IMAGING OF LUNG METABOLIC ACTIVITY BY MEANS OF POSITRON EMISSION TOMOGRAPHY DURING ACUTE LUNG INJURY

Coordinatore: Prof.ssa Marina Del Puppo
Tutor: Prof.ssa Cristina MESSA

Tesi di dottorato di:
Dott. Giacomo BELLANI
Matricola 534077

Anno Accademico 2008-2009
Summary

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS)</td>
<td>3</td>
</tr>
<tr>
<td>Positron Emission Tomography</td>
<td>6</td>
</tr>
<tr>
<td>Studies employing $[^{18}\text{F}]$FDG</td>
<td>9</td>
</tr>
<tr>
<td>Aims of the study</td>
<td>12</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>15</td>
</tr>
<tr>
<td>Investigational protocol</td>
<td>15</td>
</tr>
<tr>
<td>Image acquisition</td>
<td>17</td>
</tr>
<tr>
<td>Image analysis</td>
<td>18</td>
</tr>
<tr>
<td>Control data</td>
<td>21</td>
</tr>
<tr>
<td>Statistics</td>
<td>21</td>
</tr>
<tr>
<td>Results</td>
<td>22</td>
</tr>
<tr>
<td>Analysis for the entire lung</td>
<td>22</td>
</tr>
<tr>
<td>Regional distribution of aeration abnormalities and 18F-FDG uptake.</td>
<td>23</td>
</tr>
<tr>
<td>Effect of mechanical ventilation</td>
<td>24</td>
</tr>
<tr>
<td>Discussion</td>
<td>26</td>
</tr>
<tr>
<td>Conclusion</td>
<td>30</td>
</tr>
<tr>
<td>References</td>
<td>31</td>
</tr>
<tr>
<td>Figure legends</td>
<td>41</td>
</tr>
</tbody>
</table>
Introduction

Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS)

Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) are characterized by acute onset of hypoxemic respiratory failure, and can be due either to pulmonary and extrapulmonary causes, leading to a massive pulmonary edema with alveolar flooding and loss of compliance [1]. In a recent perspective cohort study, the incidence of ARDS has been estimated in almost 80 cases per 100,000 person/year, with a mortality rate around 40 % [2] and significant long-term disabilities [3]. Among the supportive therapies proposed so far, mechanical ventilation represents a cornerstone, in order to maintain an acceptable oxygenation and carbon dioxide removal, given the marked hypoxemia, and the loss of respiratory system compliance. Several experimental and clinical data indicate the role of polymorphonuclear leukocytes (PMNs) in initiating and perpetuating the syndrome [4]. PMNs are widely represented in the bronchoalveolar lavage fluids [5] and in the histological specimens from ARDS patients. Furthermore, several animal ALI model are dependent form PMNs [6] and, despite ARDS can develop in severely neutropenic patients [7], pulmonary function frequently deteriorates in patients with lung injury as neutropenia resolves [8].
Once ARDS has been triggered, mechanical ventilation itself can represent a powerful noxious stimulus, usually referred as Ventilator Induced Lung Injury (VILI). Since the first pioneeristic reports by Dr. Kolobow and coworkers [9], the subject has received a deep interest. The scenario where this phenomena takes place is represented by a “wet” lung with alveolar instability and areas who collapse, leaving little room for ventilation. The alveoli of the remaining “baby lung” [10], which has to receive the entire minute ventilation, will be abnormally stretched and overdistended, particularly if the tidal volume is not properly reduced. Moreover, a given fraction of alveoli will be collapsed at end-exhalation, but will be progressively re-opened by the tidal ventilation, thus undergoing a cyclic recruitment/derecruitment [11, 12]. Finally, it has been shown by a mathematical model that at the border between collapsed and aerated parenchyma a shearing force 5-fold greater than the airway pressure can develop [13]. All the aforementioned forces can determine a local inflammatory response either by direct parenchymal disruption, or mediated by the activation of mechanoceptor systems [14], further enhancing the injury related to the “primitive” ARDS process; according to recent theories (biotrauma [15]) the release of cytokines from the lung in the blood stream might affect the function of different organs (particularly if already primed by other inflammatory stimuli [16]), increasing the risk of MOF and death [17]. The importance of this phenomena was strengthened by the finding of a decreased ARDS mortality decreased when the tidal volume was reduced from 12 to 6 ml/kg; the decreased mortality was also associated to a reduction of one proinflammatory chemokine, IL-6 [18]. Since the beneficial effect of an approach
promoting alveolar recruitment and avoiding cycling opening and closure of the alveoli has been repeatedly suggested [11, 19, 20], a number of multicenter trial comparing higher versus lower PEEP levels was recently conducted, failing however to show a benefit on mortality rate from the higher PEEP approach [21, 22]. Moreover it should not be forgotten that even if the ventilatory settings are optimized, ARDS-affected lungs will necessarily exploit regional expansion heterogeneity; in other words, the PEEP level necessary for adequately preventing expiratory collapse of certain regions is very likely to determine regional over-distension of other regions.

Most of the aforementioned processes of recruitment/derecruitment and overdistension can be adequately imaged by means of computed tomography (CT) [23]. CT allows to visualize and quantify the amount of recruitment induced by PEEP [24] or by a Recruitment Manoeuver, [25] providing at the same time information concerning the regional mechanisms of action of PEEP. The interaction between PEEP and tidal volume in determining the amount of tidal alveolar recruitment/derecruitment can be detected as well [26]. Polymorphonuclear leukocytes (PMNs) play a key role in the onset and perpetuation of the VILI [27-30]. In a very elegant study, Choudhury et al. demonstrated that mechanical ventilatory stress initiates pulmonary PMN sequestration early in the course of VILI, and this phenomenon is associated with stretch induced inflammatory events [31]. Zhang et al. incubated human PMNs with broncho-alveolar lavage fluids obtained in patients ventilated either with a conventional or a protective strategy, showing a neat increase of the PMNs’ activity in the former case [32]. Pretreatment of animals with
Granulocyte Colony Stimulation factor worsened the effect of high-tidal volume ventilation in rats [33].

