling features of the analyzed patients is described in Supplemental Table 2.

To the best of our knowledge, this is the first report showing BCP-ALL patients moderately positive for TSLPR characterized by aberrant pSTAT5 and pS6 expression. We are currently investigating whether this signature refers to the presence of minor clones or is due to additional mechanisms driving aberrant JAK/STAT and PI3K/mTOR signal transduction. In this regard, Tasian \textit{et al} has pointed to a potential diagnostic value of TSLP-mediated phosphosignaling in patients moderately positive for TSLPR staining (i.e. TSLPR-dim) as it would be a \textit{bona fide} functional read out of the CRLF2 status. However, they did not provide any evidence of TSLPR-dim patients. In our study, we demonstrate the existence of CRLF2 moderately positive patients characterized by an activated phosphosignaling cascade. Thus, it is possible that Tasian \textit{et al}
failed to identify TSLPR moderately positive patients because TSLPR expression was assessed after fixation and permeabilization, a procedure that is known to mask the presence of several surface antigens.

In summary, screening of TSLPR expression in BCP-ALL patients can be successfully achieved using standardized FCM protocols. FCM and PCR are highly concordant in detecting both CRLF2 overexpressed and non-overexpressed patients. However, patients characterized by a moderately or partially positive TSLPR expression associated with aberrant pSTAT5 and pS6 expression could only be detected by FCM analysis. Thus, our findings might prove useful in refining future diagnostic screening of ALL patients and help develop novel CRLF2 inhibitor-based therapies. In this regard, it is important to point out that approximately 50% of ALL patients with a Ph-like gene expression profile, which is associated with a poor outcome, have CRLF2 rearrangements (15).

References

3. Harvey RC, Mullighan CG, Chen IM, et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of

Supplemental methods

Phospho flow cytometry
MUTZ5 cells harboring IGH@-CRLF2 translocation and JAK2 R683G mutation, MHHCALL4 displaying IGH@-CRLF2 translocation and JAK2 I682F mutation, or primary thawed cells were subject to phospho flow cytometric assay. For this purpose, cells were starved in X-vivo medium and rested at 37°C for 16 hours or 1 hour. Then, cells were stimulated with rh-TSLP (10 ng/mL) for 30 minutes at 37°C to allow signal transduction, and treated according to an established internal protocol. Starved cells were fixed with paraformaldehyde (1.5%) and permeabilized with 90% ice-cold methanol and then incubated with anti-phospho-protein-directed MoAbs (or isotype matched IgG) and surface antigen-directed MoAbs. Characteristics of MoAbs and staining combinations are described in Supplemental Table 1.
Cells were acquired on a FACSaria™ flow cytometer (BD) equipped with 488-nm, 633-nm and 405-nm lasers. Data were collected (at least 100000 events per tube) and analyzed using DIVA™ software (BD). Positivity threshold for phosphoprotein expression was established by the use of isotype IgG-negative control (Supplemental Figure 2 panel A). Basal levels of each
phosphoprotein were then calculated as percentage (%) of phosphoprotein positive (p-positive) cells in unstimulated conditions (Supplemental Figure 2 panel B). Response to each cytokine (rhTSLP) was calculated by subtracting the % of p-positive cells in the basal state from that obtained upon exposure to cytokine (Supplemental Figure 2 panel C).

Supplemental Figure 2. Representative phosphoflow analysis in leukemic blast population (blue) gated on CD45-intermediate/SSC-low/CD10+ cells to measure signaling response after cytokine stimulation. Positivity threshold was established by an isotype IgG phospho-specific antibody (panel A). Basal and total levels of p-proteins were calculated as % of positive cells in unstimulated (panel B) and stimulated (panel C) conditions, respectively. p-induced response was then calculated by the indicated formula.

Quantitative expression of CRLF2

CRLF2 transcript levels on diagnostic samples were analyzed using TaqMan Gene Expression Assay Hs00913509_s1 (Applied Biosystems, Foster City, CA, USA) following the manufacturer’s instructions. The presence and level of the fusion transcript P2RY8-CRLF2 was analyzed by Universal Probe Library System (UPL) (Roche Diagnostic, Basel,
Switzerland) as well as the housekeeping GUS gene transcript, tested as internal control. Optimal primers and probe for P2RY8-CRLF2 and GUS amplification were selected using the Roche ProbeFinder software (https://www.roche-appliedscience.com/sis/rtpcr/upl). In particular, for P2RY8-CRLF2 amplification we used primers designed in the first exon of P2RY8 (5'-gctacttctgccgctgctt-3') and in the first exon of CRLF2 (5'-gcagaaagacggcagctc-3') with the UPL probe n. 28 (Roche UPL cat. n. 04687604001). Each cDNA sample (20 ng RNA equivalent) was tested in duplicate (Ct range between replicates <1.5). The amplification reaction was performed on the 7900HT FAST Real Time PCR System instrument (Applied Biosystems) for CRLF2 expression and on the Light Cycler 480 (Roche) for P2RY8-CRLF2 with the following protocol: initial step at 95°C for 10 min, then 50 cycles at 95°C for 15s and at 60°C for 1 min. Relative gene expression (indicated as fold change) was quantified by the 2-DDCt method (22). The DDCts for CRLF2 expression were calculated by subtracting the median of the DCt of a published cohort of 464 BCPALL patients enrolled in Italy in the AIEOP-BFM ALL2000 study from February 2003 to July 2005 (22) to the DCt of each sample. The DDCts for P2RY8-CRLF2 expression were calculated by subtracting the DCt of a selected positive patient external to this cohort to the DCt of each sample.
Mutational screening of JAK2, CRLF2 and IL7Rα

Mutational screening of JAK2, CRLF2 and IL7Rα was performed in 82/86 consecutive patients and in 15/15 patients (13/15 for JAK2) selected retrospectively from Monza’s cell bank for phospho flow analysis. High Resolution Melting (HRM) analysis was applied to identify JAK2 mutations in exon 16 using HRM Master (Roche Diagnostics) as previously described (21). Sequencing of CRLF2 exon 6 and IL7R exons 5 and 6 was performed by Sanger sequencing of PCR products from patients DNA after whole genome amplification using GenomePhi V2 DNA Amplification Kit (GE Healthcare Life Science); we designed the following primers for CRLF2-F (5’-AGGGAGACTGGTTAGGGATGA-3’), CRLF2-R (5’-TGGGCATTGTATGGAAACTG-3’), and for IL7R exon 5 IL7R-F (5’-GCAACACCTCTTTTCCATC-3’) and IL7R-R (5’-GGGAACAAAAACTCTACCACCA-3’) and exon 6 IL7R-F(5’-TGCATGGCTACTGAATGCTC-3’) and IL7R-R (5’-CCCACACAATCACCCTCTTT-3’).

Statistical analysis

Statistical significance of phosphoprotein levels among groups of patients with different TSLPR pattern (strongly positive, moderately positive, and fully negative) was determined by one-way ANOVA analysis of variance followed by post hoc Bonferroni’s multiple comparison test. P values less than 0.05 were considered statistically significant. All data were presented as mean ± standard deviation (SD). GraphPad PrismV5.0
(GraphPadSoftware, San Diego, CA, USA) was used for statistical analysis.* p < 0.05, ** p < 0.01, *** p < 0.001.
Chapter 3

Role of the histone deacetylase inhibitor Givinostat (ITF2357) in treatment of CRLF2 rearranged acute lymphoblastic leukemia

A.M. Savino [1], J.Sarno [1], L.Trentin [2], M. Vieri [1], G. Fazio [1], M. Bardini [1], C. Bugarin [1], G. Fossati [3], K. Davis [4], G. Gaipa [1], L.H. Meyer [5], G. Te Kronnie [2], A. Biondi [1], C. Palmi [1]* and G. Cazzaniga [1]*.

*These authors contributed equally to this work

1. Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy.
2. Laboratory of Onco-Hematology, Department of Pediatrics, Università di Padova, Italy.
3. Preclinical R&D Department, Italfarmaco S.p.A., Cinisello Balsamo, Milan, Italy.

4. Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA; Hematology and Oncology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.

5. Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany.

CORRESPONDING AUTHORS

Giovanni Cazzaniga,
Centro Ricerca M. Tettamanti, Università di Milano-Bicocca,
Ospedale San Gerardo, via Pergolesi, 33, 20900 Monza (MB),
Italy.
E-mail: gianni.cazzaniga@hsgerardo.org
Tel: +39 (0)39 2333661; Fax: +39 (0)39 2332167

and

Andrea Biondi,
Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San
Gerardo, via Pergolesi 33, 20900 Monza (MB), Italy.
E-mail: abiondi.unimib@gmail.com
Tel: +39 (0)39 2333661; Fax: +39 (0)39 2332167.
ABSTRACT

Recently, in a subset of poor prognosis childhood ALL patients, genomic alterations of \textit{CRLF2} and \textit{JAK2} genes leading to the deregulation of JAK/STAT pathway have been reported. Inhibition of \textit{CRLF2}/\textit{JAK2} signaling has the potential to become a therapeutic intervention for this subgroup of patients. In addition to the use of \textit{JAK2} inhibitors, numerous reports indicated that a broader antitumor activity is necessary to effectively treat tumor cells with aberrant \textit{CRLF2} related signaling. Previous studies have shown that the HDAC inhibitor Givinostat/ITF2357 has potent anti-tumor activity against hematological malignancies, including myeloproliferative neoplasms (MPN) carrying the JAK2V617F mutation and consequent deregulation of JAK/STAT pathway. Here we demonstrated that Givinostat, at low concentrations, inhibited proliferation and induced apoptosis of BCP-ALL \textit{CRLF2}-rearranged MHH-CALL4 and MUTZ 5 cell lines positive for exon 16 \textit{JAK2} mutations and of blasts from patients carrying \textit{CRLF2} rearrangements. At low doses (0.2 µM), Givinostat downregulated genes belonging to JAK/STAT pathway and inhibited the basal and TSLP- induced signaling reducing the phosphorylation of STAT5. \textit{In vivo}, Givinostat was able to significantly reduce engraftment of human blasts in xenograft models of \textit{CRLF2} positive BCP-ALL. Furthermore, Givinostat increased the effect of current chemotherapy in \textit{in vitro} and \textit{ex vivo} models. In conclusion, this drug may represent a novel and
effective tool, in combination with current chemotherapy, to treat this difficult and bad prognosis subset of ALL.

INTRODUCTION

B Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) is one of the most common pathologies in pediatric age and represents 35% of all tumors. The cure rate for this disease approaches 90% with current treatment regimen (1), however the probability of survival of patients who relapse is only 30%. Therefore there is an urgent need to focus on particular subgroups of patients with hallmarks of bad prognosis that could benefit of novel therapeutic approaches. Recently, alterations of CRLF2 (Cytokine Receptor-like Factor 2), a new negative prognostic factor in pediatric BCP-ALL (2), have been identified in up to 7% of patients (3-5). In particular, these patients represent half of Ph-like ALLs (6) and of Down Syndrome-associated BCP-ALL (3,7). Rearrangements in CRLF2 cause the overexpression of this component of the heterodimeric cytokine receptor for thymic stromal lymphpoietin (TSLP) and lead to deregulation of JAK/STAT and PI3K/mTOR pathways causing hyperactive signaling (4,8,9). Moreover, CRLF2 overexpression is highly associated with point mutations in JAK family members (4,6,10,11) and experimental data showed that the introduction of CRLF2 rearrangements and JAK2 mutations together induced transformation of the murine BCP cell line BaF3 (7). These observations emphasize the role
of JAK/STAT pathway in CRLF2 rearranged subset of BCP-ALL and lead to hypothesize that inhibition of this hyperactive signaling network could have a therapeutic relevance. Several reports described the employment of JAK inhibitors to target JAK/STAT pathway. Maude et al. (12) showed the efficacy of a JAK1/2 inhibitor, in in vivo xenograft models of Ph-like BCP-ALL and in a subset of T-ALL, ETP-ALL, in which the hyperactivation of JAK/STAT pathway is a common feature (13). However, the development of new resistance mechanisms to JAK inhibitors is growing (14) impairing their efficacy, thus emphasizing the need for innovative therapeutic strategies. In this issue we propose a novel epigenetic approach using an already known class I/II HDAC inhibitor (HDACi), Givinostat/ITF2357, as therapeutic tool to treat CRLF2 rearranged patient with deregulation of JAK/STAT pathway. This drug is already in clinic for myeloproliferative neoplasms (MPNs) such as polycythemia vera and has an already established safety profile with controlled side effects (15). This study establishes the in vitro and in vivo efficacy of Givinostat in cases with CRLF2 rearrangements, alone or in combination with conventional chemotherapy. We show that Givinostat causes transcriptional modulation of genes involved in JAK/STAT pathway leading to the inactivation of this signaling network. Overall, this drug may represent a novel and effective tool to treat this difficult and bad prognosis subset of ALL.
MATERIALS AND METHODS

Cell culture

For this study, we used human BCP-ALL cell lines MHH-CALL4 and MUTZ5, human essential thrombocythemia SET2 and human chronic myeloid leukemia K562. MHH-CALL4 and MUTZ5 overexpressed CRLF2 via IGH@-CRLF2 translocation and harbored JAK2 mutations (JAK2 I682F and R683G, respectively). SET2 cell line bearing V617F mutation of JAK2 was chosen as positive control for sensitivity to Givinostat and the BCR/ABL- positive K562 cell line was included as negative one (16). Cells were kept in RPMI medium supplemented with 10-20% fetal bovine serum, 1% L-glutamine and 1% penicillin/streptomycin at 37°C in humidified air with 5% CO₂.

