Vertical profiles of aerosol physico-chemical and optical properties measured along Italy over basin valleys

L. Ferrero¹; D. Cappelletti²; M. Petitta³; F. Scardazza²; M. Castelli³; B. Moroni²; G. Sangiorgi¹; M.G. Perrone¹ and E. Bolzacchini¹

¹ Centro di Ricerca POLARIS, DISAT, Università di Milano-Bicocca, Piazza della Scienza 1, 20126, Milano.
² Dipartimento di Ingegneria, Università di Perugia, Via G. Duranti 93, 06125 Perugia.
³ EURAC Institute for Applied Remote Sensing, Viale Druso 1, 39100, Bolzano, Italy.

Introduction
Aerosols physico-chemical and optical properties are fundamental for remote sensing applications (Wang et al., 2010; Di Nicolantonio et al., 2009) as well as for climate change (IPCC, 2007; Kaufman et al., 2002); their 3D knowledge, especially along the whole atmospheric column is required (Levy et al., 2007; Wang et al., 2010).

Black Carbon (BC) and Inorganic ions along the vertical profiles

Sampling sites
Vertical profiles of aerosol properties were conducted in:
1) Milano (Po Valley);
2) Merano (Alpine Valley);
3) Terni (Apennines Valley);
during January-March 2010 period.

Instrumentation
A tethered balloon was fitted with an instrumentation package consisting of:
- a tandem-OPC system (2 OPCs Grimm 1.107, 31 size classes between 0.25 to 32 μm; one dried, the other one at ambient RH);
- a novel micro-Aethalometer (AES1, Magee Scientific);
- a miniaturized cascade impactor (Siouzes SNC with 2 impaction stages: <3 μm, >3 μm);
- a meteorological station.

Vertical profiles
These clearly identified the mixing height (MH), which was characterized by a strong vertical concentration gradient. The BC fraction of aerosol volume fell to 50-70% above the MH, compared to ground-level data, so that primary particles emitted by combustion sources showed a strongest vertical gradient than aerosol itself. This caused a change in the optical absorption properties of the aerosol at different heights thus changing the Single Scattering Albedo (SSA). Ionic fraction showed a similar composition to that measured at ground over Milano and Terni (polluted urban and industrial urban sites) were a substantial residual layer is present. Over Merano, aerosol has chemical properties more close to that found in continental remote sites.

Hygroscopicity along the vertical profiles

Aerosol humidographs along height were determined using the OPCs tandem system following the method reported in Snider et al. (2008):

\[
\frac{dN_j}{d \log_{10} D_j} = \alpha_j \cdot D_j^{-\beta} \quad \text{OPC}_{\text{dry}}
\]

\[
\frac{dN_j}{d \log_{10} D_j} = \alpha_w \cdot D_j^{-\beta} \quad \text{OPC}_{\text{wet}}
\]

Hygroscopic growth (Gf) was found to be not uniform along the vertical profiles: simple parameterizations of Gf along the atmospheric column in remote sensing applications can be a source of uncertainty in the results.

Optical properties calculations
The chemical speciation allowed to estimate an aerosol refractive index with the Effective Medium Approximation:

\[
e_a = e_0 + \sum_i f_i \left(e_i - e_0 \right)
\]

i.e. for Milano (at 880 nm): 1.484±0.039i within MH and 1.465±0.025i above the MH.

Aerosol scattering properties along height were calculated from OPC data using a Mie code (Bohren and Huffman, 1983) and absorption from the micro-Aethalometer using its compensation factor C=2.05 (Ferrero et al., 2011):

\[
e_{abs,\text{mix}} = \frac{A\cdot AATN}{100 \cdot Q_{35}} \left[\frac{1}{C\cdot R(\text{ATN})} \right]
\]

Summary
In summary, changes in aerosol physico-chemical properties affected optical behaviour along height. SSA was found higher above the MH due to a reduction in the absorbing BC aerosol along height. Also aerosol hygroscopic growth along the profile; thus simple parameterizations of Gf along the atmospheric column based on ground level RH in remote sensing applications can be a source of uncertainty in the results. Vertical profiles are necessary to understand aerosol properties along height to improve satellite algorithms.

Acknowledgement
Project SATMAP, Provincia di Milano, fondazione CARIT di Terni e Narni, Provincia Autonoma di Bolzano - Alto Adige, Agenzia provinciale per l’ambiente Laboratorio di chimica fisica.