However, despite the growing bulk of evidence concerning VILI, most of the current knowledge on the subject derives from experimental data obtained in animals and indirect data obtained in ALI/ARDS patients; thus the actual relevance of the aforementioned mechanisms in the clinical setting remains somehow speculative.

Positron Emission Tomography

Positron Emission Tomography (PET) is a functional imaging technique which relies on the detection of photons generated by the annihilation of a positron emitted by an instable isotope labeling a compound administered to a subject.[34]

In the daily clinical practice PET is used, in the vast majority of cases, for cancer staging and follow-up. PET, however, is an extremely flexible technique, that allows the in-vivo imaging of several functions, dependently on which tracer is used; for this reason PET has been applied, mainly for research purposes, to a large number of different diseases both in the clinical and pre-clinical setting; in the field of intensive care medicine most of the focus has been put on acute lung injury (ALI) and acute respiratory distress syndrome (ARDS).

A PET scanner is basically constituted by a ring of detectors surrounding the patient. The imaging procedure requires the administration of a biologically active molecule substituted in one atom with an unstable isotope, which decays with the emission of a positron. The positron is the anti-particle of an electron; thus, as soon
as the positron encounters one electron of the surrounding matter the two particles annihilate, and the masses are transformed in two photons, travelling in two opposite directions on the same line. When two photons are detected simultaneously (or, more appropriately, within a delay of nanoseconds) by two detectors of the ring an “event” is registered along the line connecting the detectors.

After having collected several millions of events it is possible, in analogy to a computed tomography (CT) acquisition, to reconstruct a planar image of the spatial distribution of the tracer, by using the “classical” Filtered Back-Projection, or, more recently, the ordered subset expectation maximization (OSEM) iterative algorithm. A modern PET scanner is constituted by a number of adjacent rings, so that a field of view 15-20 cm wide can be imaged at once.
However, the feature unique to PET does not reside much in the acquisition equipment, but in the tracers employed. Indeed the isotopes commonly used are 11-carbon, 13-nitrogen, 15-oxygen and 18-fluoride (which can be used as a substitute for hydrogen). It is thus possible to label virtually any molecule without altering its structure and, consequently, its biological properties; consequently PET can be used to image virtually any physiological process that can be individuated by following the spatial and temporal kinetic of one biological molecule. In the last decades hundreds of tracers have been developed and applied, mainly for research purposes.[35]

Table 1 reports some of the tracers that have been described and used for studying lung function.

<table>
<thead>
<tr>
<th>Tracer</th>
<th>Imaged Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[14C]CO</td>
<td>Regional blood volume</td>
</tr>
<tr>
<td>[18F]Fluorocaptopril</td>
<td>Pulmonary Angiotensin-converting Enzyme (ACE) expression, binding and inhibition</td>
</tr>
<tr>
<td>[13N]N2 (injected)</td>
<td>Regional perfusion and gas exchange (i.e. regional ventilation shunting blood flow, gas trapping)</td>
</tr>
<tr>
<td>[13N]N2 (inhaled)</td>
<td>Regional aeration and ventilation</td>
</tr>
<tr>
<td>[15O]H2O</td>
<td>Regional perfusion and extravascular lung water</td>
</tr>
<tr>
<td>68Ga-transferrin</td>
<td>Endothelial permeability</td>
</tr>
<tr>
<td>[11C]PK11195</td>
<td>Presence of macrophages (specifically binds benzodiazepine peripheral receptors)</td>
</tr>
</tbody>
</table>
Studies employing 18F]FDG

18F]fluoro-2-deoxy-D-glucose is an analog of glucose, which is uptaken by cells by the same transporters and at the same rate of glucose; the molecule undergoes to the first reaction of the respiratory chain, i.e. phosphorylation. However due to the absence of one oxygen atom the 18F]FDG cannot proceed any further towards Krebs cycle and it is trapped in the cells. This is not the case only in hepatocytes, expressing the enzyme hexokynase which can de-phosphorilate 18F]FDG making for it possible to leave the cells. In this way the accumulation of 18FDG detected by PET is proportional to the intensity of glycolitic metabolism of the cells. Because of this property PET was originally devised for the study of brain metabolism, which heavily depends on glucose; however the burst of PET into clinical practice has been allowed by the fact that 18F]FDG is actively uptaken by neoplastic cells from many different tumors, making PET an invaluable tool for staging and differential diagnosis of neoplasm.

In order to quantitate the uptake of 18FDG two kind of methods have been mainly used, so far[40]. The first class, “semi-quantitative”, routinely used in the clinical practice, relies on the use of the standardized uptake value (SUV), defined as the tissue concentration of tracer as measured by a PET scanner divided by the activity injected divided by body weight. Quantitative methods are based on the application of mathematical multi-compartmental models, fitted to the tracer time course. The Solokoff model assumes the presence of three compartments for 18F]FDG (blood, tissutal precursor for phosphorylation and phosphorilated), with
three time constants, expressing the rate of passage of FDG among the different compartments. Later, the simplified Patlak’s graphical analysis was proposed: the ratio of tissue to plasma activity is plotted as a function of the ratio of the integral of plasma activity normalized to plasma activity. The experimental points are fitted with a linear regression whose slope represents the net uptake of FDG (Ki) and the intercept represents the initial volume of distribution. [Figura?] It is important to underline that both models have been devised for brain and subsequently used in the lungs, although their applicability in this organ might be debatable, due to the important anatomical differences. For this reason more sophisticated models have been specifically developed for the lung. [41]