Patient samples

Five patients were selected for this study on the basis of their positivity for CRLF2 alterations and availability of biological material. The analyzed patients were diagnosed and treated according to AIEOP-BFM ALL 2000 and 2009 protocols (NCT00613457 and NCT01117441) from 2005 to 2012. BCP-ALL diagnosis was made according to standard cytomorphology, cytochemistry and immunophenotypic criteria. Immunophenotyping was carried out using APC conjugated anti-human CD10, FITC-conjugated anti-human CD19 (EBioscience, San Diego, California, USA) and PE-conjugated human CRLF2 (Biolegend, London, UK). Cells were collected on
a FACSCanto II™ flow cytometer (BD, Becton Dickinson Biosciences, San Jose, California, USA) and analyses were performed with DIVA™ software. CRLF2 overexpression and P2RY8-CRLF2 fusion were analyzed as previously described (17). Briefly, relative gene expression (indicated as fold change) was quantified by the 2-DDCt method. For CRLF2 expression, the DDCts were calculated by subtracting the median of the DCt of a published cohort of 464 BCP-ALL patients enrolled in Italy in the AIEOP-BFM ALL2000 study from February 2003 to July 2005 (18) to the DCt of each sample. Patients were considered CRLF2 overexpressed when relative gene expression was 20-fold above the median. The DDCts for P2RY8-CRLF2 expression were calculated by subtracting the DCt of a selected positive patient external to this cohort to the DCt of each sample (19). Patients were further characterized for JAK2 alterations by HRM technique (17) and for other BCP-ALL associated aberrations by Multiplex Ligation-dependent Probe Amplification (MLPA; SALSA MLPA P335-A3 ALL-IKZF1 probemix, MRC-Holland, Amsterdam, The Netherlands) according to the manufacturer’s instruction (20,21). Informed consent to participate in the study was obtained for all patients by parents or legal guardians. Investigation has been conducted in accordance with the ethical standards, with the Declaration of Helsinki and with the national and international guidelines and has been approved by the authors’ institutional review board.
Establishment of xenograft model

Primary leukemia cells from bone marrow of the above mentioned patients were injected into sublethal irradiated (250 rad) non-obese diabetic/severe combined immunodeficient (NOD. Cg-Prkdcscid also termed NOD/SCID, Charles River Laboratories, Wilmington, MA, USA) mice. Samples were injected at a dose of 7-10 x10^6 cell per mouse. Cells from bone marrow of successfully engrafted mice (more than 80% of human blasts in bone marrow) were re-injected (10^6 cells/mouse) to create secondary or tertiary xenografts for treatment studies. Engraftment was determined by flow cytometric analysis of samples collected by bone marrow aspiration using antibodies against human CD10, CD19 and CRLF2 and, to exclude false positivity, mouse CD45.1 (Percp-Cy5.5-conjugated, EBioscience). For ex vivo studies, blasts were isolated from infiltrated bone marrow or spleens of primary and secondary mice (more than 80% BCP-ALL blasts). Blasts were cultured on a confluent layer of OP9 stroma and kept in alpha-MEM medium supplemented with 20% fetal bovine serum, 1% Glutamax (GIBCO® Life Technologies, Carlsbad, California, USA) and 1% penicillin/streptomycin at 37°C in humidified air with 5% CO₂ (22). Human recombinant TSLP (Immunotools, Friesoythe, Germany) was added in the medium at a concentration of 10 ng/ml.
In vitro and ex vivo analysis of leukemia cells

Cells lines and xenograft leukemia blasts were incubated with Givinostat (ITF2357, Italfarmaco, Cinisello Balsamo, Italy) dissolved in DMSO, or only DMSO as vehicle, in 24-well plates for 72h (blasts were cultured on OP9 stroma). Citotoxicity assays were performed with Annexin V-FITC Apoptosis Detection Kit Plus (BioVision, San Francisco, California, USA) following the manufacturer instructions. Live cells (negative for both Annexin V and Sytox staining) were assessed by cytofluorimetric technique. Proliferation assays were performed only for cell lines by counting live cells by FACS. Experiments were performed in triplicate. STAT5 phosphorylation was measured by phosphoflow as previously described (23). Cells were assessed for viability >75% by Trypan blu exclusion. Cell lines and xenograft blasts were incubated for 24h with Givinostat at 0.2 µM or DMSO at 37°C. After treatment, cells were stimulated with rh-TSLP (0.1-10 ng/mL) for 30 minutes at 37°C to allow signal transduction. After stimulation, cells were immediately fixed with paraformaldehyde (1.5%) and permeabilized with 90% ice-cold methanol (24). Samples were than stained with Alexa-Fluor 488-conjugated anti-phospho-STAT5 Tyr 694 (BD Bioscience Franklin Lakes, NJ, USA) or isotype matched IgG and surface antigen-directed MoAbs (anti human CD10 and anti mouse CD45.1). Cells were acquired on FACSCantoll™ flow cytometer. Data were collected and analyzed using DIVA™ software and Cytobank. Positivity threshold for phosphoprotein expression was
established using isotype IgG-negative control. For Givinostat and vehicle treated samples, the levels of STAT5 phosphoprotein in response to rh-TSLP stimulus were normalized to the basal STAT5 phosphorylation levels for each cell line and patient for data display.

Microarray analysis and qRT-PCR assay

Gene expression analysis was carried out on ex-vivo treated xenograft leukemia cells from primary or secondary transplantation (N=5) after 6h of incubation with Givinostat or vehicle in alpha-MEM without stroma. RNA was extracted using TRIZOL reagent (Invitrogen, Life Technologies, Carlsbad, California, USA). RNA quality was assessed on an Agilent 2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany). Gene expression analysis was performed using the Affymetrix GeneChip Human Genome U133 Plus 2.0 array and the Affymetrix GeneChip 3’ IVT PLUS reagent kit. From each sample 100 ng of RNA were converted in double-stranded cDNA and then labeled cRNA was generated by in vitro transcription. For the fragmentation 15 µg of purified cRNA were used. Hybridization, washing, staining and scanning protocols were performed following manufacturer’s instructions. All data analysis was performed in R (http://www.R-project.org/ version 3.0.2) using Bioconductor and R packages. Probe level signals were converted to expression values using the robust multi-array averaging (RMA) algorithm (25). Differentially
expressed genes were identified using Significance Analysis of Microarray algorithm coded in the samr R package (26). In SAM, we estimate the number of false positive predictions (i.e., False Discovery Rate, FDR) with 1000 permutations. To identify genes up- and down-regulated by Givinostat, we selected those probe sets with FDR<0.05. Gene Ontology (GO) analysis was performed using DAVID version 6.7 (http://david.abcc.ncifcrf.gov/). Pathway analysis was carried out using Graphite (http://graphiteweb.bio.unipd.it/) that combines topological and multivariate pathway analysis with an efficient system of network visualizations (27). Gene set enrichment analysis (GSEA) was done comparing the expression profiles of treated versus control samples using the C2KEGG and C2cgp gene sets within the molecular signatures databases (MSigDB) collection (28). The signal to noise metric and the gene_set permutation were used to identify statistical enrichment of the selected gene sets in Givinostat treated versus DMSO treated cells.

Validation of differentially expressed genes was performed by qRT-PCR using TaqMan Gene Expression Assays and the Universal Probe Library System (UPL) (Roche Diagnostic, Basel, Switzerland). Optimal primers and probes were selected using the Roche ProbeFinder software (https://www.roche-appliedscience.com/sis/rtpcr/upl). Genes analyzed included: STAT5A, JAK2, IL7Ra, cMYC, BCL2L1, PTPN1 and the housekeeping GUS gene, tested as internal control. Each cDNA sample was tested in triplicate (Ct range between
replicates <1.0). Differences in gene expression before and after treatment were statistically evaluated using the student t-test. Differences were considered statistically significant at p values <0.05, indicated in experiments with asterisks: * p<0.05; **p<0.01; ***p<0.001.

CyTOF analysis

CyTOF analysis was performed used diagnostic samples for patient 1,2,3,5 and xenograft-derived blasts for patient 4, according to the availability of the cells. One million single cells per sample have been treated with Givinostat (0.2 µM) for 24 hours and then analyzed via CyTOF using previously described approach (29). The expression of 25 phenotypic proteins were contemporary measured at single cell level. Cells were gated to exclude cPARP positive, myeloid, T-cells and red blood cells and then clusterized for 16 parameters typical of B-cell signature. Supplementary Table 1 summarize the panel of metal-conjugated antibodies used for the analysis. Checkmarks indicate the markers used for the analysis by viSNE clustering software (30). The plots are colored for different protein expression’s and colorimetric depiction for each plot indicates the different level of expression of the considered marker in the cell population analyzed. Blue dots represents blasts negative for that antigen while positivity is indicated by a colorimetric range that goes from yellow to red. SPADE software was used to further represent data. Cells were clusterized according to
their positivity for surface or intracellular markers and clusters were represented by spheres. The size of the spheres was depicted according to the number of events in each cluster. Bigger spheres represents clusters with more cells positive or negative for the selected marker. The colorimetric range from negativity to positivity for that marker reflected the one used by viSNE. The spheres have been further grouped in bubbles (black circles) according to the expression of CRLF2, CD10 and CD45.

In vivo treatment

All *in vivo* experiments were conducted on protocols approved by Ministero della Salute (64/2014 PR) For efficacy studies, mice were randomized to treatment or vehicle (3-5 mice per arm) once xenografts had engrafted (0.1-1% human blasts in the bone marrow). Givinostat or vehicle (1% DMSO+PEG-H2O 1:1) was administered for 7 weeks (5 days/week) by intraperitoneal injection at a dose of 30 mg/kg. At the end of treatment, mice were sacrificed and spleens and bone marrows were harvested. Disease burden was assessed at this end point, by measuring absolute number of splenic and bone marrow blasts (total splenic or bone marrow count x %human CD10+/CD19+/CRLF2+ cells).
Combination assays

To mimick the effect of remission/induction chemotherapy, Methyl-prednisolone (Sanofi, Italy) or a mix of Asparaginase (EUSA Pharma, UK), Vincristine (Pfizer, Italy) and Dexamethasone (Farmaceutici CABER, Italy) were used for combination assays. The doses employed for the combination were chosen under the IC50 value for each agent, calculated with Compusyn software (Compusyn; Biosoft, Cambridge, UK), performing single dose/effect curves (data not shown) for each cell line or xenograft blasts. Cells were incubated with vehicle, drugs alone or in combination for 72 hours and then inhibition of proliferation or cytotoxic effect was tested as previously described.

Drug additivity or synergy was determined by using the criteria described by Greco et al. (31). Briefly, the effect of each drug was expressed as the ratio of drug treated sample/vehicle. For each point, synergy or additivity was calculated using the Bliss independence model defined by the equation: \(E_{xy} = E_x + E_y - (E_x \times E_y) \), where \((E_{xy}) \) is the additive effect of drugs \(x \) and \(y \) as predicted by their observed individual effects \((E_x \) and \(E_y) \). Therefore \(E_{xy} \) represents the Expected value (EV) in case of additivity of the compounds, while the Actual value (AV) indicated the real observed effect of the combination. Since in this issue the effect was evaluated as the reduction of proliferating cells/live cells, we considered both drugs additive when \(AV = EV \), synergic: \(AV > EV \) and antagonists when \(AV < EV \).
RESULTS

Givinostat inhibits growth, induces apoptosis and blocks STAT5 phosphorylation in CRLF2 rearranged cell lines

We measured the effect of Givinostat on inhibition of proliferation and induction of apoptosis in long term culture of BCP-ALL cell lines MHH-CALL4 and MUTZ5, both harboring IGH@-CRLF2 rearrangement and JAK2 mutation. SET2 essential thrombocytemia cell line, bearing V617F mutation of JAK2, was chosen as positive control and K562 chronic myelogenous leukemia cell line, (BCR/ABL positive), was included as negative one (16). As shown in figure 1, treatment with Givinostat reduced the proliferation of MHH-CALL4 and MUTZ5 cells within 72 hours with IC50 values of 0.08±0.05uM and 0.17±0.07uM, respectively. Moreover, Givinostat induced a decrease in viable cells with IC50 of 0.17±0.03uM for MHH-CALL4 and 0.25±0.03 uM for MUTZ5 cell line. Of note, the observed IC50 values for MHH-CALL4 were lower than those for SET2 positive control both for proliferation (IC50: 0.08±0.05uM vs. 0.14±0.03uM) and apoptosis (IC50: 0.17±0.03 vs. 0.22±0.04uM) (Figure 1, panel A-B). In order to investigate if Givinostat could have an effect on modulating CRLF2-mediated JAK/STAT pathway, we examined the phosphorylation status of STAT5 after treatment with the drug, in basal state or after TSLP stimulation. As expected, due to JAK2 point mutation, high basal level of pSTAT5 was observed in MHH-CALL4 e
MUTZ5. Low concentration of TSLP (1 ng/ml) robustly increased pSTAT5 (1.5 to 2.2 fold increase for MHH-CALL4 and MUTZ5, respectively). Givinostat (0.2uM) inhibited pSTAT5 in both cell lines in basal conditions (we detected 3.9 and 4.5 fold decreases of median values of pSTAT5 for MUTZ5 and MHH-CALL4, respectively) and reduced phosphorylation below basal levels after cytokine stimulation (2.8 and 2.1 fold decreases under basal levels for MUTZ5 and MHH-CALL4, respectively) (Figure 1, panel C).
A Proliferation assay

B AnnexinV/Sytox assay

<table>
<thead>
<tr>
<th></th>
<th>IC50</th>
<th></th>
<th>IC50</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALL4</td>
<td>0.08 ± 0.05</td>
<td>SET2</td>
<td>0.14 ± 0.03</td>
</tr>
<tr>
<td>MUTZ5</td>
<td>0.17 ± 0.07</td>
<td>K562</td>
<td>0.28 ± 0.07</td>
</tr>
<tr>
<td>MUTZ5</td>
<td>0.17 ± 0.07</td>
<td>SET2</td>
<td>0.28 ± 0.03</td>
</tr>
<tr>
<td>K562</td>
<td>0.7 ± 0.21</td>
<td>MUTZ5</td>
<td>0.7 ± 0.21</td>
</tr>
</tbody>
</table>

C

LIVF, MUTZ5
MUTZ5
pSTAT5 - Panel 1

LIVL, MHH CALL4
MUTZ5
pSTAT5 - Panel 1

Calculated Arcsinh Ratio of Medians by First Row using X-Axis channel(s): Panel/Channel Values

101
Figure 1. Anti-proliferative and pro-apoptotic effect of Givinostat on cell lines (A) Analysis of proliferation performed by flow cytometric count of live cells (Annex V/Sytox double negative) measured in a defined time interval (30’). (B) Analysis of apoptosis by Annexin V/Sytox assay on MHH-CALL4, MUTZ5, SET2 and K562 cell lines. Y axis: percentage of Givinostat treated live cells (Annexin V/Sytox double negative) normalized on percentage of vehicle treated cells. X axis: logaritmic increasing doses of Givinostat. The IC50 of individual samples are shown in reported tables both for proliferation and apoptosis. (C) Inhibition of basal and TSLP-induced STAT5 phosphorylation after treatment with Givinostat in CRLF2 rearranged cell lines. MHH-CALL4 and MUTZ5 were plated at 0.1x10^6 cells/well in 24 wells for 24 hours in presence of 0.2µM Givinostat or vehicle. Data were normalized to the basal pSTAT5 phosphorylation level for colorimetric depiction of signaling changes. Blue indicates inhibition and yellow is stimulation.

