Inverse Obstacle Scattering and Linear Classification

Giovanni F. Crosta¹, Yong-Le Pan², and Gorden Videen²

¹Inverse Problems & Mathematical Morphology Unit, Department of Earth and Environmental Science
University of Milan-Bicocca, 1, piazza della Scienza, Milan, IT 20126, Italy
²U.S. Army Research Laboratory, Adelphi, MD 20783, USA

Abstract

Experimental: TAOS (two-dimensional angle-resolved optical scattering) is an experimental method to detect single, micrometer-sized airborne material particles, illuminate them by a single pulse of laser ($\lambda = 532$ nm, pulse duration = 30 ns) and record their scattered light intensity patterns over the angular sector $\{75^\circ \leq \theta \leq 135^\circ\} \times \{0^\circ \leq \varphi \leq 360^\circ\}$ at high resolution (one pattern $= 1024^2$ pixels). Particles of reference materials and from outdoor environmental sampling have been analyzed and thousands of scattering patterns (TAOS patterns, hereinafter) have been stored [1]. Examples of reference materials are: 2.8 μm dioctyl phthalate droplets (label: F_q), 1.03 μm dried polystyrene latex spheres (P_q), Bacillus subtilis spores (B_q). Examples of environmental materials are: unsorted diesel engine soot (sq) and airborne dust from rooftop sampling (labeled K_0 to K_5).

Problem: The Inversion of Scattering Patterns: The problem of determining the size, shape, and complex refractive index of the particle (the scatterer) from its TAOS pattern corresponds to reconstructing an obstacle from a single incident wavevector and the intensity of the scattered wave. No theoretical result is available to date.

Solution: Feature Extraction for Linear Classification: For the past eight years the first author has worked at recasting the inverse problem into statistical terms and replacing obstacle reconstruction by the assignment of a TAOS pattern to a class. An algorithm has been developed, whereby two modules interact: feature extraction [2] and linear classification. In the current implementation (2012 to present) the former module regards the TAOS pattern as an image, applies a windowed Fourier transform followed by non-linear operations and yields a feature vector. The linear classifier applies multivariate statistics to feature vectors. Training and validation are supervised and rely on sequences of training sets made e.g., from F_q, P_q and B_q patterns. Once validated, the classifier is applied to recognize other patterns. The assignment of a TAOS pattern to a class relies on a fusion rule.

Classification Results: One of the goals of classification is the discrimination of bacterial spore patterns (B_q). Figure 2 provides a typical result: a set of 969 K_5 (outdoor dust) patterns is analyzed: 98 patterns (10%) are falsely recognized as B_q (lower halfplane), whereas the remainder is assigned to the other two training classes, F_q (top) and P_q (middle). Further details are provided by the caption.

Each of the 957 K_5 TAOS patterns is represented by a point on the plane $\{z_1, z_2\}$ of the first two principal components, has a label, and is assigned to a class: B_q (blue), or P_q (green) or F_q (cyan). Counterclockwise, from top left, {pattern, assigned class, label} and, between parentheses, the pattern distinctive feature, which may justify assignment: \{K5034, Fq, 124\} (curls), \{K5024, Pq, 115\} (curls), \{K5016, Bq, 107\} (coarse feature), \{K5008, Bq, 184\} (coarse patch), \{K5069, Pq, 159\} (wide rings), and \{K5094, Fq, 99\} (rings).

Figure 1: TAOS patterns, left to right, from a dioctyl phthalate droplet (F_q, narrow rings), a dried polystyrene latex sphere (P_q, wide rings), a single Bacillus subtilis spore (B_q, bowtie), an aggregate of diesel engine soot particles (sq, no special structure), and outdoor sampling (K_5, almost random patches). The polarisation of the incident wave is +45 deg. Contrast has been enhanced by the Equalize command of GIMP for display purposes only.
Figure 2: Recognition of 957 TAOS patterns from outdoor sampling (K5 set).

ACKNOWLEDGMENT
G. F. C. gratefully acknowledges the financial support of Contract W911NF 11-1-0277 R&D 1449-BC-01 granted to Università Milan-Bicocca by the US Army RDECOM ACQ CTR.

REFERENCES