Increased $[^{18}\text{F}]$FDG signal has been reported in the course of several experimental and clinical inflammatory processes in the lungs. The uptake of $[^{18}\text{F}]$FDG occurs primarily by activated neutrophils, whose metabolism (especially during the respiratory burst triggered by the rolling and adhesion phases) is heavily dependent on anaerobic glycolysis, requiring an elevated uptake of glucose. Microautoradiographic studies confirmed that, after in vivo administration of $[^{18}\text{F}]$FDG or ex-vivo incubation with 3HDG (deoxyglucose labeled with tritium) the only type of cells emitting radiation was neutrophils [42-44], even if other cell types such as macrophages were numerically more abundant[45]. In keeping with this finding it has been shown that, in a model of ventilator induced lung injury (VILI) the depletion of neutrophils, without affecting other cellular types, causes, basically, a disappearance of the $[^{18}\text{F}]$FDG signal.
PET with 18F-FDG has been used to evaluate the inflammatory response in a number of experimental models of lung injury, including the administration of streptococcus pneumonia [42], oleic acid, endotoxin [46, 47] and bleomycin, Ventilator Induced Lung Injury (VILI) and smoke inhalation.

In an ovine model of VILI, in which one of the two lungs was injured by promoting alveolar overexpansion (by means of high peak pressure) and collapse (by means of a negative end-expiratory pressure) the injured lung shows a pronouncedly increase uptake of 18F-FDG in comparison with the uninjured lung after only 90 minutes of injurious ventilation; at this time point, despite the injured lung had a marked loss of aeration aeration, gas exchange was only modestly deranged, probably because, as shown by the ventilation perfusion PET scan (see below) in most animals the perfusion had been redirected to the non-injured lung by the mechanism of pulmonary hypoxic vasoconstriction. [48]

PET with 18F-FDG has been used in humans to image lung metabolic activity (likely to reflect inflammation) in the course of several types of lung disease, including asthma[49, 50], COPD[50], infection [51] and rejection of lung’s transplant. In all such conditions PET allowed the imaging of lung’s inflammation. Among eight patients at risk for the development of ALI, three of the four patients subsequently developing ALI had a “diffuse” uptake of FDG (i.e. involving both nonaerated or poorly aerated and normally aerated regions on CT), while in the patients subsequently not developing ALI the uptake of 18F-FDG was confined to the regions of poor or absent aeration [52].
Finally, in healthy volunteers, after endobronchial instillation of 4 ng/kg of bacterial endotoxin, PET shows an increased $[^{18}\text{F}]$FDG uptake in the instilled bronchus; this is associated with an increased count of neutrophils in the bronchoalveolar lavage fluid. [53] This model, resembling under many aspects the inflammatory reaction characteristic of ALI (although confined to a small region of the lung), has been used to test the anti-inflammatory properties of some drugs. Indeed a significant reduction of $[^{18}\text{F}]$FDG uptake was obtained following the administration of lovastatin, but not of recombinant human activated protein C. [54] As suggested by the authors, this work provide evidence of the potential utility of PET with $[^{18}\text{F}]$FDG as a biomarker for neutrophilic inflammation and suggest that this tool may be useful during the early phases of drug development for testing the clinical efficacy of novel therapies.

Aims of the study

Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) are associated with a high mortality and significant long term morbidity [2, 55, 56]. While ALI/ARDS was originally considered to affect the lung diffusely, Computed Tomography (CT) scan studies indicated that areas of lung with normal aeration could be preserved, and coexist with poorly and non-aerated tissue, leading to the “baby-lung” concept [10].

It is accepted that inflammation and neutrophils (PMNs) play a key role in ALI/ARDS [4, 57, 58] and that their accumulation is a hallmark of ALI, despite the fact that ARDS can develop in severely neutropenic patients [7]. Moreover, PMNs
are primary effectors of Ventilator-Induced Lung Injury [33, 59, 60], which can aggravate ALI/ARDS.

Positron Emission Tomography (PET) with $[^{18}F]$fluoro-2-deoxy-D-glucose (18FDG) [49, 61-64] can be used to image and quantitate cellular metabolic activity \textit{in-vivo}. In several lung inflammatory processes, both in humans [51, 53] and in animal models [42, 43, 45, 48, 65], the increased metabolic activity can be ascribed, almost exclusively, to PMNs activation.

In patients with ALI/ARDS, it is unknown whether PMNs activation is diffuse throughout the entire lung, as it has been suggested for the increase in vascular permeability [66], or patchy, as is the increase in lung density [67]. Gaining knowledge on the distribution of PMNs activity and its relationship to lung density is important because it could offer insights into the pathophysiology of ALI/ARDS. For example, metabolic activation confined to poorly and non-aerated areas would indicate that the baby lung is spared by activated inflammatory cells, whereas activation confined to aerated areas would suggest that regional collapse may protect tissue from inflammatory cells activation, triggered instead by ventilatory stretch. Moreover, knowing the intensity and/or the regional distribution of the inflammatory process might lead to better tailoring of individual therapeutic and ventilatory strategies. However, the methods currently available to monitor the presence of PMNs in the lungs, like broncho-alveolar lavage [68] and lung biopsy [69], are unable to provide comprehensive informations on the topographical distribution of lung involvement.
Consequently, in the **first phase** of the study, we combined 18FDG-PET and CT imaging to assess the magnitude and spatial distribution of PMNs activity, and test whether activation occurred only within a certain lung density range.

