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Abstract

In this paper we discuss the role of centrality in organizational net-
works. We will present some new results related to the different concepts
of centrality. A case study of an ICT consulting company concludes.

Keywords: Organizational networks, centrality, graphs

1 Introduction
Social network analysis can be used to investigate the structure of organizations
and to describe formal and informal links among individuals. Collaboration ties,
informative flows, personal relationships, advices can be analyzed as organiza-
tional networks.
Comparing informal relationships and the formal organizational structure

allows us to identify critical points in the firm’s performance and to reveal
individuals playing a hidden role in the organization, while at the same time
confirming important roles of central actors. For a review of literature relevant
to organizational networks, see [15], [18], [19], [20], [21].
Among several topics treated in Social Network Analysis we will consider

[8]:

• roles and positions in a network described by centrality;

• local and global measures suitable to analyze the structure of a network.

In order to clarify network characteristics and the role of each actor in it,
we mainly focus on different centrality measures (degree centrality, closeness
centrality, eigenvector centrality and betweenness centrality). Centrality is a

∗Corresponding author. e-mail : rosanna.grassi@unimib.it ; silvana.stefani@unimib.it ;
anna.torriero@unicatt.it

1



structural property, describing the extent to which a given individual is con-
nected to others in a network. It is associated to power, influence in decision
making, innovation ([3], [4], [9], [10]).
It is known that individuals with many direct connections to others have

more relationships to draw upon in obtaining resources and so are less depen-
dent on any single individual. Centrality also implies control over the resource
acquisition of others because central individuals can choose from a greater num-
ber of alternative individuals ([20]).
Specific centrality measures can be useful to highlight the position of an

individual and his role in the organization. More precisely, we can distinguish
four strategic positions in an organization:
1) central individuals : numerous links to others, implying greater opportu-

nities to exchange directly resources and information. Degree centrality is the
tool to use here.
2) brokers: individuals playing an intermediary role in the organization

through the control of information flows. The number of direct links is not
necessarily high, but their betweenness centrality is indeed high.
3) boundary spanners or ambassadors : they communicate especially outside

their group with central individuals of other groups in order to establish strate-
gic alliances or to develop new goods: the right measure here is eigenvector
centrality.
4) boundary specialists: they own technical skills or specific information, and

their position is intentionally on the boundary of the network. These individuals
are characterized by a low centrality measure.
Furthermore, in order to identify people sharing the same centrality score,

we will consider the notion of center of a network and its properties.
An interesting point is to ascertain when one or more actors can be the most

central under other concepts of centrality that we consider. First, we prove a
sufficient condition for a most degree central node to be a most eigencentral
one. Then we will show that actors with the star property, i.e. actors directly
connected to all others in the network, belong to all centers. A case study of
an ICT consulting company will show how centrality, related in particular to
brokers, can be used to optimally design an organizational network.
In the study of organizational networks, another important issue refers to

the concept of structural equivalence ([15], [17], Chapter 9) and core-periphery
structure ([7], [4]). The structural equivalence was first introduced in [14] to
identify individuals playing similar roles in a network, in other words those who
can be swapped without changing the topology of the network. The structural
equivalence concept aims at making operational the notion that actors may
have identical or nearly identical positions in a network and hence be directly
”substitutable” for one another ([13]). A less strict concept, the automorphic
equivalence (see [17], Chapter 9) can be observed in many organizational net-
works and it concerns individuals that are not connected to exactly the same
nodes, like those structurally equivalent are, but have the same pattern of ties
and similar structural positions, i.e. the network exhibits some “parallel struc-
tures” or replicated substructures. In the case study we will discuss automorphic
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equivalence.
Another meaningful property for better understanding the role and behav-