Patient-derived ALL-xenograft samples

To confirm the data obtained with cell lines, we decided to further investigate the effect of Givinostat on blasts from CRLF2 rearranged BCP-ALL patients. To this purpose we developed xenograft models of human CRLF2 rearranged ALL to expand cells from patients and to recapitulate human leukemia in recipient mice. Diagnostic specimens from 5 patients were intravenously injected into immunodeficient mice and engraftment was determined measuring the percentage of human CD10+/CD19+/CRLF2+ blasts in the bone marrow by flow cytometry. These 5 samples were all CRLF2 rearranged (CRLF2r) with P2RY8-CRLF2 fusion and 1 out of 5 harbored JAK2 mutation (JAKm) as listed in Table 1. The mutation consist of a not yet described insertion (L681-I682 insEA) in exon 16.
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Protocol</th>
<th>Age at Diagnosis (years)</th>
<th>Sex</th>
<th>WBC x 10⁵/µl</th>
<th>Down Syndrome</th>
<th>Immunophenotype</th>
<th>Prednisone Response</th>
<th>MRD Risk</th>
<th>Final Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt # 1</td>
<td>ALL2000</td>
<td>5</td>
<td>F</td>
<td>16600</td>
<td>no</td>
<td>CALL</td>
<td>PGR</td>
<td>SR</td>
<td>SR</td>
</tr>
<tr>
<td>Pt # 2</td>
<td>ALL2009</td>
<td>3</td>
<td>F</td>
<td>87210</td>
<td>no</td>
<td>B-II</td>
<td>PGR</td>
<td>SR</td>
<td>B-SR</td>
</tr>
<tr>
<td>Pt # 3</td>
<td>ALL2009</td>
<td>2</td>
<td>M</td>
<td>23940</td>
<td>yes</td>
<td>B-II</td>
<td>PGR</td>
<td>SR</td>
<td>SR</td>
</tr>
<tr>
<td>Pt # 4</td>
<td>ALL2009</td>
<td>15</td>
<td>M</td>
<td>1870</td>
<td>yes</td>
<td>B-II</td>
<td>PGR</td>
<td>MR-SR</td>
<td>HR</td>
</tr>
<tr>
<td>Pt # 5</td>
<td>ALL2009</td>
<td>4</td>
<td>F</td>
<td>16600</td>
<td>no</td>
<td>B-II</td>
<td>PGR</td>
<td>MR</td>
<td>HR</td>
</tr>
</tbody>
</table>

PGR = prednisone good responder; SR = standard risk; MR = medium risk; HR = high risk; SER = slow responder.

Other genetic lesions:
- CRLF2r: P2RY8-CRLF2
- JAK2: wt, del
- CDKN2A/2B: del
- BTG1: del
- PAX5: del
- IKZF: del
- CDKN2A/2B: del
- PAX5: del
- BTG1: del

Sentence: Clinical Characteristics and genetic lesions of BCP-ALL samples.
All 5 samples successfully engrafted in NOD/SCID mice. The animals were sacrificed when they reached 80% of human blasts in bone marrow and spleen, and the recovered cells were used for ex-vivo analyses and for further serial transplantations to perform preclinical in vivo studies.

Givinostat induces apoptosis of CRLF2 rearranged xenograft blasts

ALL blasts isolated from xenografted mice were co-cultured on OP9 stroma to perform ex vivo assays. In contrast with cell lines, blasts are not able to expand and proliferate when cultured ex vivo (32), for this reason in this system we only evaluated induction of apoptosis. Consistent with our findings in cell lines, Givinostat (0.2uM) reduced the percentage of live cells (Annexin V/Sytox negative) in all xenograft blasts treated with the drug up to one week of observation (Figure 2A). In particular, Givinostat, after 72 hours, was able to kill about 100% of blasts of all tested patients. The induction of cell death in Givinostat treated samples was confirmed using CyTOF technology. In Figure 2B, we showed the modification of the expression of 4 surface markers after treatment with the drug for a representative sample (patient 2). The analysis and the data representation was performed by viSNE software. The complete panel of analysis with the remaining 8 out of 12 markers is shown in supplementary figure 1. CRLF2, CD10, and the most proliferative Ki67 positive blasts notably diminished after 24 hours of treatment with Givinostat, while CD45 high,
IgMi, IgMs positive cells, representative of the normal hematopoietic counterpart, remained unchanged. Moreover, the analysis performed with another software named SPADE showed that, in this patient, the total number of recorded events was lower in Givinostat treated sample (25% of reduction) and most of the missing cells after treatment were CD10 positive and specifically CRLF2 high. Indeed, the bubble indicating CD10+ cells changed from 70% of total events to 44% after treatment and CRLF2+ cells decreased from 42% to 18.4%. On the contrary, normal CD45 high cells were 8.9% of total events before and after treatment (supplementary figure 2). The results were confirmed in 3 other patients (data not shown).
Givinostat inhibits signal transduction in CRLF2 rearranged xenograft blasts

We examined the effect of Givinostat on STAT5 phosphorylation in CRLF2 rearranged xenograft blasts. Basal pSTAT5 level was lower in blasts than in cell lines, except for patient 4 who presented an insertion in JAK2 gene sequence, probably hyperactivating. This patient showed a value of pSTAT5 5.7 fold higher than the mean of basal pSTAT5 of the other four patients. Low concentration of TSLP (1ng/ml)
induced STAT5 activation in all xenograft blasts except for patient 1. Therefore, we tested a higher dose of the cytokine (10ng/ml) too. Givinostat (0.2uM) inhibited pSTAT5 after cytokine stimulation in all tested xenograft blasts (mean fold decrease of pSTAT5: 2.4±0.6) (Figure 2C). For patient 4, the inhibition was markedly observed also in basal conditions (pSTAT5 fold decrease: 6.6).

Givinostat modulates the JAK/STAT pathway in CRLF2 rearranged leukemia cells

To gain insights into molecular processes modulated by Givinostat in leukemia cells harboring the CRLF2 rearrangement, we analyzed the gene expression profiles of primary leukemia cells (N=5) isolated from ALL bearing recipients incubated ex vivo with 0.2 µM Givinostat or DMSO (vehicle) for 6 hours. Givinostat is an epigenetic drug and acts as an HDACi; as expected, it induced a drastic modification at the transcriptome level resulting in almost a distinct clustering between treated and untreated samples already by unsupervised analysis (Figure 3A). Furthermore, gene set enrichment analysis (GSEA) identified a positive enrichment in Givinostat treated specimens for epigenetically silenced cancer genes up-regulated also upon treatment with 5-aza-2'-deoxycytidine (Aza-dC) and/or trichostatin A (TSA), which supports the action of the compound as an epigenetic modifier (Supplementary Figure 3A). According to SAM (Significance
Analysis of Microarrays) analysis, we identified 1228 unique genes (2068 probe sets) differentially expressed between control and treated samples with a FDR<0.05. In particular, 493 and 735 genes resulted up- and down-regulated in Givinostat treated samples, respectively as shown in the supervised analysis (Supplementary Figure 3B). According to Gene Ontology (GO) analysis, the 1228 genes were grouped into 6 main functional categories: phosphorylation, alternative splicing, SH2 domain (i.e. the protein phospho-tyrosine binding domain), actin-binding, Kinase and cytoplasm (p-value<0.05 and FDR<0.05). To reveal relevant biological processes affected by Givinostat we performed a pathway analysis interrogating the KEGG database. Apoptosis, cell cycle, B cell receptor signaling, insulin signaling, p53 signaling and, even more intriguingly, JAK/STAT signaling resulted within the top 20 ranked pathways modulated by the treatment (Supplementary Table 2 and Supplementary Figure 3C). In particular, the transcriptional modification induced by Givinostat in genes related to the JAK/STAT signaling pathway was also confirmed by the negative enrichment of the JAK/STAT gene signature according to GSEA in the treated samples, Figure 3B. Different regulation of Genes included in the JAK/STAT signaling pathway: STAT5A, JAK2, IL7Rα, CRLF2 was validated also by quantitative RT-PCR (Figure 3C). In addition, STAT5 target genes with oncogenic function, BCL2L1 and cMYC were downregulated by the treatment. On the contrary, PTPN1 gene,
coding for a tyrosine phosphatase able to dephosphorylate JAK2 was upregulated in 3 out of 4 tested patients. Moreover, the down regulation of \textit{CRLF2} gene was also confirmed at a protein level upon Givinostat administration by flow cytometry. Blasts were gated for human CD10 expression and MFI values of CRLF2 positive population were evaluated. Downmodulation of CRLF2 protein on cell surface was measured in all tested xenograft blasts after treatment with Givinostat at 0.2uM for 24 hours. One representative experiment performed on patient 3 was showed in figure 3D. For this patient, the median of CRLF2 peak of Givinostat treated sample was 2.4 fold lower than vehicle.
Figure 3. Effect of Givinostat on genes involved in JAK/STAT pathway. (A) Unsupervised hierarchical clustering analysis using probe sets values normalized with RMA and filtered by variance >90% between treated (in blue) and control samples (orange) to highlight associations between clusters of samples and clusters of genes. (C) GSEA analysis plot showing the negative enrichment of the “KEGG_JAK_STAT_signaling_pathway” gene set in Givinostat treated samples (negative Normalized Enrichment Score, NES= -1.4461855) and the corresponding positive enrichment in Vehicle treated samples. The green curve reflects the enrichment score of the genes included in the considered gene set and the ranked differentially regulated genes between the two considered phenotypes (i.e. Givinostat versus Vehicle). (C) Genes involved in JAK/STAT pathway were measured by RQ-PCR. The graphs report the relative gene expression of the indicated genes in drug-treated cells versus untreated cells whose gene expression was conventionally set at value 1. (D) Surface expression of CRLF2 after treatment with Givinostat. MFI are plotted for a representative patient (pt 2).

Givinostat inhibits engraftment of blasts in xenograft models of CRLF2 rearranged BCP-ALL

To determine the efficacy and the therapeutic activity of Givinostat, in vivo models of CRLF2+ BCP-ALL was set up by injecting intravenously blasts from patients 1, 2 and 3 listed in Table 1, as previously described. Seven days after transplantation, mice were randomized and received Givinostat at 30 mg/kg or vehicle via i.p (5 days/week). Disease burden was assessed after 7 weeks of treatment when mice were sacrificed and bone marrow and spleen were collected for analysis. All three CRLF2 rearranged xenograft models exhibited decreased leukemia burden with Givinostat treatment compared to vehicle, evidenced by a decreased of total blast
count in the bone marrow of treated mice (ranging from 1.9 to 34 fold decrease). Moreover, in patient 1 derived xenograft, was observed also a decrease of disease burden in the spleen (128 fold decrease). Unfortunately, the effect of Givinostat in the spleen was not evaluable for the other patient derived xenografts, since in these mice very low level of blast engraftment was observed even in absence of the drug (figure 4).

![Figure 4. Efficacy of Givinostat in xenograft model of CRLF2 rearranged BCP-ALL.](image)

Bone marrow and spleen blast counts at sacrifice in patient 1, 2, 3 xenograft models (3-5 mice per arm). Distribution of absolute blast count identified as human CD10/CD19 double positive cells with means and standard deviation are graphed. One outlier in vehicle treated group (xenograft of patient 2) is plotted in brackets, it has been analyzed but excluded from the statistics.
Givinostat increases the effect of chemotherapy in CRLF2 rearranged cell lines and in xenograft blasts

Having established the single-agent efficacy of Givinostat, we next evaluated the effect of the drug in combination with remission induction chemotherapeutics used in pediatric protocols. First of all, we tested the combination of Givinostat with Methyl-prednisolone, the first drug administered to patients in induction regimen and a strong predictor of clinical outcome. Initially, we measured the \textit{in vitro} sensitivity of MHH-CALL4 and MUTZ5 cell lines to Methyl-prednisolone as monotherapy and we found that, while MUTZ5 cells were sensitive (33\%) to Methyl-prednisolone (IC50 for cytotoxicity: 0.007ug/ml), MHH-CALL4 (IC50 for cytotoxicity: 4.5ug/ml) were never completely killed by the chemotherapeutic, even at high doses of the drug (about 30\% of resistant cells). As result of these observations, we decided to test the anti-proliferative and cytotoxic effect of the combination of Givinostat with Methyl-prednisolone in MHH-CALL4 cell line. We demonstrated that Givinostat was able to sensitize these cells to Methyl prednisolone and a synergic effect of the drugs was measured using the Bliss formula (Figure 5A and 5B).