In the second phase of the study we focused on the inflammatory stimulus represented by Mechanical Ventilation (see above the section on VILI). One of the mechanisms that has been claimed as responsible for the genesis of VILI has been the cyclic recruitment and derecruitment of alveolar lung units, sometimes referred to as “atelectrauma”; neutrophils have been shown to play a key role in this type of injury. Most of the data on this mechanism derive from animal experiments, which can mimic the clinical condition only to a certain extent and to the date no direct evidence exists that atelectrauma plays, in fact a role in patients affected by ALI/ARDS. Moreover in a quite complex paper Chiumello et al. translated into clinical terms the concepts of stress and strain [70]. Stress is the force generated by lung parenchyma in response to an external load, clinically equivalent to transpulmonary pressure while strain is the change, relative to the initial status, of the lungs’ size, clinically equivalent to the ratio of Tidal Volume over Functional Residual Capacity.

The aim of the **second phase** of the research project was to assess if regions undergoing cyclic recruitment/derecruitment do show an increased metabolic activity likely to reflect inflammation in patients affected by ALI/ARDS.
Materials and Methods

Investigational protocol

The protocol was approved by our institution’s ethical committee; informed consent was obtained according to the committee’s recommendations. Patients were recruited from the general Intensive Care Unit (ICU) of a university hospital.

Inclusion criteria were:

- diagnosis of ALI/ARDS according to the 1994 European/American Consensus conference [71], requiring mechanical ventilation
- planning by the attending physician of a thorax CT scan as part of the patient’s clinical management.

Exclusion criteria were:

- pregnancy
- age < 18 years
- impossibility of patient’s transport according to the attending physician
- lung surgery in the last four weeks
- oliguria (urinary output<0.5 ml/kg/hour) or anuria
- known or suspected cancer
- history of chronic lung disease
logistical reasons (e.g. PET/CT camera unavailable until patient had lost eligibility criteria).

Once a patient was judged eligible for the study, the PET/CT scan was scheduled, usually within one or two days; on the day of the study, eligibility was confirmed. A total of fifteen patients were enrolled. The PET/CT study being usually performed around 2pm, the enteral or parenteral nutrition and any glucose-containing infusion were stopped at 6 a.m. to ensure a fasting period of at least 6-8 hours. In patients undergoing insulin therapy, this was stopped as well. Before transport from the ICU to the PET/CT facility, blood glucose was tested to confirm a level between 80 and 140 mg/dl.

Before transport, the following variables were measured with the patient on volume controlled ventilation at settings selected by the attending physician: hemodynamic variables (heart rate, invasive arterial blood pressure, central venous pressure and, if a pulmonary artery catheter was in place, pulmonary arterial pressure, pulmonary artery occlusion pressure, cardiac output by thermodilution); ventilatory settings (Positive End-Expiratory Pressure (PEEP), Respiratory Rate, Tidal Volume (V_T), Mean Airway Pressure, Inspired Oxygen Fraction ($F_i O_2$)). Expiratory and inspiratory pauses were performed to measure, respectively, total PEEP ($P_{EEP_{tot}}$, which includes intrinsic PEEP) and plateau pressure (P_{plat}). Respiratory system compliance (C_{rs}) was computed as: $C_{rs}=V_T/(P_{plat}-P_{EEP_{tot}})$.

Blood gases were measured from arterial and, if available, mixed venous samples (AVL Omni 6, Roche). Venous admixture was computed according to the Berggren equation [72].
During transport, and throughout the permanence in the PET/CT facility, clinical care was provided by a physician and a nurse uninvolved in the study procedures. Mechanical ventilation was provided by an ICU ventilator, and invasive arterial blood pressure, ECG, peripheral oxygen saturation and expired CO₂ were continuously monitored. Ventilatory settings, sedation, and fluid therapy were maintained constant throughout the study period, unless clinically advised.

At the end of the study, collection of the aforementioned variables was repeated in the ICU.

Finally, we recorded the 28 days and ICU outcome (survival or death) of each patient.

Image acquisition

We used a GE Discovery ST (GE Medical Systems, Milwaukee, WI) PET/CT tomograph, with an axial field of view of approximately 18 cm (47 3.27-mm thick sections, separated by 0.48 mm intervals), equipped with an 8-slice CT. The section of thorax to be imaged was selected on the scout view just above the diaphragm. Once the selection was made, care was taken to avoid any further movement of the patient on the examination table. A spiral CT scan (140 KV, 80 mA, slice thickness 3.75 mm, no interval between slices) of the chosen section was obtained while holding the patient apneic (by switching the ventilator to Constant Positive Airway Pressure modality) at the same mean airway pressure as during mechanical ventilation, to ensure the best possible cross-registration between the CT scan and the PET acquisition to follow, performed during tidal ventilation. The patient was
then advanced to the PET detector; the tomograph ensures the cross-registration of the same axial field-of-view between the CT and the PET acquisition. A bolus of 18FDG (approximately 300 MBq) was rapidly injected intravenously, five seconds after that the acquisition of sequential PET frames was started with the following protocol: 12 frames lasting 10 seconds each ($12 \times 10''$), $10 \times 30''$, $8 \times 300''$, $1 \times 600''$, for a total imaging time of 57 minutes.

At the end of the PET scanning we acquired two additional sets of CT scans holding the airway pressure constant at the level of end-expiration (PEEP, CT$_{\text{EXP}}$) and end-inspiration (Plateau pressure, CT$_{\text{INSP}}$), to obtain images of the regional lung expansion induced by tidal ventilation.

Image analysis

Dynamic PET data were reconstructed by ordered-subset expectation maximization (OSEM) iterative algorithm [73-75] and corrected for decay, scatter, random counts, attenuation (using CT).