iour of individuals in organizational networks is the core-periphery structure (
[5]). An intuitive view of the core-periphery structure is the idea of a group or
network that cannot be subdivided into exclusive cohesive subgroups or factions,
although some actors can be connected better than others. They constitute the
core and are related not only to each other, but to all nodes in the network,
while actors at the periphery are related only to the core. In the core we find
hubs connected to other hubs, as well as hubs in a central position rather than in
the network periphery; those hubs are characterized by a high degree centrality.
As a result, the network shows a more compact structure and a better speed of
information. We observe that this property is generally attributed to scale-free
networks. A measure that can help characterize core-periphery structures is
the s-metric ([1]). In [12] it is proved that trees having the maximum value of
s-metric have minimum diameter, thereby allowing the fastest information flow.
The analysis can be carried out also on groups, units, compartments... Consider
for instance an advice network, where actors are related if they share advices in
whatever circumstances.
In this paper we will remind the concepts of automorphic and structural

equivalence (Section 2); next (Section 3) we will give results related to centrality
and quote and prove theorems. We will conclude (Section 4) with the case study
of an ICT consulting company. Conclusions are in Section 5.

2 Preliminaries
We recall some basic definitions about graphs.
Let G = (V,E) be a graph, where V is the set of vertices with |V | = n and

E the set of edges with |E| = m; we assume G simple, finite, undirected and
connected1. A vertex v ∈ V is a cutvertex if the graph Gr v is not connected;
W ⊆ V is a cutset if the graph GrW obtained by removing the set of vertices
W is not connected.
Denote by A = [aij ] the adjacency matrix of G. {λ1, λ2, ..., λn} is the set

of the eigenvalues of A, ρ = maxi |λi| its spectral radius and x the principal
eigenvector corresponding to ρ; A is symmetric, non negative and irreducible
and its eigenvalues are real. Two (not) adjacent vertices v and w will be denoted
by v ∼ w (v 6∼ w).For every v ∈ V , N (v) = {w ∈ V : w ∼ v} is the set of
vertices adjacent to v. Its cardinality is called the degree of v and denoted by
d (v) . A complete graph on n vertices denoted by Kn is a graph where each pair
of vertices are adjacent. The induced subgraph of a set W ⊆ V is the maximal
subgraph of G with vertex set W, denoted by hW i. A path from v1 to vk is a
sequence of distinct adjacent vertices v1, v2, ..., vk; a shortest path from v1 to vk
is said to be a geodesic. The distance d (u, v) between two vertices u and v is
the length of a shortest path from u to v.

1For these definitions see [6]
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Two graphs G = (V,E) and G0 = (V 0, E0) are isomorphic if there is a
bijective function f : V → V 0 (called isomorphism) adjacency-preserving, i.e.
u ∼ v if and only if f (u) ∼ f (v). An automorphism on G is an isomorphism
f : V → V .

Definition 2.1 Two vertices u, v ∈ V are called automorphically equivalent
in G if v = f (u) for some automorphism f of G.

Definition 2.2 Two vertices u, v ∈ V are called structurally equivalent in
G if, for any vertex w ∈ V, w 6= u, v, w is a neighbour of u if and only if is a
neighbour of v.

3 Centers and centrality measures
In this section we will introduce centrality measures and related theorems. First
we recall the definition of structural index on the set of vertices V ([17], Chapter
3):

Definition 3.1 A structural index is a real-valued function sG : V → R such
that if an isomosphism f : V → V 0 exists, then sG (v) = sH (f (v)) .

As a consequence, the definition of centrality measure can be introduced as
following:

Definition 3.2 A centrality measure C is a structural index C : V → R that
associates to each vertex v ∈ V a non negative real number C(v) such that, given
v, w ∈ V, v is more central than w if and only if C(v) > C(w). The number
C(v) is called the centrality of v.

The standard centrality measures can be unified under the more general
concept of the previous definition, by the function C. For further details about
the meaning of these measures, see for example [3].
Degree centrality This is the most intuitive definition of centrality, related

to degree. The more ties an actor has, the more power he/she has (i.e. the higher
the degree of a vertex , the higher its centrality). Actors who have more ties have
greater opportunities because they have choices, since they are less dependent
on others. By using the function C :

∀v ∈ V Cdeg(v) = d (v)

and the normalized degree centrality is Cdeg(v)
n−1 .

