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Abstract—
Motivation: A wind turbine powertrain includes a three-phase generator and switching elec-
tronics. The two most frequently installed types of generators are the synchronous induction
machine and the doubly-fed induction machine (DFIG for short) [1]. Since the wind field is sub-
stantially unpredictable, whereas power has to be delivered to the network at (possibly) constant
frequency and voltage amplitude, control of the powertrain plays an essential role in the design
and operation of a wind power plant. This work focuses on the model of the DFIG for control
purposes.
Co-energy and the Legendre Transform: The general process of power conversion from me-
chanical to electrical and the operation of a DFIG can be modeled by applying the mathematical
methods of analytical mechanics and group theory. For example, let an electric machine have P
poles and let its rotor form a mechanical angle θr,mech in the stator frame; then the electrical
angle of the rotor θr with respect to the stator is given by θr = P

2 θr,mech (multiplier effect of P )
and the resulting (motor) torque T can be shown to read [2, 3]

T =
∂W ′

fld[~i, θr]
∂θr,mech

=
P

2
∂W ′

fld[~i, θr]
∂θr

where ~i is the vector of electric currents and W ′
fld[~i, θr] is co-energy.

Standard textbooks do not generally introduce co-energy as the Legendre transform of the energy
(stored in the magnetic field) with respect to magnetic flux linkage, ~λ, nor point out the underlying
differential geometric setting. Whereas ~λ, as energy variables, are coordinates of the manifold N ,
electric currents, ~i, belong to the co-tangent bundle T ∗N [4, 5]. The relation between co-energy
and torque applies to any machine and can, in principle, deal with any functional dependence
between ~λ and ~i. Non-linear ~λ[~i] relations become of interest when saturation of the magnetic
circuit has to be modeled.
Some examples and results in this direction will be provided.
The Blondel-Park Transformation and the Rotation Group: A linear DFIG is most
effectively modeled in terms of stator and rotor flux linkages, ~λs, ~λr (with obvious notation) and
currents ~is, ~ir, by means of inductance matrices. In the case of winding symmetry the equations
read

~λs = Lss ·~is + LxLsr[θr] ·~ir
and

~λr = LxLTrs
sr [θr] ·~is + Lrr ·~ir.

The Blondel-Park transformation, which applies to electrical quantities of interest, is defined by
the matrix

B[η] :=

√
2
3




cos[η] cos[η − 2π
3 ] cos[η + 2π

3 ]
−sin[η] −sin[η − 2π

3 ] −sin[η + 2π
3 ]

1√
2

1√
2

1√
2




where η stands for any of the electrical angles, usually denoted by θ, θr and β(= θ − θr) re-
spectively. As it is well known, the B[η]’s form a one-parameter (η) group of unitary (power
preserving) transformations.
The following properties can be shown to hold.
• Let D[η] := B[0]−1 ·B[η], then the exponential representation holds

D[η] = eηF,
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where the matrix F is constant and is similar to the matrix G, which row-wise reads G =
[0 1 0| − 1 0 0|0 0 0]

F = B[0]−1 ·G ·B[0].

• By letting ∂Lsr[θ]
∂θ := M[θ], where Lsr is the mutual, stator-to-rotor, inductance matrix, appli-

cation of the D[.] transformation turns the electric torque into a bilinear, antisymmetric form for
G.
The extent to which the use of D[.] in the non-linear case (e.g., [6]) still simplifies results, and
the class of tractable non-linearities, [7, 8] are currently being investigated.
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