Images were analyzed with a software specifically developed in Matlab environment (Matlab R2007a, The Mathworks, Natick, MA). Lung fields (Region-Of-Interest, ROI$_L$) were manually outlined on the CT images, carefully avoiding the large airways, vessels and pleural effusions. The ROI$_L$, displayed as thick yellow lines, were overlapped to the last frame of the corresponding PET scan, and the fused PET/CT image was used for a visual assessment of the location of 18FDG uptake.
For quantitative image analysis, we used Patlak’s graphical method [76]. Briefly, an additional ROI was defined in the center of the descending aorta over at least 15-20 slices [77], in order to determine the time course of blood activity. The activity in ROI$_L$ divided by blood activity was plotted as a function of the integral of blood activity divided by blood activity (Figure 1). After a steady state in cellular 18FDG uptake is reached, the plot follows straight line, whose slope indicates the 18FDG uptake rate constant (K_i). As this parameter is expected to increase with the number of cells per voxel (e.g. in the case of increased CT density due to an increase in the ratio of pulmonary parenchyma-to-gas volume), we also normalized K_i by the mean fractional density of the lung, computed as $(CT_{\text{MEAN}}+1000)/1000$, where CT_{MEAN} is the average CT number of the ROI$_L$: $K_i^{\text{DENS}} = K_i/[(CT_{\text{MEAN}}+1000)/1000]$.

The original CT matrix, with a size of 512-by-512 pixels, was re-scaled to achieve the same dimension (128-by-128) and pixel size (4.5 mm) of the original PET image. This scaling process lowers the spatial resolution of CT to a level similar to that of PET.

Density based ROIs: In order to describe the intra-patient relationship between lung density and 18FDG uptake, the original ROI$_L$ was sub-segmented (relying on the down-scaled CT image) by allocating all the voxels within “bins” 100 Hounsfield Units (HU) wide (the first “submask” enclosed all the voxels between -1000 HU and -900 HU, the second one comprised all the voxels between -900 HU and -800 HU, and so forth). For each of these density-defined ROIs their K_i value (K_i^{D}) and mean CT value (CT_{D}) were computed. It has to be emphasized that K_i^{D}, as opposed to
Ki\textsubscript{DENS}, is not a density-normalized \(Ki\), rather it is a measure of the \(^{18}\text{FDG}\) uptake rate of lung areas with a given density.

"Tissue compartments": We defined normally aerated ROIs (comprising voxels with CT attenuation between -900 and -501 HU) and "collapsed or consolidated" (i.e. non-aerated) ROIs (comprising voxels with CT attenuation between -100 and +100 HU), and we computed their Ki (\(Ki_{\text{NA}}\) and \(Ki_{\text{CO}}\), respectively).

Intra-tidal recruitment derecruitment: The tissue with absent aeration on CT\textsubscript{INSP} and CT\textsubscript{EXP} was defined as tissue derecruited (D-D) throughout the respiratory cycle. The tissue with absent aeration on CT\textsubscript{EXP} but with normal or poor aeration on CT\textsubscript{INSP} was defined as tissue undergoing cyclic recruitment derecruitment (R-D). For this ROIs we computed the Ki (\(Ki_{D-D}\) and \(Ki_{R-D}\)) respectively.

None of the aforementioned calculation was performed on a voxel-by-voxel basis, rather, on the activity arising from a given ROI, which is the average activity of the voxels in the ROI.

We also computed the relative weight of the normally aerated and "non-aerated" (-100 HU < CT < 100 HU) tissue, by summing the weight of the corresponding voxels and dividing it by the weight of the entire ROI\textsubscript{L}. The weight of each voxel was computed as \([(\text{CT}_{\text{vox}}+1000)/1000]*\text{Vol}_{\text{vox}}\), where \(\text{CT}_{\text{vox}}\) and \(\text{Vol}_{\text{vox}}\) are the CT number and the volume of the voxel, respectively.

For each tissue compartment Computed Tomography-assessed Tidal Volume strain was defined as \(V_{t\text{CT}}\) gas volume on CT\textsubscript{INSP} minus gas volume on CT\textsubscript{EXP}. Computed Tomography-assessed end expiratory lung volume (EELV\textsubscript{CT}) was defined as gas volume on CT\textsubscript{EXP}. Finally for each ROI strain was computed \(V_{t\text{CT}}/\text{EELV}_{\text{CT}}\).
Control data

In order to obtain control values, we performed a CT scan followed by a dynamic PET acquisition with the previously indicated parameters:

a) in four spontaneously breathing subjects, undergoing PET/CT for clinical indications, without a known pulmonary disease;

b) in two ICU patients, being mechanically ventilated (for 4 and 19 days) for a neurologic disorder, who had normal gas exchange (PaO$_2$/FiO$_2$ > 300 mmHg).

Statistics

SPSS 14.0 was used for statistical analysis (SPSS 14.0, SPSS Inc., Chicago, IL). Although variables were normally distributed (as assessed by Kolgomorov-Smirnov Z test), given the relatively small sample size and the difference in size between groups, we chose to use the non-parametric Mann-Whitney U test for comparison between groups. Wilcoxon Signed-rank test was used for paired comparisons (baseline vs after PET/CT). Linear regression was used to assess correlation between variables. P < 0.05 was considered statistically significant.
Results

Analysis for the entire lung

The main demographic and clinical characteristics of the patients are shown in Table 1. None of the parameters differed between before and after the PET/CT study (*data not shown*).

In ALI/ARDS patients, the metabolic activity of the lungs was markedly elevated in comparison with controls, as shown by the Ki values (and Figure 2). This difference was still present after normalizing the Ki values for the lung density (K_i_{DENS}).