Closeness centrality This measure is based on the distance between a
vertex and all others (given by the sum of geodesic distances). As far as degree
centrality is concerned, power can be exerted by direct bargaining and exchange;
but power also comes from acting as a ”reference point” and being a center in
spreading information. Actors who are reachable by others through a path
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shorter than other actors, are more likely reached because the effort to get an
information is less by following a geodesic. By using the function C:

∀v ∈ V Cclos(v) =
1P

u∈V d(u, v)

The normalized closeness centrality is (n− 1)Cclos (v) .
Betweenness centrality. Betweenness is related with the number of times

that a vertex needs another vertex (whose centrality is measured) in order to
reach a third vertex via a shortest path. It essentially measures the ”interme-
diary” role in a graph and gives an idea of the volume of traffic/information
flowing between any two vertices through the intermediary. This gives the inter-
mediary the capacity to break contacts and to isolate actors or prevent contacts.

∀v ∈ V Cbetw(v) =
X
u<w

guw (v)

guw
, u, w 6= v

where guw is the number of geodesics from u to w, and guw (v) is the number
of geodesics between u and w passing through v. The normalized betweenness

is Cbetw(v)

(n−12 )
.

Eigenvector centrality It is defined as the principal eigenvector of the
adjacency matrix. Even if a vertex has a few ties, if those few vertices influence
many others (who themselves influence still more others), then the first vertex
in that chain is highly influential. In a disease network, if a person has the
potential to get a disease from a few neighbours, and those neighbours have
high disease risk, the potential risk of getting disease for the first person is still
very high.

∀v ∈ V Ceig(v) = xv,

where xv is the v − th component of the principal eigenvector x, i.e. xv =

1
ρ

Pn
i=1 aivxi, i = 1, ..., n. The normalized eigenvector is

Ceig (v)

kxk2
, where k.k2

is the Euclidean norm.
It can be shown ([3]) that an eigenvector is proportional to the row sums

of the matrix S obtained by summing all powers of the adjacency matrix A,
weighted by corresponding powers of the eigenvalue reciprocal:

S = A+ λ−1A2 + λ−2A3 + ....

The measure counts the number of walks of all lengths, weighted inversely
by λ, which emanate from a vertex. Since the (i, j)−entry of Ak is the number
of walks of length k (not only paths and not only geodesics) from vertex i to
vertex j, eigenvector centrality measures the possibility to reach a vertex even
when following complex walks, but giving less importance to longer walks.
Given any centrality measure C, we define:
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Definition 3.3 The center of G = (V,E) is the set:

ϕ (G) = {v ∈ V : C(v) ≥ C(u), u ∈ V } .

The center of G = (V,E) contains all vertices v with maximum value with
respect to a centrality measure; obviously, all standard centrality measures can
be related to the concept of a center. More precisely, ϕdeg, ϕbetw, ϕeig, ϕclos,
will be associated to Cdeg, Cbetw, Ceig and Cclos respectively. The centers do not
necessarily coincide, i.e. nodes who belong to the center for a given centrality
measure may not belong to the center for another measure.
For this reason is can be interesting to find necessary and/or sufficient con-

ditions to guarantee that a node or nodes belong to more centers. In [10] the
following conditions for nodes belonging to Cdeg to belong to Ceig are given:

Theorem 3.1 Let (d1, d2, ..., dn) be the degree sequence in nonincreasing order
and let δ be the second highest degree and ρ the spectral radius of the adjacency
matrix A(G). If ρ > δ, then dv = d1, where v is a node such that xv = max

i∈V
xi.

Theorem 3.2 Let d2 be the second highest degree and let ρ > d2 ; then xv =
max
i∈V

xi if and only if v is the node with maximum degree.

Let us define ([16]):

Star (G) = {v ∈ V : d (v) = n− 1} ;
Vertices c such that v ∈ Star(G) are called star vertices.

Definition 3.4 A center ϕ of G satisfies the star property if ϕ (G) = Star (G) .

Thus a center ϕ of G satisfies the star property if the central vertices are
exactly those having degree n− 1.
First we recall the following results. We assume Star(G) 6= ∅.

Theorem 3.3 (Grassi et al. [10] ) Let G = (V,E) be a simple, connected
and undirected graph, and vi ∈ V any vertex such that d (vi) = n − 1, i =
1, ..., k ≤ n. Then, ∀i = 1, ..., k, Ceig (vi) = xvi = max

w∈V
xw. Moreover, ∀v 6= vi,

Ceig (vi) > Ceig (v) .