Moreover, we demonstrated that Givinostat was also able to synergize with a mix of chemotherapeutics currently used in remission induction therapy: Vincristine, Dexamethasone and Asparaginase (VDA). Monotherapy efficacy studies were performed for each drug (data not shown) and values under IC50 were chosen for the combination setting. The doses used
to create the mix of the three drugs were different for MHH-CALL4 and MUTZ5 according to the diverse IC50 values calculated for the single agents. We showed that a low dose of Givinostat (0.1uM) increased the ability of VDA to induce inhibition of proliferation and cell death in MHH-CALL4 cell line in vitro. The observed effect on proliferation and apoptosis was significantly higher than the effect reached with single agents and of that expected by the combination (calculated with Bliss formula), indicating synergism of the drugs. One representative experiment out of three was shown in figure 5, panel C-D. Combination assays performed on MUTZ5 are shown in supplementary figure 4.

We then confirmed the data on xenograft blasts co-cultured ex-vivo on OP9 stroma. Xenograft blasts showed a substantial decrease of vitality after 72 hours of culture even in the absence of drugs but, as shown in figure 5 panel E, we found a significative strong cytotoxic activity of Givinostat in combination with both Methyl-prednisolone and VDA. In particular, the effect of combination, evaluated with Bliss formula, showed an additive effect for patients 1, 2, 3 and a synergic effect for patient 4 both of Methyl-prednisolone and of VDA with Givinostat.
Figure 5. Effect of combination of Givinostat with conventional chemotherapy. In vitro response of MHH-CALL4 at Methyl-prednisolone and Givinostat alone or in combination determined by proliferation assay (A) and Annexin/Sytox assay (B) in a dose escalation expressed in µg/ml after 72 hours of treatment. Dotted lines indicate the expected effect of the combination calculated with Bliss formula. The significance for the lowest dose of both drugs with the highest effect were shown in the black box in detail. Proliferation (C) and Annexin/Sytox assay (D) performed on MHH-CALL4 with Givinostat (0.1 µM) and VDA (Asparaginase 0.23 µg/ml; Desametasone 0.01 µg/ml; Vincristine 0.001 µg/ml). The expected effect is represented by grey column. (E) Effect of combination on xenograft blasts from patient 1 to 4 after 72 hours of treatment. Givinostat (0.1 µM) was combined with VDA (Asparaginase 0.12 µg/ml; Desametasone 0.01 µg/ml; Vincristine 0.001 µg/ml) and Methyl-prednisolone (4.8 µg/ml). The percentage of viable cells are reported on Y axis. The £ represents additivity (Bliss formula: $EV=AV$) and the $ indicates synergy (EV<AV). The significant differences between conditions with their p-values are reported in the table.

DISCUSSION

Rearrangements of *CRLF2*, leading to overexpression of this component of the heterodimeric cytokine receptor for TSLP, are present in up to 7% of childhood BCP-ALL overall and 60-70% of DS-ALL. This subgroup of patients is characterized by a particularly bad prognosis. Recent phosphoflow cytometry results indicate that BCP-ALL leukemic samples which harbor *CRLF2* rearrangements (with or without concomitant JAK mutations) have increased signaling strength through JAK2/STAT5 or PI3K/mTOR pathway that could be potentially be targeted with JAK or PI3K inhibitors (9). The JAK/STAT pathway represent one of the main signaling cascade mediating cytokine receptor and plays a role in hematopoietic cell growth, proliferation, differentiation and survival (34). A variety of
hematologic malignancies activate JAK pathway signaling inappropriately through several mechanisms, including activating mutations, fusions and downregulation of negative regulators (35-39). Nowadays, few data exist on effective treatment strategies for CRLF2 rearranged and JAK mutated ALL. Some reports demonstrated efficacy of heat shock protein 90 inhibition and minimal activity of JAK inhibitor BVB808 in CRLF2 rearranged BCP-ALL (40). Recently, Maude et al. reported in vivo efficacy of JAK1/2 inhibitor Ruxolitinib on ALL xenograft with JAK activating lesions. However, in CRLF2 overexpressed cases without JAK mutation, Ruxolitinib showed a modest effect in reducing tumor burden, indicating that a broader anti tumoral effect was requested in this cases (12). In the present work we investigated the effect of Givinostat, a pan hystone deacetylase inhibitor, on CRLF2 rearranged cases. This drug is already in clinic for the treatment of myeloproliferative disorders. In particular, Givinostat demonstrated to be significantly active in Polycythemia Vera cases with JAK2 V617F mutant, an alteration which induced an hyperactivation of JAK/STAT signaling pathway. We showed here the efficacy of Givinostat in inhibiting proliferation and inducing cell death of BCP-ALL CRLF2 rearranged cell lines at very low doses, with an IC50 similar or lower than positive control JAK2 V617F mutated SET2 cells. The cytotoxic effect was confirmed also on primary blasts from patients harboring CRLF2 rearrangements. Importantly, Givinostat was able to efficiently kill blast cells preserving the
normal hematopoietic counterpart. This consideration could be exerted evaluating the data coming from CyTOF analyses. CyTOF represents a new generation of single cell technology that overcomes the limitations of fluorescence-based flow cytometry \cite{41} because stable isotopes are used as reporters instead of fluorophores. This enables a significant increase in the number of measurable parameters per cell and furthermore we can benefit of a quantitatively accurate platform with linear sensitivity across four orders of magnitude. This single cell analysis allow to understand how the single populations changes in response to the drugs and, in this case in particular, it showed that the cellular population particularly affected by Givinostat was represented by blasts with high expression of CRLF2, while the CD45+ normal hematopoietic cells remain unaffected by the treatment.

Since Givinostat is an epigenetic drug able to remodel chromatine and to affect transcription, we focused on its effect on genes involved in JAK/STAT pathway. Of particular interest was the observed downmodulation of the activator of transcription \textit{STAT5} and of its targets \textit{cMYC} and \textit{BCL2L1}. These results highlight the potential for targeting ‘undragable’ oncogenic transcription factors with epigenetic regulators involved in chromatine remodeling, since the direct targeting of STAT proteins remain a great challenge. Interestingly, Givinostat downmodulated also \textit{CRLF2} gene itself and consequently, the expression of the surface protein was reduced. This is particularly important in this subtype of ALL,
since the overexpression of this receptor drives proliferation and survival processes. Furthermore, Givinostat was able to impair the signaling network related to CRLF2 as it reduced the STAT5 phosphorylation level both at basal condition and after TSLP stimulation. It remains to be investigated if the effect on STAT5 phosphorylation observed was due to an impairment of signaling cascade or to a decrease of total amount of STAT5 protein. Further investigation will be necessary to elucidate this aspect but the final goal of reducing pSTAT5 was anyway achieved. Nevertheless, the effect of inhibition of the pathway was reached involving different players at different levels of regulation. PTPN1 gene for instance, coding for a tyrosine phosphatase able to dephosphorylate and inactivate JAK2, was upregulated by the drug.

Importantly, we have established the preclinical in vivo efficacy of Givinostat on xenograft models of three different CRLF2 rearranged patients. Moreover, we demonstrated the efficacy of Givinostat in combination with other chemotherapeutics on cell lines and on blasts from CRLF2 rearranged patients. Of note, the most responsive patient to Givinostat in combination with Methyl-prednisolone and VDA was a DS-ALL patient belonging to MRD high risk group, thus resulting refractory to the conventional therapy. Furthermore this case showed hyperactivation of JAK/STAT network due probably to a not yet described JAK2 insertion.

The strong effect of low doses of Givinostat in combination with current chemotherapy is intriguing because it elevates the
potential of epigenetic therapies in pediatric ALLs and suggests a role for these therapies in at least some subtypes of high risk ALL like CRLF2 rearranged BCP-ALL for which cytotoxic chemotherapy yields suboptimal cure rates. Of note, in our cohort three out of five patients were DS-ALL. In the future, it would be helpful to focus on this category of patients which particularly suffer of therapy-related side effects and then that could benefit on the introduction of new therapeutic agents in their present regimen of chemotherapy in order to reduce the doses of currently used chemotherapeutics and their related toxicity and morbidity.

REFERENCES

Supplementary Table 1. Complete panel of metal-conjugated antibodies used for CyTOF analyses.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>C joyful</th>
<th>AB</th>
<th>MB</th>
<th>MB+</th>
<th>TMB</th>
<th>TMB+</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDCD1</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD86</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD163</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD28</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD39</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD19</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD199</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD40</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD100</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD198</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD62L</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD27</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD44</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD90</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD41</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD406</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD101</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD10</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD198</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD62L</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD27</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD44</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD90</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD41</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD406</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD101</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>CD105</td>
<td>s</td>
<td>in</td>
<td>s</td>
<td>s</td>
<td>s</td>
<td>s</td>
</tr>
</tbody>
</table>

Legend:
- s: saponin
- in: inactivated
- AB: Anti-body
- MB: Matrix block
- MB+: Matrix block + EDTA
Supplementary Table 2

<table>
<thead>
<tr>
<th>Serial</th>
<th>Pathway</th>
<th>Pathway Genes</th>
<th>Mapped Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Natural killer cell mediated cytotoxicity</td>
<td>137</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Osteoclast differentiation</td>
<td>123</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>Apoptosis</td>
<td>86</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>B cell receptor signaling pathway</td>
<td>73</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Vascular smooth muscle contraction</td>
<td>113</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Cell cycle</td>
<td>124</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>Fc gamma R-mediated phagocytosis</td>
<td>95</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>Hepatitis B</td>
<td>136</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>Insulin signaling pathway</td>
<td>137</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>Leukocyte transendothelial migration</td>
<td>85</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>Oocyte meiosis</td>
<td>108</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>p53 signaling pathway</td>
<td>68</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>HIF-1 signaling pathway</td>
<td>109</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>Jak-STAT signaling pathway</td>
<td>99</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>Cholinergic synapse</td>
<td>95</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>Circadian entrainment</td>
<td>96</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>Gap junction</td>
<td>89</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>Neurotrophin signaling pathway</td>
<td>116</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>T cell receptor signaling pathway</td>
<td>98</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>Tight junction</td>
<td>118</td>
<td>10</td>
</tr>
<tr>
<td>21</td>
<td>Chronic myeloid leukemia</td>
<td>73</td>
<td>9</td>
</tr>
<tr>
<td>22</td>
<td>Fc epsilon RI signaling pathway</td>
<td>62</td>
<td>9</td>
</tr>
<tr>
<td>23</td>
<td>Glutamatergic synapse</td>
<td>92</td>
<td>9</td>
</tr>
<tr>
<td>24</td>
<td>Salivary secretion</td>
<td>48</td>
<td>9</td>
</tr>
<tr>
<td>25</td>
<td>VEGF signaling pathway</td>
<td>67</td>
<td>9</td>
</tr>
<tr>
<td>26</td>
<td>Acute myeloid leukemia</td>
<td>57</td>
<td>8</td>
</tr>
<tr>
<td>27</td>
<td>Alzheimer's disease</td>
<td>49</td>
<td>8</td>
</tr>
<tr>
<td>28</td>
<td>Amoebiasis</td>
<td>46</td>
<td>8</td>
</tr>
<tr>
<td>29</td>
<td>Chagas disease (American trypanosomiasis)</td>
<td>89</td>
<td>8</td>
</tr>
<tr>
<td>30</td>
<td>Dopaminergic synapse</td>
<td>124</td>
<td>8</td>
</tr>
<tr>
<td>31</td>
<td>Epstein-Barr virus infection</td>
<td>83</td>
<td>8</td>
</tr>
<tr>
<td>32</td>
<td>ErbB signaling pathway</td>
<td>88</td>
<td>8</td>
</tr>
<tr>
<td>33</td>
<td>Glioma</td>
<td>65</td>
<td>8</td>
</tr>
<tr>
<td>34</td>
<td>Glycerophospholipid metabolism</td>
<td>84</td>
<td>8</td>
</tr>
<tr>
<td>35</td>
<td>GnRH signaling pathway</td>
<td>85</td>
<td>8</td>
</tr>
<tr>
<td>36</td>
<td>Melanogenesis</td>
<td>101</td>
<td>8</td>
</tr>
<tr>
<td>37</td>
<td>NF-kappa B signaling pathway</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>38</td>
<td>Pancreatic cancer</td>
<td>69</td>
<td>8</td>
</tr>
<tr>
<td>39</td>
<td>Phosphatidylinositol signaling system</td>
<td>76</td>
<td>8</td>
</tr>
<tr>
<td>40</td>
<td>PPAR signaling pathway</td>
<td>64</td>
<td>8</td>
</tr>
<tr>
<td>41</td>
<td>Progesterone-mediated oocyte maturation</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>42</td>
<td>Prostate cancer</td>
<td>87</td>
<td>8</td>
</tr>
<tr>
<td>43</td>
<td>Renal cell carcinoma</td>
<td>60</td>
<td>8</td>
</tr>
<tr>
<td>44</td>
<td>Small cell lung cancer</td>
<td>82</td>
<td>8</td>
</tr>
<tr>
<td>45</td>
<td>Wnt signaling pathway</td>
<td>144</td>
<td>8</td>
</tr>
<tr>
<td>46</td>
<td>Axon guidance</td>
<td>118</td>
<td>7</td>
</tr>
<tr>
<td>47</td>
<td>Measles</td>
<td>102</td>
<td>7</td>
</tr>
<tr>
<td>48</td>
<td>Morphine addiction</td>
<td>55</td>
<td>7</td>
</tr>
<tr>
<td>49</td>
<td>Toll-like receptor signaling pathway</td>
<td>103</td>
<td>7</td>
</tr>
<tr>
<td>50</td>
<td>Adherens junction</td>
<td>70</td>
<td>6</td>
</tr>
</tbody>
</table>
Supplementary Figure 1

Figure S1. Complete panel of viSNE analyses with the remaining 8 out of 12 markers for patient 2.
Supplementary Figure 2
Supplementary Figure 2 (continued)

<table>
<thead>
<tr>
<th>CD10+</th>
<th>CRLF2+</th>
<th>normal</th>
<th>total events</th>
</tr>
</thead>
<tbody>
<tr>
<td>vehicle</td>
<td>32741 (70.0%)</td>
<td>19821 (42.0%)</td>
<td>4129 (8.9%)</td>
</tr>
<tr>
<td>Givinostat</td>
<td>15348 (44.0%)</td>
<td>6413 (18.4%)</td>
<td>3104 (8.9%)</td>
</tr>
</tbody>
</table>
Figure S2. Analyses of blasts from patient 2 with SPADE tool. The positivity for selected markers was graphically represented by the color and was used to clusterize blasts in spheres. The size of the spheres changed accordingly to the number of blasts selected. The spheres were furthermore grouped in bubbles, according to their positivity for CD10, CRLF2 and normal cells (CD45high, intracellular and surface IgM positive). After treatment with Givinostat not only the color but also the size of the spheres was reduced. Number and percentage of events registered for each bubble before and after treatment with Givinostat are shown.
Figure S3. (A) GSEA plot showing the positive enrichment (positive Normalized Enrichment Score, NES= 2.7727435) in the Givinostat treated samples for HDAC target genes. (B) Supervised hierarchical clustering analysis using the 2068 probe sets differentially regulated with FDR< 0.05 according to SAM between Givinostat treated (blue) versus vehicle treated (orange) samples. Down- and up-regulated genes are shown in the heat map in green and red, respectively. (C) Graphite network showing the genes enclosed in the KEGG JAK-STAT signaling pathway; genes down-regulated by Givinostat and included in the differentially regulated genes according to SAM are shown in blue. Genes up-regulated are shown in red.