The inter-subject variability of these parameters was large (coefficients of variation were 67.8% and 59.8%, respectively, see Table 2) and no difference was found in either Ki or K_i_{DENS} between ARDS of pulmonary and extrapulmonary origin. The metabolic activity of the whole lung did not correlate with whole-lung density (CT_{mean}) or with the relative weight of either collapsed or normally aerated tissue. However, patients with a greater level of metabolic activity of the lungs had a more severe derangement of gas exchange; indeed Ki values correlated negatively with $\text{PaO}_2/\text{FiO}_2$ (Figure 3A; $r^2 = 0.48$, $p<0.05$) and positively with PaCO_2 (Figure 3B; $r^2 = 0.64$; $p<0.01$). While attempting to assess the relationship existing between the metabolic activity of the lungs and the potential injury arising from mechanical
ventilation we could not find significant correlations between either K_i or K_{DENS} and P_{plat} or duration of mechanical ventilation.

The metabolic activity of the normally aerated tissue (K_{NA}) of ALI/ARDS patients ($83.8 \pm 85.6 \times 10^{-4}$ ml/min/ml range 23.5-250) showed, on average a seven-fold increase when compared to controls ($12 \pm 33, \times 10^{-4}$ ml/min/ml), with a coefficient of variation much larger than the coefficient of variation than K_{CO} (102 vs 55% $p<0.05$).

Regional distribution of aeration abnormalities and 18F-FDG uptake.

When qualitatively describing the regional distribution of the 18FDG uptake and its relationship with the regional density among the different patients, we recognized different patterns. While in six patients (55 %) the 18FDG uptake was highest in the regions with highest density and progressively decreased in regions of lower density, in three patients (33 %) the areas of normal or poor aeration bore 18FDG uptake similar to or greater than that of areas of higher density. Representative images of these two patterns are shown in figure 4. Finally, in two patients, the 18FDG uptake was lower than in the other patients and homogenously distributed throughout the lungs.

Analogous results were found when plotting the K_{D} values as a function of their respective CT_{D} values (Figure 5). Three patients, showed a shape of the
relationship between CT_D and Ki_D very different from the rest of the population, i.e. characterized by the highest Ki_D values in the range of the normally or poorly aerated voxels. These patients were also those with the highest mean Ki and Ki_{DENS} values. These patients had a more severe derangement in gas exchange (PaO_2/FiO_2 123 ± 23 vs 180 ± 28 mmHg $p=0.053$ and $PaCO_2$: 59.9 ± 7.7 vs 41.0 ± 6.8 mmHg $p<0.05$) and in lungs’ mechanical properties (P_{plat} 28.9 ± 1.9 vs 22.8 ± 5.8 cmH$_2$O $p=0.087$) than the rest of the patients.

Effect of mechanical ventilation

Atelectrauma

At end expiration the amount of non-aerated tissue was 33 ± 13 %; only a modest amount (8.8 ± 17 %) of this tissue underwent cyclic recruitment/derecruitment was small, corresponding to 2.9 ± 5.9 % of total lung weight. No systematic difference between KiD_R and KiD_D was seen (figure 6A), even after normalization for density (Figure 6B). In 3 out of 11 patients undergoing this imaging protocol, the ratio KiD_R/KiD_D was greater than one; overall the ratio KiD_R/KiD_D was correlated with plateau pressure ($R^2=0.41$, $p<0.05$, figure 7), but not with duration of mechanical ventilation or with the amount of tissue undergoing cyclic recruitment/derecruitment.
Role of stress and strain

At a global lung level no significant correlation was found between $K_{i WL}$ and the level of strain; however $K_{i NA}$ (but not $K_{i PA}$) was correlated with strain ($R^2=0.36$; $p<0.05$) of the respective tissue class (figure 8A and 8B).

An exponential relationship was found between $K_{i NA}$ and plateau pressure (Figure 9A): Ki values increase steeply for values of P_{plat} above 26-27 cmH2O. A linear correlation was also found between P_{plat} and $K_{i NA}/K_{i WL}$ (Figure 9B). This ratio expresses the degree of metabolic activity of the normally aerated tissue in respect to the average activity of the lung, normalizing for between patients variability of $K_{i WL}$. Analogous relationship were found when $K_{i NA}$ and $K_{i NA\%}$ were plotted as a function of respiratory system compliance.
Discussion

This study shows that the lungs of patients with ALI/ARDS have an intense metabolic activity, likely to arise from neutrophils involved in the inflammatory process. The magnitude and distribution of this activity were very variable among our subjects. However, a consistent finding was that metabolic activation did not involve only the collapsed areas of the lung but also the areas detected by CT as being “normally aerated” (the “baby lung”). Moreover we showed that while in some patients the regional metabolic activity was greater in the areas of increased density, other patients showed the highest metabolic rate was present in areas of normal or poor aeration.

We enrolled a relatively small and heterogeneous cohort of patients: this is mainly due to the clinical and logistical difficulties of performing such a study; the same reasons did not allow performing the study at the same time point for all the subjects. However, while the number of patients can be seen as a limitation, we feel that the heterogeneous sample we enrolled is a representative sample of the ALI/ARDS patient population treated at our institution.

We used PET/CT with 18FDG to detect and quantify inflammation. This technique bears several advantages, namely the low invasiveness, the possibility of imaging a large fraction of the lungs at once and the cross registration with CT. 18FDG, however, is a non-specific tracer, since it labels any cell with an intense
glucose uptake. Several studies, performed both in humans [51, 53] and in animal models [42, 43, 45, 48] have shown that, during pulmonary inflammatory processes, the 18FDG signal can be attributed almost exclusively to activated PMNs. In a model of Ventilator-induced lung injury, not only the 18FDG signal correlated with the number of PMNs detected in the lung parenchyma, but decreased substantially with progressive PMNs depletion.[48] In order to minimize the potential confounding effect of uptake from other cell types, we excluded all patients with diagnosis or suspicion of cancer. For these reasons it seems reasonable to assume that, in our patients, most of the 18FDG signal arose from PMNs activated in the setting of inflammation.