Theorem 3.4 Let vi ∈ V be any vertex such that vi ∈ Star (G) , ∀i = 1, ..., k ≤
n. Then, ∀v 6∈ Star (G) , Cbetw (vi) > Cbetw (v) .

Proof. Let vi ∈ Star (G) , then d (vi) = n − 1, for i = 1, ..., k. First we will
prove that, ∀v ∈ V, v 6= vi, the inequality Cbetw (vi) ≥ Cbetw (v) is true.
∀u,w ∈ V, if u ∼ w then d(u,w) = 1; if u 6∼ w then d(u,w) = 2, being u

and w both adjacent to vi; consequently, the number guw of geodesics from u
to w is r, where r (1 ≤ r ≤ min (d(u) , d(w)) is the number of vertices adjacent
to both u and w.
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Let us consider a vertex v 6= vi, u and w. If u 6∼ w then2:

guw(v) =

½
1 if v ∼ u,w
0 otherwise

;

(obviously, if u ∼ w, then guw(v) = 0), and guw(v)
guw

= 1
r =

guw(vi)
guw

only if
v ∼ u,w.
Now, we compute the betweenness of the vertex v :

Cbetw(v) =
X
u<w

guw (v)

guw
=

=
X
u∼w

guw (v)

guw
+
X
u6∼w

guw (v)

guw
=
X
u6∼w

guw (v)

guw
≥ 0,

where the sum is made over all pairs (u,w) with u < w and u,w 6= v.

More precisely, if
P

u6∼w
guw(v)
guw

= 0, then Cbetw (v) = 0 and Cbetw (vi) ≥
Cbetw (v). If

P
u 6∼w

guw(v)
guw

> 0, then all terms guw(v)guw
belong to the sum

P
u6∼w

guw(vi)
guw

,
consequently:

Cbetw(vi) =
X
u6∼w

guw (vi)

guw
≥
X
u6∼w

guw (v)

guw
= Cbetw(v).

Now we prove that, ∀v ∈ V, v ∈ Star (G) if and only if Cbetw(vi) = Cbetw(v).
If d (v) = n− 1, then v ∼ vj and every other vertex is adjacent to v and vj .

Consequently:

Cbetw(vi) =
X
u6∼w

guw (vi)

guw
=
X
u 6∼w

guw (v)

guw
= Cbetw (v) .

On the other hand, let Cbetw(v) = Cbetw(vi) and suppose, by contradiction,
that d(u) < n− 1; then, there exists at least one vertex (call it u) not adjacent
to v. ∀w ∈ V , if u ∼ w, then d(u,w) = 1; if u ¿ w then the vertices u,w do not
contribute to the Cbetw (v)

3 . As a consequence, Cbetw(vi) > Cbetw(v) and this
contradicts the assumption.
In conclusion, the vertices vi such that d(vi) = n− 1, i = 1, 2, ..., k ≤ n have

the same maximum betweenness, i.e. vi ∈ ϕbetw(G),∀i = 1, 2, ..., k ≤ n and
ϕbetw(G) = {v1, v2, ..., vk} .

Theorem 3.5 If Star (G) 6= ∅ then ϕdeg(G), ϕclos(G), ϕeig(G), ϕbetw(G) sat-
isfy the star property.

2 In fact, let us suppose that v 6∼ u,w. If a path passing through v, from u to w exists, this
is certainly not the (u,w)− geodesic, being the geodesic the path of length 2 passing through
vi.

3 If a path between u and w exists passing through v, this would certainly not be the
shortest one, since the (u,w)−geodesic must necessarily include vi, being vi adjacent to both
nodes and d(u,w) = 2
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Proof.

• ϕdeg(G) = Star(G) : being Star (G) 6= ∅, then at least a vertex v such
that d (v) = n − 1 exists and Cdeg (v) ≥ Cdeg (w) ∀w ∈ V. The equality
Cdeg (v) = Cdeg (w) holds if and only if d (w) = d (v) , and then Star (G) =
ϕdeg (G).