Supplementary Figure 4

Figure S4. Proliferation (A) and Annexin V/Sytox assay (D) performed on MUTZ5 cells in presence of Givinostat (0.1 μM) and VDA (Asparaginase 0,023 ug/ml; Desametasone 0,001 ug/ml; Vincristine 0,0001 ug/ml) alone and in combination. The expected effect, calculated by Bliss formula, is represented by grey column.
CRLF2 Over-expression is a Poor Prognostic Marker in Children with High Risk T-Cell Acute Lymphoblastic Leukemia.

Chiara Palmi1, Angela Maria Savino1, Daniela Silvestri2, Ilaria Bronzini3, Gunnar Cario4, Maddalena Paganin3, Barbara Buldini3, Marta Galbiati1, Martina U. Muckenthaler5, Maurizio Aricò,6 Elena Barisone,6 Fiorina Casale,6 Franco Locatelli,6 Luca Lo Nigro,6 Concetta Micalizzi,6 Rosanna Parasole,6 Andrea Pession,6 Caterina Putti,6 Nicola Santoro,6 Anna Maria Testi,6 Ottavio Ziino,6 Andreas Kulozik5, Martin Zimmermann7, Martin Schrappe4, Cristina Bugarin1, Giuseppe Gaipa1, Giuseppe Basso3, Andrea Biondi8, Maria Grazia Valsecchi2, Martin Stanulla7, Valentino
Conter⁶,⁸, Geertruy te Kronnie³ and Giovanni Cazzaniga¹.

8. Centro Ricerca M. Tettamanti, Clinica Pediatrica, Università di Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy.
9. Centro Operativo e di Ricerca Statistica, Università di Milano Bicocca, Monza, Italy.
10. Laboratory of Onco-Hematology, Department of Pediatrics, Università di Padova, Italy.
11. Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
12. Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany.
13. ALL Working Group, Italian Association of Pediatric Hematology and Oncology (AIEOP).
14. Department of Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany.
15. Clinica Pediatrica, Università di Milano Bicocca, Fondazione MBBM/Ospedale San Gerardo, Monza, Italy.

ACKNOWLEDGEMENTS
C. Palmi is supported by a grant from Beat Leukemia Foundation (www.beat-leukemia.org). This study was supported by grants from: Fondazione Città della Speranza (Padova), Fondazione Tettamanti (Monza), Associazione Italiana Ricerca sul Cancro (AIRC) (to GteK, GB, GiC, AB, FL and MGV),
CARIPARO project of excellence (to GteK), MIUR (to AB and GB), Fondazione Cariplo (to AB, GiC and GteK), Deutsche Krebshilfe (to GuC, MSt and MSc), Madeleine-Schickedanz-Kinderkrebsstiftung (to GuC, MSt and MSc), TRANSCAN _TRANSCALL (to MUM, AK, GC, MS, GB, AB, GiC and GteK).

We thank Dr Stefan Nagel (DSMZ - German Collection of Microorganisms and Cell Cultures GmbH) for the CRLF2 expression screening on T-ALL cell lines; Simona Songia, Lilia Corral, Valentina Carrino, Eugenia Mella, Tiziana Villa (Monza), Elena Seganfreddo and Katia Polato (Padova) for MRD monitoring of children treated in AIEOP centers; all medical doctors of the AIEOP and BFM centers.

CORRESPONDING AUTHORS
Giovanni Cazzaniga,
Centro Ricerca M. Tettamanti, Università di Milano-Bicocca, Ospedale San Gerardo, via Pergolesi, 33, 20900 Monza (MB), Italy.
E-mail: gianni.cazzaniga@hsgerardo.org
Tel: +39 (0)39 2333661 ; Fax: +39 (0)39 2332167

and

Andrea Biondi,
Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo, via Pergolesi 33, 20900 Monza (MB), Italy.
E-mail: abiondi.unimib@gmail.com
Tel: +39 (0)39 2333661; Fax: +39 (0)39 2332167.
Poor outcome for CRLF2 over-expression in childhood T-ALL.

ABSTRACT

Purpose
Although introduction of risk-adapted therapy improved their prognosis, pediatric T acute lymphoblastic leukemia (T-ALL) patients still have a worse outcome compared to patients with B Cell Precursor (BCP)-ALL and they could benefit from the identification of new prognostic markers. Alteration of Cytokine Receptor-like Factor 2 (CRLF2) gene, a hallmark correlated with poor outcome in BCP-ALL, has not been reported in T-ALL. However, aberrations in IL7Rα that heterodimerizes with CRLF2 have been described. This observation prompted us to investigate if CRLF2 could also be affected in T-ALL.

Patients and Methods
We analyzed CRLF2 expression in 212 T-ALL patients enrolled in the AIEOP-BFM ALL 2000 study in Italian (AIEOP) and German (BFM-G) centers.

Results
Seventeen AIEOP patients out of 120 (14.2%) presented CRLF2 expression 5 times higher than the median (‘CRLF2-high’) with a significantly inferior 5-years EFS (41.2%±11.9 vs. 68.9%±4.6, p=0.006) and an increased CIR (52.9%±12.1 vs. 26.2%±4.3, p=0.007) compared to CRLF2-low patients. The prognostic value of CRLF2 over-expression was validated in the BFM-G cohort. Cox model analysis showed that patients with
CRLF2-high expression had a 2.5-fold increased risk of relapse. Interestingly, CRLF2 over-expression was associated with a poor prognosis in the high risk (HR) subgroup where CRLF2-high patients were more frequently allocated. From a biological perspective, in CRLF2-high blasts we found a tendency to a stronger TSLP-induced pSTAT5 response sensitive to the JAK inhibitor Ruxolitinib. Moreover, gene set enrichment analysis showed an inverse correlation between the expression of CRLF2 and of cell cycle regulators.

Conclusion

CRLF2 over-expression is a poor prognostic marker identifying a subset of HR T-ALL patients that could benefit from alternative therapy, potentially targeting the CRLF2 pathway.

INTRODUCTION

Notwithstanding improved survival rates obtained with risk-adjusted therapy, 25% of T-ALL patients have little or no expectancy of cure. Indeed, this ALL subtype has a generally worse outcome compared with BCP-ALL and the prognosis after relapse remains dramatically poor.¹,² In the AIEOP-BFM ALL 2000 study, risk group stratification for BCP and T-ALL was largely based on Minimal Residual Disease (MRD) monitoring as a measure of early response to therapy.¹,² In BCP-ALL, chromosomal translocations have been also incorporated in the risk stratification employed for choosing treatment.³,⁴ Meanwhile in T-ALL, although several genomic abnormalities have been described, only few were shown to have prognostic value, and...
none has been included in treatment protocols as patient stratification criteria.5-9 Hence, identification of prognostic factors and development of innovative therapeutic approaches for T-ALL remain a critical task for leukemia research. Among recently reported genomic abnormalities in ALL, a subset of BCP-ALL patients has been characterized by over-expression of the Cytokine Receptor-like Factor 2 (CRLF2) gene, associated with either an intra-chromosomal deletion causing the \textit{P2RY8-CRLF2} fusion or the \textit{IGH@-CRLF2} translocation.10,11 These two CRLF2 rearrangements have been shown to correlate with poor outcome in BCP-ALL patients.12-16 CRLF2 heterodimerizes with IL-7Ra to form a receptor for thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine that strongly activates dendritic cells (DC) and regulates DC-mediated central tolerance, peripheral T cell homeostasis and inflammatory Th2 responses.17 TSLP receptor has been detected on many types of immune cells, including B and T cells. Signaling from TSLP receptor activates signal transducer and activator of transcription (STAT5) by JAK1 and JAK2 phosphorylation.18,19 CRLF2 rearrangements are a new prognostic marker for BCP-ALL, and the inhibition of JAK/STAT5 signaling represents a potential new therapeutic approach for this subgroup of patients. Alterations of CRLF2 have not yet been reported in T-ALL, while recently mutations in its partner IL7Ra have been identified in about 10\% of T-ALL patients.20,21 This observation
prompted us to investigate if CRLF2 could also be affected in T-ALL. Here, we report on the incidence of CRLF2 overexpression at diagnosis in 212 T-ALL patients and its prognostic impact. Patients had been consecutively enrolled in the AIEOP-BFM ALL 2000 study of the Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP) and the Berlin-Frankfurt-Munster (BFM) group in Italian and in German centers.

PATIENTS AND METHODS

Patients

One hundred and twenty T-ALL patients, consecutively enrolled in the AIEOP-BFM ALL 2000 protocol in AIEOP Centers from September 2000 to July 2005, were included in the study as a test cohort. The clinical characteristics of patients analyzed in this study compared to patients enrolled in the same protocol but not analyzed here are shown in Supplementary Table 1. No significant differences were observed between patients included or not in this study with respect to sex, age, WBC count, immunophenotype, prednisone response, risk group stratification (Supplementary Table 1) and event-free survival (EFS) (Supplementary Figure 1A).
Supplementary Table 1. Clinical features of T-ALL patients enrolled in the Italian and German AIEOP-BFM ALL 2000 protocol, analyzed and not analyzed for CRLF2 expression

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>P-value</th>
<th>Analyzed</th>
<th>Not analyzed</th>
<th>P-value</th>
<th>Analyzed</th>
<th>Not analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120 N %</td>
<td>100 1000</td>
<td>131 N %</td>
<td>100 1000</td>
<td>92 N %</td>
<td>100 1000</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>0.81</td>
<td>94 78.2</td>
<td>101 77.1</td>
<td>0.16</td>
<td>93 77.2</td>
<td>91 69.6</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td>20 17.8</td>
<td>39 22.9</td>
<td></td>
<td>27 22.8</td>
<td>40 30.4</td>
</tr>
<tr>
<td>Age</td>
<td>0.08</td>
<td></td>
<td></td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5 Yrs</td>
<td>43 35.8</td>
<td>37 28.2</td>
<td>31 26.1</td>
<td>33 25.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-9 Yrs</td>
<td>26 21.7</td>
<td>48 36.7</td>
<td>35 29.4</td>
<td>29 22.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-14 Yrs</td>
<td>41 34.2</td>
<td>36 27.5</td>
<td>36 30.4</td>
<td>45 34.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>15 Yrs</td>
<td>10 8.3</td>
<td>10 7.6</td>
<td>17 14.1</td>
<td>24 18.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC (x1000/μl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 20</td>
<td>0.64</td>
<td></td>
<td><0.001</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-100</td>
<td>41 34.2</td>
<td>48 35.1</td>
<td>42 34.8</td>
<td>50 38.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>100</td>
<td>52 43.3</td>
<td>50 38.2</td>
<td>58 54.5</td>
<td>59 29.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunophenotype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early-T</td>
<td>0.07</td>
<td></td>
<td></td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thym</td>
<td>38 31.0</td>
<td>54 41.2</td>
<td>18 15.2</td>
<td>34 26.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mature T</td>
<td>84 68.3</td>
<td>50 38.2</td>
<td>86 74.7</td>
<td>70 73.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not specified</td>
<td>15 12.5</td>
<td>18 13.3</td>
<td>14 12.0</td>
<td>20 14.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prednisone Response</td>
<td>0.47</td>
<td></td>
<td></td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>77 64.2</td>
<td>89 67.9</td>
<td>74 62.0</td>
<td>83 63.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>41 34.2</td>
<td>39 29.8</td>
<td>44 36.9</td>
<td>43 32.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>2 1.6</td>
<td>3 2.3</td>
<td>1 1.1</td>
<td>5 3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRD</td>
<td>0.33</td>
<td></td>
<td></td>
<td>0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>16 13.3</td>
<td>11 8.4</td>
<td>14 11.9</td>
<td>17 12.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR</td>
<td>40 33.3</td>
<td>53 40.5</td>
<td>73 60.9</td>
<td>56 42.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td>21 17.5</td>
<td>25 19.1</td>
<td>20 16.3</td>
<td>16 12.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>43 35.6</td>
<td>42 32.0</td>
<td>43 35.6</td>
<td>42 32.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Risk</td>
<td>0.36</td>
<td></td>
<td></td>
<td>0.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no-HR</td>
<td>68 58.7</td>
<td>78 58.0</td>
<td>53 57.6</td>
<td>180 62.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td>52 43.3</td>
<td>55 42.0</td>
<td>51 42.4</td>
<td>49 37.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WBC, White Blood Cell count; MRD, Minimal Residual Disease; HR, High Risk; MR, Medium Risk; SR, Standard Risk.
Supplementary Figure 1. Treatment outcome of study cohort. EFS of AIEOP (A) and BFM-G (B) patients included and nonincluded in the study cohort.
In addition, 92 consecutive patients enrolled in the AIEOP-BFM ALL 2000 study and treated in German Centers (BFM-G) from January 2001 to December 2004 were analyzed as a validation cohort. The clinical characteristics of the German patients analyzed in this study compared to those not analyzed are shown in Supplementary Table 1: more patients with a higher white blood cell (WBC) count at diagnosis (≥100,000/µl: 56.5% vs. 29.7%, p=<0.001) and less with early T-ALL phenotype (15.2% vs. 26.3%, p=0.01) were included in the analysis. However, no significant differences were observed with respect to EFS (Supplementary Figure 1B). Further details are in Supplementary.