In ALI/ARDS as well as in normal subjects the perfusion in the lung is not homogeneous [48, 78]; this is, however, unlikely to affect 18FDG distribution, whose uptake has been repeatedly shown to be almost totally unrelated to regional perfusion, at least in other organs [79-83]. Indeed, in experimental models of unilateral lung injury induced by mechanical stretch [48] and smoke inhalation [64], the injured lung always showed greater 18FDG uptake than the control one independent of whether the blood flow favoured or not the injured lung.

Ki values differed greatly among patients. Although this finding is in line with the well described heterogeneity of ALI/ARDS, it did not seem to be related to whether the cause of ALI/ARDS was pulmonary or extrapulmonary. The increase and inter-individual variability of Ki persisted when Ki was normalized by tissue density, to account for the effect that a greater amount of lung tissue per unit volume of lung might have on Ki. It is important to note that this normalization is
conservative [48], since it is expected to lead to an underestimation of metabolic rate when the increase in density is due to edema, as edema fluid does not contribute significantly to 18FDG uptake [43].

In all ALI/ARDS patients metabolic activity was markedly increased in lung tissue with density between -900 and -500 HU, where in one patient the 18FDG uptake was as high as 20-fold that of the average value measured in control patients. Previous studies showed that, despite preserved aeration, the “baby lung” bears functional abnormalities: while in the course of lobar pneumonia endothelial permeability increased only in the affected lobe, in ALI/ARDS patients lung permeability diffusely increased throughout the whole lung [84]. This study provides direct evidence that in ALI/ARDS the normally aerated parenchyma shows a substantially increased metabolic rate, likely to reflect the presence of activated inflammatory cells. This supports the concept that the ‘baby lung’ while appearing “normal” in terms of aeration, is indeed involved by the inflammatory process as much as the rest of the lung. Since the presence of neutrophilic activation can trigger and promote the evolution towards fibrosis during inflammatory lung disease [45], this mechanism might be responsible for the development of the fibrosis involving the non-dependent areas (usually normally aerated in the acute phase of the disease) demonstrated by the long-term CT follow up in ALI/ARDS survivors [85].

Another finding is that, when analyzing the regional distribution of Ki, and specifically its relationship with lung density, two patterns could be found: while in seven patients the greatest 18FDG uptake rate could be seen in the regions with
greater density, this was not the case for other three, characterized by the highest metabolic activity in the range of the normally or poorly aerated voxels. In normal lungs Ki is expected to correlate with lung density, as was indeed the case for our control subjects: this is due to the fact that regions with an increased lung density have more tissue and less air. The absence of such a correlation, as noticed in three patients, can be explained in at least two ways, potentially co-existing. First the less-aerated tissue could have a metabolic activity actually lower than the more aerated one, but this difference would be offset or reduced by its greater density, which increases the number of metabolically active cells in each voxel. Second: as already discussed, the increase in lung density could be due to the presence of edema fluid, rather than alveolar collapse. In this case, two regions can have very different densities as measured by CT scan but similar cell mass per voxel unit: as edema fluid does not actively uptake 18FDG the Ki values would be similar. The most likely hypothesis is that both scenarios co-exist, probably also within a patient. Interestingly, the three patients with the highest metabolic activity in the range of normally or poorly aerated densities had a higher plateau pressure (although it cannot be said whether the higher distending forces where the causes or the result of the abnormalities seen on PET), a more deranged gas exchange, and their clinical course was characterized by an absence of improvement in the LIS, one week after the PET/CT study, possibly also as a result of the injury perpetuated in the normally and poorly aerated regions by the inflammatory cells.
Conclusion

In conclusion, despite these preliminary results need to be confirmed and expanded in a larger sample of patients, this study shows that in patients with ALI/ARDS the metabolic activity of the lung is substantially increased across the entire lung density spectrum. This suggests that no region of the lung is spared by the presence of activated inflammatory cells; the intensity of this activation and its regional distribution, however, vary widely within and between subjects. Moreover we have been able to show an association between inflammation and stress and strain generated in the lung from mechanical ventilation.
References

attenuates bacterial growth and translocation in experimental pneumonia. Am J Respir Crit Care Med 169: 1046-1053

Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175: 160-166

unaltered insulin sensitivity of glucose uptake in skeletal muscle of chronic smokers. Metabolism 48: 239-244

Figure legends

Figure 1: Representative Patlak plot for one ARDS patient (corresponding, in the tables to patient #4, filled symbols) and for a spontaneously breathing control subject (empty symbols). 18FDG activity in a region of interest (ROI), divided by blood activity, is plotted as a function of the time integral of blood activity divided by blood activity. The slope of the linear part of this relationship corresponds to the uptake rate of 18FDG (K_i).