• ϕclos(G) = Star(G) : see [16].

• ϕeig(G) = Star(G) : see Theorem 3.3.

• ϕbetw(G) = Star(G) : see Theorem 3.4.

Theorem 3.6 Let vi ∈ Star(G) (i = 1, ..., k); then Cbetw(v) = 0 for every
vertex v such that d(v) ≤ k + 1.

Proof. Let us define vi1 , vi2 , ..., vik the vertices such that d (vi) = n − 1; let
v 6∈ Star (G) , then k ≤ d (v) < n− 1. If d (v) ≤ k + 1, then v is adjacent to the
vertices vi1 , vi2 , ..., vik and (possibly) another vertex. In both cases, guw(v) =
0,∀u,w 6= vi1 , ..., vik , since a path of length 2 does not exist passing for any other
vertex; the only paths of length 2 passing through v start from vi1 , ..., vik , but
no one of them is a geodesic, since vi1 , ..., vik are all adjacent. As a consequence,
Cbetw(v) = 0.
Note that all vi ∈ Star(G) (i = 1, ..., k) are not only automorphically equiv-

alent, but also structurally equivalent. Theorem 3.5 implies that the centers
contain only vertices belonging to Star(G).
The former Theorem is not invertible: that is, under the hypothesis that

in the graph there are k vertices with degree n − 1, vertices u such that their
betweenness is zero may be not only those with degree d(u) ≤ k + 1.
Finally we quote some recent results related to the eigenvector centrality and

the core-periphery structure, which occurs, tipically when high degree vertices
are connected with each others. As mentioned in [4], in these classes of networks,
eigenvector centrality is not different from degree centrality. More formally, to
measure the extent to which a graph G exhibits this ”hub structure”, [12], has
introduced the s-metric S(G), first defined in [1] as:

S(G) =
X

(vi,vj)∈E
d (vi) d (vj) .

S(G) is maximized in graphs with a hub structure [2]. In [12] we proved
new results for trees with maximum S(G) : eigenvector centrality preserves
the ordering induced by the degree centrality and they have minimum diameter
among trees with a given degree sequence, showing a most "compact" structure.
In analyizing the betweenness centrality of strategic individuals in organiza-

tional networks, e.g. lying in a "bridge" position beetween two o more groups it
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can be useful to introduce the concept of a cutvertex. In [11] we proved two the-
orems. Theorem 3.7 provides a straightforward computation of the betweenness
βG(v) of a cutvertex:

Theorem 3.7 Let G be a graph, let v be a cutvertex of G and let A1, A2, ..., Ak

be the connected components of G r v. If k = d(v) then βG(v) =
P

i<j aiaj ,
being ai = |Ai| .

Theorem (3.8) characterizes vertices with zero betweenness:

Theorem 3.8 Let v ∈ V . Then βG (v) = 0 if and only if hN (v)i is a complete
subgraph of G.

Other meaningful results concerning upper and lower bounds of betweenness
for cutvertices and cutsets have been provided in [11].

4 A case study
Centrality can be used to assess the role of individuals or groups in an orga-
nizational network. In particular, if in an organization we find out that some
individuals, instead of being of support to the team, are of "disturbance" in
transmitting information, the general manager may think of moving to another
project team or removing them at all. The object of the analysis will be how to
shape optimally a project team. We consider the case study of an Italian ITC
consulting company, call it ABC. ABC is a major player in technological and
informative consulting. A project team must be designed to implement an ERP
(Enterprise Resource Planning) system. ERP can be represented as a unique
integrated system, divided in modules to support the main corporate functions
(accounting, logistics, production, sales). A specific ABC research team, dedi-
cated to implement each module, is typically composed of a team manager (a
consultant) and one or more business analysts. However, since the aim is to de-
sign an integrated system, the project must be managed at a global level, since
decisions taken at a local level can have unforeseeable effects on the efficiency
of the other modules. For this reason the general manager is at the head of
the whole project. His activity is to coordinate the project team, keeping con-
tact with the team managers and the client itself. Thus, the general manager
must belong to a center, to guarantee the necessary level of integration among
modules and prevent that a module finds solutions independently of the general
policy. The main role of the general manager is to transmit information, acting
as a broker. Since a constant and efficient flow of information must be guar-
anteed, the centrality measure we use is normalized betweenness. We will see
that as soon as the complexity of the project increases, betweenness centrality
decreases. Thus, ABC developed a team management strategy to guarantee a
central role under any condition.
The basic composition of the project team was originally composed of 5

nodes (M = Manager, C1 =consultant 1, C2 = consultant 2, A1 = analyst
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M