Informed consent to participate in the study was obtained for all patients from parents or legal guardians. Details on risk group definitions and final stratification, treatment outlines, were previously reported1 and briefly summarized in Supplementary.

\textit{Quantitative expression of CRLF2}

\textit{CRLF2} transcript levels on AIEOP and BFM-G samples were centrally analyzed by RQ-PCR.15 Relative gene expression (indicated as \textit{fold change}) was quantified by \textit{2}^{\text{DDCt}} method.22 The DDCt for AIEOP and BFM-G samples was referred to the median DCt of their respective cohort. Details are in Supplementary.
Statistical analysis
EFS curves were estimated according to the Kaplan-Meier method, and compared using the log-rank test. Cumulative incidence of relapse/resistance (CIR) was estimated by adjusting for competing risks of other events. The Cox regression model was applied to evaluate the prognostic value of two different genetic features on the cause-specific hazard of relapse/resistance after stratifying for risk group. Follow-up was updated in January 2014. Analyses were carried out using SAS version 9.2. The study protocol was registered at http://clinicaltrials.gov (NCT00613457 for AIEOP, NCT00430118 for BFM).

RESULTS
CRLF2 alterations and other genetic aberrations in AIEOP T-ALL patients at diagnosis
Similarly to what is seen in BCP-ALL, a sigmoid curve was observed for the distribution of CRLF2 expression levels in AIEOP T-ALL patients, with CRLF2 expression at diagnosis ranging from a 0.06- to an 82-fold change with respect to the median value (Figure 1A).
Figure 1. **CRLF2 expression and genomic alterations**

CRLF2 expression in AIEOP (A) and BFM-G (B) T-ALL patients at diagnosis. For each specimen results are reported as fold changes on the median expression value of their respective cohort. Positivity for additional genomic aberrations is indicated.
As previously reported for CRLF2 expression in BCP-ALL, a high-expressing ("CRLF2-high") in order to define CRLF2 high-expressing ("CRLF2-high") patients, the CIR hazard ratio was calculated for each numerical increase in the CRLF2 expression as fold change with respect to the median value. The lowest threshold for CRLF2 expression showing a significant difference (p≤0.01) in CIR between two groups was 5 times the median, which was then adopted as cut-point. (Supplementary Figure 2).

Supplementary Figure 2. CIR hazard ratio associated with different cut-points of CRLF2 expression.
Potential cut-points of CRLF2 expression were evaluated. The estimated hazard ratios quantified the ability to discriminate prognosis in terms of the CIR hazard at each of the cut-points. P-value for each cut-point were indicated.
Seventeen patients out of 120 (14.2%) presented CRLF2 expression 5 times higher or equal than the median. Clinical characteristics of CRLF2-high patients at diagnosis vs. CRLF2-low patients (CRLF2 expression less than 5 times the median) are reported in Table 1. Unlike CRLF2-low patients, the majority of CRLF2-high patients were poor prednisone responder (PPR) (10/17 patients, 58.8%; p=0.02), while no significant differences were observed with respect to sex, age, WBC count and immunophenotype (in particular 2 CRLF2-low patients vs. 1 CRLF2-high fulfilled the immunophenotypic criteria to be classified as early T-cell precursor ALL (ETP-ALL), data not shown). While CRLF2 over-expression did not statistically correlate with MRD classification, consistent with the more frequent incidence of PPR, CRLF2-high patients were frequently allocated to the HR group (Table 1).
Table 1. Clinical features of AIEOP and BFM-G study cohort patients positive or negative for CRLF2 overexpression

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>AIEOP</th>
<th></th>
<th>BFM-G</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CRLF2-low</td>
<td>CRLF2-high</td>
<td>P-value</td>
<td>CRLF2-low</td>
</tr>
<tr>
<td></td>
<td>N %</td>
<td>N %</td>
<td></td>
<td>N %</td>
</tr>
<tr>
<td>All patients</td>
<td>103 100.0</td>
<td>17 100.0</td>
<td>0.40</td>
<td>80 100.0</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>82 79.6</td>
<td>12 70.6</td>
<td>0.48</td>
<td>62 77.5</td>
</tr>
<tr>
<td>Female</td>
<td>21 20.4</td>
<td>5 29.4</td>
<td></td>
<td>18 22.5</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5 Yrs</td>
<td>38 36.9</td>
<td>5 29.4</td>
<td>0.48</td>
<td>23 28.8</td>
</tr>
<tr>
<td>6-9 Yrs</td>
<td>22 21.4</td>
<td>4 23.5</td>
<td></td>
<td>24 30.0</td>
</tr>
<tr>
<td>10-14 Yrs</td>
<td>36 35.0</td>
<td>5 29.4</td>
<td></td>
<td>24 30.0</td>
</tr>
<tr>
<td>15-17 Yrs</td>
<td>7 6.8</td>
<td>3 17.6</td>
<td></td>
<td>9 11.3</td>
</tr>
<tr>
<td>WBC (X1000/µl)</td>
<td>0.21</td>
<td>0.42</td>
<td>0.21</td>
<td>0.42</td>
</tr>
<tr>
<td>< 20</td>
<td>26 25.2</td>
<td>1 5.9</td>
<td></td>
<td>6 7.5</td>
</tr>
<tr>
<td>20-100</td>
<td>34 33.0</td>
<td>7 41.2</td>
<td></td>
<td>27 33.8</td>
</tr>
<tr>
<td>≥ 100</td>
<td>43 41.7</td>
<td>9 52.9</td>
<td></td>
<td>47 58.8</td>
</tr>
<tr>
<td>Immunophenotype</td>
<td>0.93</td>
<td><0.001</td>
<td>0.93</td>
<td>1.00</td>
</tr>
<tr>
<td>Early-T</td>
<td>30 29.1</td>
<td>6 35.3</td>
<td></td>
<td>8 10.0</td>
</tr>
<tr>
<td>Thym</td>
<td>55 53.4</td>
<td>9 52.9</td>
<td></td>
<td>62 77.5</td>
</tr>
<tr>
<td>Mature T</td>
<td>13 12.6</td>
<td>2 11.8</td>
<td></td>
<td>9 11.3</td>
</tr>
<tr>
<td>Not specified</td>
<td>5 4.9</td>
<td>0 0.0</td>
<td></td>
<td>1 1.3</td>
</tr>
<tr>
<td>Prednisone Response</td>
<td>0.02</td>
<td>0.09</td>
<td>0.02</td>
<td>0.09</td>
</tr>
<tr>
<td>Good</td>
<td>70 68.0</td>
<td>7 41.2</td>
<td></td>
<td>53 66.3</td>
</tr>
<tr>
<td>Poor</td>
<td>31 30.1</td>
<td>10 58.8</td>
<td></td>
<td>27 33.8</td>
</tr>
<tr>
<td>Unknown</td>
<td>2 1.9</td>
<td>0 0.0</td>
<td></td>
<td>0 0.0</td>
</tr>
<tr>
<td>MRD</td>
<td>0.73</td>
<td>0.88</td>
<td>0.73</td>
<td>0.88</td>
</tr>
<tr>
<td>SR</td>
<td>15 14.6</td>
<td>1 5.9</td>
<td></td>
<td>10 12.5</td>
</tr>
<tr>
<td>MR</td>
<td>35 34.0</td>
<td>5 29.4</td>
<td></td>
<td>51 63.8</td>
</tr>
<tr>
<td>HR</td>
<td>18 17.5</td>
<td>3 17.6</td>
<td></td>
<td>13 16.3</td>
</tr>
<tr>
<td>Unknown</td>
<td>35 34.0</td>
<td>8 47.1</td>
<td></td>
<td>6 7.5</td>
</tr>
<tr>
<td>Final Risk</td>
<td>0.05</td>
<td>0.11</td>
<td>0.05</td>
<td>0.11</td>
</tr>
<tr>
<td>no-HR</td>
<td>62 60.2</td>
<td>6 35.3</td>
<td></td>
<td>49 61.3</td>
</tr>
<tr>
<td>HR</td>
<td>41 39.8</td>
<td>11 64.7</td>
<td></td>
<td>31 38.8</td>
</tr>
<tr>
<td>P2RY8-CRLF2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>-</td>
<td>90 87.4</td>
<td>16 94.1</td>
<td>-</td>
</tr>
<tr>
<td>Yes</td>
<td>0 0.0</td>
<td>0 0.0</td>
<td>0 0.0</td>
<td>0 0.0</td>
</tr>
<tr>
<td>Unknown</td>
<td>13 12.6</td>
<td>1 5.9</td>
<td>2 2.5</td>
<td>0 0.0</td>
</tr>
</tbody>
</table>

WBC, White Blood Cell count; MRD, Minimal Residual Disease; HR, High Risk; MR, Medium Risk; SR, Standard Risk.
Interestingly, none of CRLF2-high patients resulted to be positive for the P2RY8-CRLF2 fusion (16/17 tested) or the IGH@-CRLF2 translocation (5/17 tested) and only 1/7 showed a supernumerary X chromosome (Figure 1 and Table 1). JAK2 and CRLF2 mutations were absent in all analyzed cases, while IL7Ra mutations were detected in 5/107 patients (4.7%), but they were not associated with CRLF2 over-expression. No statistically significant difference was found in the incidence of recurrent T-ALL genetic aberrations (mutations in NOTCH1 and FBXW7 genes and TAL deletion) in CRLF2-low vs. CRLF2-high patients (Figure 1 and Supplementary Table 2).

Supplementary Table 2. Molecular features of AIEOP study cohort patients positive or negative for CRLF2 over-expression

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>AIEOP</th>
<th>BRI.G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P-value</td>
<td>CRLF2-low</td>
</tr>
<tr>
<td>All patients</td>
<td>0.00</td>
<td>100.0</td>
</tr>
<tr>
<td>CRLF2 mutations</td>
<td>-</td>
<td>71</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Yes</td>
<td>32</td>
<td>31.1</td>
</tr>
<tr>
<td>Unknown</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>JAK2 mutations</td>
<td>0.00</td>
<td>70</td>
</tr>
<tr>
<td>No</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Yes</td>
<td>27</td>
<td>28.2</td>
</tr>
<tr>
<td>Unknown</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>IL7Rα mutations</td>
<td>0.00</td>
<td>89</td>
</tr>
<tr>
<td>No</td>
<td>5</td>
<td>4.9</td>
</tr>
<tr>
<td>Yes</td>
<td>9</td>
<td>8.7</td>
</tr>
<tr>
<td>Unknown</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>NOTCH1 mutations</td>
<td>0.00</td>
<td>28</td>
</tr>
<tr>
<td>No</td>
<td>42</td>
<td>40.8</td>
</tr>
<tr>
<td>Yes</td>
<td>33</td>
<td>32.0</td>
</tr>
<tr>
<td>Unknown</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>FBXW7 mutations</td>
<td>0.00</td>
<td>59</td>
</tr>
<tr>
<td>No</td>
<td>21</td>
<td>20.4</td>
</tr>
<tr>
<td>Yes</td>
<td>23</td>
<td>22.2</td>
</tr>
<tr>
<td>Unknown</td>
<td>-</td>
<td>0.0</td>
</tr>
<tr>
<td>SII-TAL1</td>
<td>0.00</td>
<td>52</td>
</tr>
<tr>
<td>No</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Yes</td>
<td>10</td>
<td>15.3</td>
</tr>
<tr>
<td>Unknown</td>
<td>5</td>
<td>4.9</td>
</tr>
</tbody>
</table>
Prognostic impact of CRLF2 over-expression at diagnosis

CRLF2-high AIEOP patients had a significantly lower EFS (41.2%±11.9 vs. 68.9%±4.6, p=0.006) and an increased CIR (52.9%±12.1 vs. 26.2%±4.3, Hazard ratio=2.84, p=0.007) compared to *CRLF2-low* patients (Figure 2A and 2B).

Figure 2. Association of CRLF2 over-expression to treatment outcome

(A) EFS and (B) CIR of AIEOP study cohort patients according to CRLF2 expression: *CRLF2-low* and *CRLF2-high*. (C) EFS and (D) CIR of BFM-G study cohort patients according to CRLF2 expression: *CRLF2-low* and *CRLF2-high*.
In order to validate these results, we analyzed \textit{CRLF2} over-expression in the cohort of 92 consecutive patients treated in German Centers according to the same AIEOP-BFM ALL 2000 study (BFM-G).