Figure 2: 18FDG uptake rate (K_i) of the imaged lung (Panel A), in the individual patients and as mean ± standard deviation. Despite large between-patients variability, K_i was higher than that of control subjects (dashed line denotes mean K_i of controls). This could not be ascribed solely to increased lung density, as the difference persisted after normalization by lung density (Panel B). * P < 0.05 patients versus controls

Figure 3: Correlation between lung’s metabolic activity, expressed as uptake rate of 18FDG (K_i), and PaO$_2$/FiO$_2$

Figure 4: Representative images of cross-registered CT and 18FDG PET from two ALI/ARDS patients. The CT image was acquired during a respiratory pause at mean airway pressure. The gray scale is centered at -500 Hounsfield Units (HU) with a
width of 1250 HU. PET images represent the average pulmonary 18FDG concentration over the last 20 minutes of acquisition (from 37 minutes to 57 minutes since 18FDG administration); the color scale represents radioactivity concentration (kBq/cc). **Panel A:** 18FDG distribution parallels that of the opacities detected on CT. **Panel B:** intense 18FDG uptake can be observed in normally aerated regions (square 1), while activity is lower in the dorsal, “non-aerated” regions of both lungs (square 2).

Figure 5: Distribution of regional metabolic activity (K_i is the 18FDG uptake rate of areas of specified density) as a function of regional lung density (CT_D), in the patients with ARDS/ALI (dotted lines) compared with that of the four controls (solid line: mean; bars: standard deviation). In some patients K_i increased linearly with CT_D (empty symbols); this was not the case for other patients (filled symbols). Note that, in all patients, the metabolic rate was systematically increased across the entire spectrum of normal lung attenuation.

Figure 7: The figure shows the positive correlation existing between ratio K_{iD-R}/K_{iD-D} and plateau pressure

Figure 8: Correlation between K_{iNA} and K_{iPA}) with strain of the respective tissue class.

Figure 9: An exponential relationship was found between K_{iNA} and plateau pressure (Figure 9A): Ki values increase steeply for values of P_{plat} above 26-27 cmH2O. A linear correlation was also found between P_{plat} and K_{iNA}/K_{iWL} (Figure 9B).
Table 1:

<table>
<thead>
<tr>
<th>Patient number</th>
<th>Mean ± s.d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>66 ± 13</td>
</tr>
<tr>
<td>Sex (M:F)</td>
<td>12:4</td>
</tr>
<tr>
<td>ARDS etiology</td>
<td>11:5</td>
</tr>
<tr>
<td>Pulm:ExP</td>
<td></td>
</tr>
<tr>
<td>Outcome at ICU</td>
<td>11:5</td>
</tr>
<tr>
<td>discharge (S:D)</td>
<td></td>
</tr>
<tr>
<td>Time on MV</td>
<td>8.2 ± 7.3</td>
</tr>
<tr>
<td>before study</td>
<td></td>
</tr>
<tr>
<td>(days)</td>
<td></td>
</tr>
<tr>
<td>Heart Rate</td>
<td>79 ± 13</td>
</tr>
<tr>
<td>(beats per min)</td>
<td></td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>83 ± 15</td>
</tr>
<tr>
<td>MPAP (mmHg)</td>
<td>29 ± 5</td>
</tr>
<tr>
<td>PaO₂/FiO₂ (mmHg)</td>
<td>163 ± 43</td>
</tr>
<tr>
<td>PaCO₂ (mmHg)</td>
<td>45 ± 8</td>
</tr>
<tr>
<td>FiO₂</td>
<td>0.58 ± 0.13</td>
</tr>
<tr>
<td>Venous Admixture</td>
<td>0.28 ± 0.04</td>
</tr>
<tr>
<td>PEEP<sub>tot</sub> (cmH₂O)</td>
<td>13 ± 2.7</td>
</tr>
<tr>
<td>Tidal Volume</td>
<td>6.8 ± 1.1</td>
</tr>
<tr>
<td>(ml/kg)</td>
<td></td>
</tr>
<tr>
<td>Plateau pressure (cmH₂O)</td>
<td>24.8 ± 4.8</td>
</tr>
<tr>
<td>Respiratory Rate (breaths per min)</td>
<td>25.5 ± 5.2</td>
</tr>
<tr>
<td>Minute Ventilation (l/min)</td>
<td>10.6 ± 1.6</td>
</tr>
<tr>
<td>Blood Glucose</td>
<td>125 ± 24</td>
</tr>
<tr>
<td>(mg/dL)</td>
<td></td>
</tr>
</tbody>
</table>

Patient’s characteristics on the day of the study, collected before transport to the PET/CT facility. For dichotomic variables the last column reports the ratio between the two groups. List of abbreviations: F: Female, M: Male, S: Survived, D: Deceased, Pulm: Pulmonary, ExP: Extra-pulmonary, MV: Mechanical Ventilation, PEEP_{tot}: total Positive End-Expiratory Pressure (including intrinsic-PEEP), MAP: Mean Arterial Pressure: MPAP: Mean Pulmonary Arterial Pressure.
FIGURE 1

Integral of Blood Activity / Blood Activity

ROI Activity / Blood Activity

0.0
0.5
1.0
1.5
2.0
FIGURE 2A

Patient number

Mean

$Ki \cdot 10^4$ (ml/min/ml)

0
50
100
150
200
250
300

Patient number

1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 1 Mean
FIGURE 3A

$R^2 = 0.2643$
FIGURE 3B

The figure shows a scatter plot with points representing the relationship between K_i (ml/min/ml) and $PaCO_2$ (mmHg). The plot has a linear trend line with an R^2 value of 0.4992.
FIGURE 5

Graph showing the relationship between CT D (HU) and KiD · 10^4 (ml/min/ml). The x-axis represents CT D (HU) ranging from -1000 to 200, and the y-axis represents KiD · 10^4 (ml/min/ml) ranging from 0 to 300.
\[y = 0.0001x^2 - 0.0059x + 0.0618 \]

\[R^2 = 0.667 \]
FIGURE 9B

The graph shows a scatter plot with data points representing the relationship between Plateau Pressure (cmH2O) and Normally Aerated tissue Ki (relative to lung's average Ki). The R² value is 0.3419, indicating a moderate positive correlation between the variables.