C1

C2

A1

A2

M

C 1

C 2

A 11

A 2

A 12 A 22

panel (a) panel (b)

Figure 4.1: Panel (a): Two consultants, two analysts. Panel (b): Two consul-
tants, four analysts.

1, A2 = analyst 2) with the corresponding betweenness centralities (see Table
1 and figure 4.1, panel (a)). During the development of the project two new
analysts were required, thereby generating a new graph, with the analysts 1,
and 2 on vertices A11, A22 , and the new analysts 3 and 4 on vertices A12 and
A21 (see Table 2 and figure 4.1, panel (b)).

Node Betw
M 0.667
C1 0.5
C2 0.5
A1 0
A2 0

Node Betw
M 0.6
C1 0.533
C2 0.533
Aij,i=1,2,j=1,2 0

Table 1. Table 2.

Observe that Aij,i=1,2,j=1,2 have zero betweenness in virtue of Theorem 3.8.
Having introduced two new actors, the centrality of the project manager has
decreased since C1 and C2 can communicate directly with two analysts each.

A11 and A12 are structurally equivalent as A22 and A21, whereas C1, A11,
A12 are automorphically equivalent respectively to C2, A22, A21 and they have
the same value of centrality, according to [17], Chapter 3, Definition 3.2.1).
Due to the increasing complexity of the project, two new local teams are

introduced, each composed of a consultant and two analysts. Further, a commu-
nication flow is established among consultants without necessarily informating
the general manager, due to the proximity of functions of the local teams. The
manager and the four consultats are the core of a core-periphery structure. The
resulting graph is in figure 4.2, panel (a); betweenness measures are in Table 3.
The four consultants belong now to Cbetw while the general manager be-

tweenness has decreased so M 6∈ Cbetw.
A more efficient organizative solution must be found, since the four consul-

tants can bypass him. A possible one is to create two different project teams,
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M

C1

C2

C3

C4

A11

A12

A21

A22

A31

A32

A41

A42

SM

M1

M2

C1

C2

C3

C4

A11 A12

A21

A22

A31

A32

A41
A42

Panel (a) Panel (b)

Figure 4.2: Panel (a): Four consultants, eight analysts. Panel (b): Four consul-
tants, eight analysts, two project managers, a senior manager.

under the supervision of a team manager. A senior manager (SM - the former
general manager) will guarantee the necessary flow of information between the
two teams. A new graph results with two more nodes; since SM ∈ Cbetw, SM
resumes his centrality role (figure 4.2 and Table 4). On the basis of Theorem
3.7, SM betweenness is the product of the cardinalities of the two connected
components, obtained by removing SM itself.

Node Betw
M 0.091
C1 0.348
C2 0.348
C3 0.348
C4 0.348
A
ij,i=1,...,4,j=1,2 0

Node Betw
SM 0.538
M1 0.527
M2 0.527
C1 0.264
C2 0.264
C3 0.264
C4 0.264
Aij,i=1,...,4,j=1,2 0

Table 3. Table 4.

Note how with the increasing complexity of the scenarios, the central role
of the general manager has changed and its central role has been progressively
declining (see Table 3). However, introducing the new position of a senior
manager and splitting responsibilities between two project managers, centrality
for the head of the project is restored. Centrality in information can be a serious
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problem in an organization and ABC solved it by introducing new actors and
rearranging tasks and responsibilities.

5 Conclusions
In this paper we tried to make a further step in understanding the role of indi-
viduals in organizational networks through a graph topological approach based
on centrality measures. Our results can be meaningful both on the theoretical
side and on the practical point of view, for helping managers in shaping strategic
positions in their organizations.
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