Twelve patients (13.0\%) were \textit{CRLF2-high} (Figure 1B). Clinical characteristics of BFM-G \textit{CRLF2-high} patients at diagnosis vs. \textit{CRLF2-low} patients are described in Table 1. Unlike \textit{CRLF2-low} patients, a large proportion of \textit{CRLF2-high} patients presented an early-T immunophenotype (6/12 patients, 50.0\%; p=<0.001) and in particular 4 out of 6 early-T fulfilled the immunophenotypic criteria to be classified as ETP-ALL, while no significant differences were observed with respect of sex, age, WBC count, risk group stratification and incidence of recurrent T-ALL genetic aberrations (Table 1, Supplementary Table 2 and Figure 1B). Moreover, similar to what observed in the AIEOP cohort, none of the 92 patients resulted positive for \textit{P2RY8-CRLF2} fusion, while IL7Ra mutations were detected in 8/45 \textit{CRLF2-low} patients and in 2/4 \textit{CRLF2-high} patients (Table 1, Supplementary Table 2 and Figure 1B).

We confirmed in the BFM-G cohort that \textit{CRLF2} over-expression was associated to a significant inferior EFS (50.0\%±14.4 vs. 83.8\%±4.1, p-value=0.01) and a higher CIR (33.3\%±13.6 vs. 11.3\%±3.5, Hazard ratio=3.37, p-value= 0.04) (Figure 2C and 2D).

Cox model analysis on 212 patients included in this study (merge AIEOP/BFM-G cohort), was performed to assess the prognostic value of \textit{CRLF2} over-expression after adjusting for
final risk stratification. *CRLF2-high* expression had a relevant prognostic impact on the risk of relapse, with a 2.5-fold increase in the risk for positive patients (Hazard ratio 2.47; 95% CI 1.30-4.70; p=0.006) (Table 2).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>P-value</th>
<th>Hazard ratio</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRLF2 expression</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRLF2-low</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CRLF2-high</td>
<td>0.006</td>
<td>2.47</td>
<td>1.30-4.70</td>
</tr>
<tr>
<td>Final Risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no-HR</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HR</td>
<td>0.002</td>
<td>2.53</td>
<td>1.41-4.55</td>
</tr>
</tbody>
</table>

Moreover, 10 out of the 34 samples of relapses that had occurred in the AIEOP cohort during the observation time of this study were evaluated for *CRLF2* expression levels. Samples at relapse showed a median value of *CRLF2* expression 3.5 times higher than the respective samples at diagnosis (4.95 vs. 1.43) (Supplementary Figure 3).
Supplementary Figure 3. CRLF2 expression at relapse.

Log-log plot of the CRLF2 expression value for 10 paired diagnosis and relapsed specimens. Samples at relapse showed a median value of CRLF2 expression 3.5 times higher than the respective samples at diagnosis (4.95 vs. 1.43), as indicated with the red point.

Outcome and risk group

We further analyzed the prognostic value of CRLF2 over-expression jointly in AIEOP and BFM-G cohorts within no-HR and HR patient subgroups respectively. Interestingly, CRLF2-high patients were more frequently allocated to the HR group, being found in 10 out of 121 no-HR patients (8.3%) vs. 19 out of 91 HR patients (20.9%; p=0.008). Only in the HR subgroup, CRLF2 over-expression was significantly associated with a lower EFS (31.6%±10.7 vs 62.5%±5.7, p-value=0.01) and a higher CIR (57.9%±11.5 vs 29.2%±5.4, Hazard ratio =2.70, p-value=0.008) (Figure 3).
Figure 3. Association of CRLF2 over-expression to treatment outcome in Risk subgroups
(A) EFS and (B) CIR of no-HR AIEOP/BFM-G patients according to CRLF2 expression: CRLF2-low and CRLF2-high. (C) EFS and (D) CIR of HR AIEOP/BFM-G patients according to CRLF2 expression: CRLF2-low and CRLF2-high.

When analyzed according to prednisone response, the majority of CRLF2-high patients were PPR (Table 1) and were allocated in the specific HR subgroup ‘PPR-only’ (no-HR by other features: they achieved a complete remission after phase IA and not present high levels of PCR-MRD at day 78). Even if the number of ‘PPR-only’ analyzed cases was low, in this subgroup CRLF2-high patients retained lower EFS (55.6%±16.6 vs
80.6%±6.6, p-value=0.24), and borderline-significant higher CIR (44.4%±16.6 vs 11.1%±5.2, Hazard ratio =4.02, p-value=0.05) (Supplementary Figure 4A and 4B).

Moreover, high levels of CRLF2 were associated with poor outcome also when patients with ETP immunophenotype23-26 were excluded from the analysis (EFS: 45.8%±10.2 vs 75.7%±3.2, p-value=<0.001; CIR: 45.8%±10.2 vs 19.2%±3, Hazard ratio =3.23, p-value=<0.001) (Supplementary Figure 4C and 4D).

In addition, no association between N642H mutation activating STAT5B27 and CRLF2 over-expression was observed (0/4 STAT5B N642H positive among CRLF2-high patients and 1/35 among CRLF2-low patients).
Supplementary Figure 4. Association of CRLF2 over-expression to treatment outcome in the HR subgroup “PPR-only” and excluding patients with ETP immunophenotype.

(A) EFS and (B) CIR of HR “PPR-only” AIEOP/BFM-G patients according to CRLF2 expression: CRLF2-low and CRLF2-high. (C) EFS and (D) CIR of AIEOP/BFM-G patients according to CRLF2 expression: CRLF2-low and CRLF2-high when patients with ETP immunophenotype were excluded from the analysis.
CRLF2 surface expression and TSLP-induced pSTAT5 response

Based on available cryopreserved cells, 21 patients were analyzed for CRLF2 surface expression by flow cytometry: 10 patients had been classified as CRLF2-low for CRLF2-transcript expression and 11 patients as CRLF2-high. Unexpectedly, all analyzed patients showed a low percentage of CRLF2-positive blasts (mean=12.6%, range=0.1-41.8%), with a slight, non-significant increase (p-value=0.17) in the CRLF2-high patients (CRLF2-low: mean=9.6%, range=0.1-20.3%; CRLF2-high: mean=15.3%, range=4.7-41.8%) (Supplementary Figure 5A).
Supplementary Figure 5. CRLF2 expression on T-ALL patients and cell lines.

(A) Analysis of CRLF2 expression on cell surface in 21 T-ALL patients according to their CRLF2 status: 10 CRLF2-low and 11 CRLF2-high samples. Distribution of % positive blast cells for CRLF2 are represented as scatter plot of 25th and 75th percentile with mean,
minimum and maximum. Leukemic blasts were gated as CD45 intermediate /CD7+/CD19. (B) RQ-PCR analysis of CRLF2 expression in 24 T-ALL cell lines. Results are reported as fold changes on the median expression value of all the 24 tested cell lines. The 5 cell lines analyzed furthermore for CRLF2 expression on surface and pSTAT5 are circled. (C) Distribution (with indicated 5th and 95th percentiles and mean) of CRLF2 expression on cell surface in T-ALL cell lines measured as MFI levels by FACS. The CRLF2 MFI levels of the cell lines: MOLT4, CCRF-CEM, HSB-2 and JURKAT are showed relative to LOUCY cell line (red line).

Fourteen out of these 21 patients were also selected for phosphoflow cytometric analysis. Interestingly, we observed a tendency (p=0.12) towards a stronger TSLP-induced pSTAT5 response in CRLF2-high samples as compared to CRLF2-low, showing a mean of 7.6% (range 1.3%-15.1%) and 2.6% (range 0%-6.7%) of pSTAT5 positive cells, respectively (Figure 4A).

In order to experimentally model these results, in collaboration with DSMZ (German Collection of Microorganisms and Cell Cultures GmbH), we tested 24 T-ALL cell lines for the level of CRLF2 expression. The T-ALL cell line LOUCY presented the highest CRLF2 expression (Supplementary Figure 5B). As described in the patient cohort, we did not observe a difference in the surface expression of CRLF2 in the CRLF2-high LOUCY cells compared to the “CRLF2-low” cell lines MOLT4, CCRF-CEM, HSB-2 and JURKAT (Supplementary Figure 5C). Instead, in phosphoflow assays, the CRLF2-high LOUCY cells were the only cell line showing STAT5 phosphorylation after TSLP stimulation, and, interestingly, the pSTAT5 response was completely inhibited by the JAK inhibitor Ruxolitinib (Figure 4B).
Figure 4. TSLP-induced pSTAT5 response and gene expression profiling associated with CRLF2 over-expression
(A) Analysis of TSLP-induced pSTAT5 signaling in 14 T-ALL patients according to their CRLF2 status: 8 CRLF2-low and 6 CRLF2-high samples. Distribution of % positive cells for pSTAT5 are represented as scatter plot of 25th and 75th percentile with mean, minimum and maximum. Data were normalized to the basal STAT5 phosphorylation.
status. (B) Phosphoflow analysis of pSTAT5 in LOUCY cell line. The plots show the % positive cells for pSTAT5 in basal condition and after stimulation with TSLP in absence and in presence of the JAK inhibitor Ruxolitinib. (C) Since GEP data were not available from patients of this study cohort, T-ALL cases treated according to the same protocol with available GEP data were analyzed. Consistent with the 15% CRLF2-high, identified in the patient cohort, among 100 T-ALL arrayed cases, the top 15 specimens with higher CRLF2 probe values (orange) were compared to the 15 lowest expressing CRLF2 specimens (blue). The heat map shows the unsupervised clustering of 290 differentially regulated genes. Red colour depicts overexpressed genes, while downregulated genes are labelled green. (D) Gene set enrichment analysis (GSEA) showing an inverse correlation between the expression of CRLF2 and cell cycle regulators (enrichment score= -0.6, P=0.018). Enrichment plots depict enrichment scores (green lines) reflecting the appearance of members of the annotated gene sets (black vertical lines) along the gene list ranked from CRLF2-low (red) to CRLF2-high (blue).

Gene expression profiling associated with CRLF2 over-expression

To identify possible transcriptional patterns associated with CRLF2 over-expression in T-ALL, a gene expression analysis was performed. Gene expression profiling (GEP) data were not available for patients in this study cohort. Instead, we analyzed T-ALL cases from the same protocol study for whom GEP data were available. Consistent with the 15% CRLF2-high cut point, we identified, among 100 GEP arrayed cases, the top 15 with higher CRLF2 probe values and compared these to the 15 specimens with the lowest expression of CRLF2.

As shown in Figure 4C, CRLF2 over-expression was associated with different regulation of 290 genes. Notably, gene set enrichment analysis (GSEA) showed an inverse correlation between the expression of CRLF2 and cell cycle regulators,
especially positive regulators (enrichment score = -0.6, P = 0.018) (Figure 4D). The list of genes is available upon request.

DISCUSSION

In a subset of BCP-ALL patients without recurrent chromosomal aberrations, new genomic abnormalities leading to the over-expression of *CRLF2* have been found and reported to be associated with poor outcome.10-16 Deregulation of *CRLF2* expression was further frequently associated with other mutations, such as *JAK2*, *IL7Ra*, *CRLF2* point mutations and *IKZF1* deletions.14,20,28

In T-ALL, alterations of *CRLF2* were not reported yet, but recently, mutations in its partner *IL7Ra* have been identified in about 10% of T-ALL patients.20,21 This prompted us to investigate *CRLF2* expression and associated mutations in T-ALL.

Here, for the first time we report the incidence and prognostic relevance of *CRLF2* over-expression in a cohort of 212 T-ALL patients, consecutively enrolled in the AIEOP-BFM ALL 2000 protocol in Italian and German centers.

Heterogeneous expression of *CRLF2* was observed among T-ALL patients, a distribution comparable to the one found in the BCP-ALL cohort.15

The lowest threshold for *CRLF2* expression showing a significant difference in CIR between two groups was 5 times the median, and this value was then adopted as cut-point. By applying this cut-point, high *CRLF2* expression was found in
about 15% of AIEOP and BFM-G T-ALL patients. Notably, this threshold was much lower than the cut-point adopted for AIEOP BCP-ALL patients (20 times the median value),15 indicating that T-ALL blast cells might be more sensitive to variation of CRLF2 expression.

Differently from BCP-ALL, the molecular mechanisms responsible for CRLF2 over-expression in T-ALL remains to be determined, since none of the CRLF2-high cases resulted to be positive for P2RY8-CRLF2 fusion or IGH@-CRLF2 translocation, and only one showed a supernumerary X chromosome (although only few cases have been screened for these last two alterations). Indeed, only about 50% of BCP-ALL cases with high-CRLF2 expression lacked known CRLF2 genomic lesions.16 Moreover, while in BCP-ALL CRLF2 over-expression was frequently associated with mutations in JAK, IL7Rα and in the same CRLF2 gene,10,11,20,28,29 JAK2 and CRLF2 mutations were absent in all T-ALL analyzed cases. By contrast, IL7Rα mutations were detected in 5/107 T-ALL patients (4.7%). They were all insertions or deletions in the transmembrane domain of the receptor and they were not associated with CRLF2 over-expression. This last observation is consistent with the results reported in literature, namely that, although IL7Rα mutations were more frequently identified in BCP-ALL with aberrant expression of CRLF2, the IL7Rα mutant protein with insertions did not require CRLF2 for its activation.20

We show here that CRLF2 over-expression has a prognostic impact in T-ALL, with CRLF2-high patients having a significantly
inferior 5-years EFS and a higher CIR compared to CRLF2-low patients. The prognostic value of CRLF2 over-expression, initially identified in the AIEOP cohort, was then confirmed in the BFM-G cohort.

Cox model analysis of the two cohorts analyzed together, adjusted by risk group, showed that CRLF2-high expression is an independent prognostic factor in T-ALL, associated to a 2.5-fold increased risk of relapse.

Interestingly, on the contrary to what we observed in BCP-ALL, ^1^ CRLF2-high T-ALL relapsed early, within 2 years from diagnosis. Moreover, this time in concert with BCP-ALL data, ^1^ samples at relapse showed a median value of CRLF2 expression higher than the respective samples at diagnosis, this indicating that a high level of CRLF2 expression could be associated with a higher resistance to therapy.

In order to understand how the prognostic impact of this CRLF2 alteration can be transferred into clinical practice, CRLF2 expression was analyzed separately in the different risk subgroups. CRLF2-high patients fell more frequently in the HR subgroup (20.9% in HR vs. 8.3% in no-HR), and only in this subgroup, CRLF2 over-expression was significantly associated with inferior EFS and higher CIR. Therefore, CRLF2 over-expression identified a subset of HR T-ALL patients with dismal outcome.

Among HR cases, most CRLF2-high patients were PPR. In detail, among the subgroup of PPR cases lacking other HR features (“PPR-only”), CRLF2 expression tend to distinguish a
different incidence of relapse: 4/9 (44%) in CRLF2-high compared to 4/36 (11%) in CRLF2-low. Although low numbers require caution in drawing conclusions, if this observation was confirmed in a large series, CRLF2-high could represent a useful marker to identify cases with poor outcome in the still undefined PPR-only subgroup.

The poor outcome of CRLF2-high patients is independent of other known prognostic factors, like ETP immunophenotype or STAT5B mutation.

The contribution of CRLF2 over-expression to T-ALL is still unclear. Unexpectedly, CRLF2 surface expression by flow cytometry showed a low percentage of CRLF2 positive blasts both in CRLF2-low and in CRLF2-high patients and in cell lines. Interestingly, we observed a tendency to stronger TSLP-induced pSTAT5 response in patients expressing high levels of CRLF2 transcript and this finding was confirmed in T-ALL cell lines. Concordantly, we observed STAT5 phosphorylation after TSLP stimulation only in LOUCY cells, the T-ALL cell line with the highest level of CRLF2 transcript expression. Notably, the pSTAT5 response was completely inhibited by the JAK inhibitor Ruxolitinib.

Finally, by GEP analysis, we found an inverse correlation between the expression of CRLF2 and that of positive cell cycle regulators, this suggesting that CRLF2-high blasts could have a *low proliferating* activity and therefore be less sensitive to conventional chemotherapy; further studies are necessary to test this assumption.
We suggest that the unfavorable prognostic role found for CRLF2 over-expression in T-ALL may be due to gene expression alteration and associated with a higher TSLP-induced pSTAT5 response. Future studies on the identification of the mechanism of CRLF2 over-expression in T-ALL are warranted and should provide insight in underlying mechanisms.

In conclusion, we show here that CRLF2 over-expression is a poor prognostic marker in T-ALL, identifying a subset of HR T-ALL patients that could be eligible for alternative therapies that interfere with the activation of JAK/STAT5 signaling pathway may be considered for treatment of these patients.

REFERENCES

Supplementary Patients and Methods

Patients
T-ALL diagnosis was performed according to standard cytomorphology, cytochemistry and immunophenotypic criteria. DNA and RNA were isolated from mononuclear cells and cDNA was synthesized according to standard methods.1

CRLF2 expression was analyzed in the Italian cohort of 120 patients at diagnosis and *P2RY8-CRLF2* rearrangement was tested in 106 patients for which RNA was available. *IGH@-CRLF2* translocation was screened in 5 out of 17 patients positive for *CRLF2* over-expression (≥5 times higher than overall median, see the Results section). DNA was available from 115 patients and the following were analyzed: *CRLF2* mutations (in 84 patients), *IL7Ra* mutations (in 107 patients), *JAK2* mutations (in 90 patients), SIL-TAL (DB1) fusion (in 115 patients), NOTCH1 mutations (in 81 patients) and FBXW7 mutations (in 91 patients). *CRLF2* expression was also analyzed in 10/34 paired diagnosis and relapse samples for which material was available.

CRLF2 expression was analyzed in the BFM-G cohort of 92 patients at diagnosis, and *P2RY8-CRLF2* rearrangement was tested in 90 patients for which RNA was available. *IL7Ra*, NOTCH1 and FBXW7 mutations were analyzed in 49 patients from whom DNA was available.
Protocol stratification

Patient risk groups were defined as follows. The High Risk (HR) group included patients with prednisone poor response ($\geq 1,000$ blasts/μL on day 8 peripheral blood after 7 days of prednisone and one dose of intrathecal methotrexate on day 1) or inability to achieve clinical remission after Induction Phase IA; high burden ($\geq 10^{-3}$) of PCR-Minimal Residual Disease (MRD) at day 78. The no-HR group consisting of Standard Risk (SR) and Medium Risk (MR). The SR group included patients who lacked high-risk criteria and tested negative to PCR-MRD for two sensitive markers ($\geq 1 \times 10^{-4}$) at both day 33 and day 78. The MR group included the remaining patients, and those not evaluated by PCR-MRD.

PCR-MRD was detected by RQ-PCR of Immunoglobulin and/or T-cell receptor gene rearrangements in bone marrow samples collected at the end of the IA (TP1, day 33), and IB (TP2, day 78) induction phases;\(^2\) data were interpreted according to EuroMRD guidelines.\(^3\)

Quantitative expression of CRLF2

CRLF2 transcript levels on AIEOP and BFM-G samples were centrally analyzed by RQ-PCR using the TaqMan Gene Expression Assay Hs00913509_s1 (Applied Biosystems, Foster City, CA, US);\(^4\) the housekeeping GUS gene transcript was tested as an internal control by using the Universal Probe Library (UPL) system (Roche Diagnostics, Basel, Switzerland), following the manufacturers’ instructions. Optimal primers and
probe for *GUS* amplification were selected using the Roche ProbeFinder software (https://www.roche-appliedscience.com/sis/rtpcr/upl). Each cDNA sample (20ng RNA equivalent) was tested in duplicate (Ct range between replicates <1.5). The amplification reaction was performed on the 7900HT FAST Real Time PCR System instrument (Applied Biosystems) with the following protocol: initial step at 95°C for 10min, then 50 cycles at 95°C for 15s and at 60°C for 1min. Relative gene expression (indicated as *fold change*) was quantified by the 2\(^\Delta\Delta Ct\) method.\(^5\) The DDCt for AIEOP and BFM-G samples was referred to the median DDCt of their respective cohort.

CRLF2 rearrangements

The presence of the *P2RY8-CRLF2* fusion transcript in the AIEOP and BFM-G cohort was investigated by RQ-PCR. In particular, the UPL System was used, with primers designed in the first exon of *P2RY8* (5'-GCTACTTCTGCCGCTGCTT-3') and in the first exon of *CRLF2* (5'-GCAGAAAGACGGCAGCTGCT-3') with the UPL probe n. 28 (Roche UPL cat. n. 04687604001).

IGH@-CRLF2 translocation was searched in *CRLF2* overexpressed AIEOP patient, for which fixed cells from BM at diagnosis were available, by Fluorescence in situ hybridization (FISH) on interphase nuclei using CRLF2 Breakapart Probe (Cytocell Ltd, Cambridge, UK). Analyses were carried out using Zeiss Axio Imager Z2 fluorescent microscope (Carl Zeiss AG
Corporate, Oberkochen, Germany) and ISIS software (MetaSystems GmbH, Altlussheim, Germany). For each case 150/200 interphase nuclei were scored.

Other genetic aberrations
High Resolution Melting (HRM) analysis was performed to identify JAK2 mutations in exon 16, as previously described. Sequencing of NOTCH1, FBXW7 and CRLF2 was performed by PCR amplification and direct sequencing. Whole genome was DNA amplified using the GenomePhi V2 DNA Amplification Kit (GE Heathcare Life Science). The following primers were designed for CRLF2: CRLF2-F (5’-GTGGGATTGTATGGAAACTGA-3’) and CRLF2-R (5’-GAGACTGTTAGGGATGAGATGT-3’); while previously reported primers were used for NOTCH1 and FBXW7.

Cell culture
The human T-ALL cell lines LOUCY (a kind gift of DSMZ, Germany), MOLT-4, CCRF-CEM and Jurkat were cultured in RPMI medium with 10-20% bovine calf serum.

CRLF2 expression on cell surface
To assess CRLF2 expression on the surface of T-ALL blasts the following combination of antibodies was used: CRLF2PE (Clone 1B4, Biolegend, London, UK), CD45PerCP (BD Biosciences, Franklin Lakes, NJ, USA), CD19APC (BD Biosciences) and CD7ECD (Beckman Coulter, Brea, California,
Leukemic blasts were gated as CD45 intermediate /CD7+/CD19. The T-ALL cell lines were stained only with the CRLF2PE antibody.

Phosphoflow cytometry assay

Thawed mononuclear cells from primary ALL samples and T-ALL cell lines were starved in X-vivo medium for 2 hours, then cells were stimulated with rh-TSLP (100 ng/mL, ImmunoTools, Friesoythe, Germany) or IL-7 (100 ng/mL,) for 30 minutes at 37°C to allow signal transduction. To test for sensitivity, the LOUCY cell line, after starvation, was incubated for 24h with Ruxolitinib (Selleck Chemicals, Houston, USA) at 0.5 uM. Cells were fixed with 1.5% paraformaldehyde and permeabilized with 90% ice-cold methanol and then incubated with surface antigen-directed antibodies and with the anti-phospho-protein-directed antibody p-STAT5 (Y694) AlexaFluor488 (BD Biosciences) or isotype matched IgG (Cell Signaling, Danvers, MA, USA). Cells were examined on a FACSaria™ flow cytometer (BD) and data were collected and analyzed using DIVA™ software (BD). Basal levels of each phosphoprotein was calculated as proportion (%) of phosphoprotein positive (p-positive) cells in basal conditions. Response to each cytokine (rhTSLP or IL-7) was calculated as a difference between the percentage of p-positive cells after exposure to cytokine and the percentage of p-positive cells in the basal state. IL-7 inducible pSTAT5 signaling in residual normal T and B cells contained
within the primary leukemia samples was considered as positive control of functional signaling (data not shown).9

\textit{Gene-expression and gene set enrichment analysis}

An independent cohort was used to perform Gene expression profiling (GEP) analysis. RNA samples of 100 T-ALL (AIEOP ALL study cohort, diagnosed from 2000 to 2006) were processed according to Affymetrix protocols as previously described.10 GeneChip Human Genome U133 Plus 2.0 array were used and microarray data (.CEL files) were generated from raw signals using integrated microarray Affymetrix software. Microarray data, normalized by the justRMA algorithm, were analyzed by R-Bioconductor (Version 2.15.3). The expression values of \textit{CRLF2} probe 208303_s_at were analyzed in the 100 T-ALL specimens using the same cut-off values as previously established for \textit{CRLF2} RQ-PCR expression values. Using all gene expression data of .CEL files the 15\% of patients with highest \textit{CRLF2} expression were compared with the 15\% of patients with lowest \textit{CRLF2} expression. Differentially expressed probes between the two groups (\textit{CRLF2-high} vs. \textit{CRLF2-low}) groups were obtained using Wilcoxon T-test and local false discovery rate (lfdr) was used to correct the p-value. A lfdr <0.05 was considered significant for probe sets differentially expressed between compared groups.

Gene set enrichment analysis (GSEA) was run on the differentially expressed genes resulting from the Wilcoxon test in order to explore presence of specific pathways and
oncogenic signature defined directly from microarray gene expression data.

Supplementary References

Chapter 5

Conclusions and future perspectives
Conclusions and future perspectives

In this thesis we focused on dissecting the role of CRLF2 alterations in different subset of ALL. Overall, we can conclude that CRLF2 alterations leading to its overexpression represent poor prognostic markers in BCP and T-ALL, easily identified with FCM techniques. Moreover, this genetic abnormality identifies a new high-risk subgroup of patients that could benefit of the introduction of HDAC inhibitors in current chemotherapeutic regimen. In the future, our goal is to introduce the HDAC inhibitor Givinostat in the current chemotherapy in clinic, in order to provide a valid alternative for CRLF2 rearranged patients, especially DS-ALL patients, to achieve a better cure rate. To reach this goal further studies need to be accomplished to fully demonstrate the efficacy and safety of this drug in this particular subgroup of patients. In particular, to confirm the data obtained ex vivo, in vivo experiments of Givinostat in combination with low doses of chemotherapeutics will be performed on xenograft models of DS-ALL patients. Furthermore, to fully improve therapies for DS-ALL patients, it would be important to dissect the reason why they have a 10-20 fold increased risk of developing ALL and have particularly poor prognosis. This high fatality rate is not due only to enhanced toxicity of chemotherapy, but primarily because of intrinsic resistant of DS-ALL to therapy. Hence, moving backwards to basic research studies aiming to deciphering biology of DS-ALL is urgently needed for rational effective therapy. In particular, we aim to perform exome
sequencing analyses comparing paired diagnosis, remission and relapse samples of DS-ALL patients to uncover the timeline of the appearance of CRLF2 alterations relative to other mutations co-expressed in leukemia. We expect relatively limited and manageable number of mutations from exome sequencing analysis as we consider that CRLF2 alteration could have a significant role in the development of the disease (although it is not an initiating event). We hypothesize that additional mutations activating growth and survival pathway cooperating with CRLF2 will be identified.

Moving to the other subset of ALL analyzed in this work, the T-ALL, Cox model analysis showed that CRLF2-high expression is an independent prognostic factor also for these patients, associated to a 2.5-fold increased risk of relapse. Thus, CRLF2-overexpression proved to be a new marker of poor prognosis also for T-ALL, identifying a subset of High Risk T-ALL patients that could be eligible for alternative therapy. In particular, due to a more intense response of CRLF2-high patients to TSLP stimulation, therapies that interfere with the activation of the JAK/STAT5 signaling pathway may be considered for treatment of these patients. A strong candidate could be the HDAC inhibitor Givinostat. Further analyses will be necessary to confirm the efficacy of this drug in this T-ALL subset.
Other publications
