Quantification of carbonate carbon in atmospheric aerosol by means of FT-IR spectroscopy and a multivariate calibration method

P. Fermo1, F. Tuccillo1, L. Brambilla1, E. Cuccia2, F. Mazzei2, D. Massabò2, P. Prati2, R. Vecchi2, C. Paganeli2, A. Piazzalunga2

1Dep. Inorganic, Metallorganic and Analytical Chem., Università degli Studi di Milano, Via Venezian 21, 20133, Milan, Italy
2Dept. of Physics and INFN, University of Genova, via Dodecaneso 33, 16146, Genova, Italy
3Dept. of Physics, Università degli Studi di Milano, Via Celoria 16, 20133, Milan, Italy
4Dep. of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy

andrea.piazzalunga@unimib.it
paolo.prati@unige.it

Samplig site and methodology

PM10 was sampled at Massa Carrara (see Figure 1), one of the most famous place in Italy where marble is quarried. The samples were collected for two months in summer 2007 on a daily basis (24 hours) along the road covered by the trucks transporting marble rocks form the pit to the harbour. PTFE filters were used and characterized for their elemental composition by means of Energy Dispersive – X Ray Fluorescence (ED-XRF), the ionic composition of some samples was determined by Ionic Chromatography (IC). PM10 average concentration was 34.6 μg/m³ and calcium showed quite high levels being on average 3.2 μg/m³. However, it is difficult to single out the contribution of the marble pit and/or marble transportation to PM10 levels.

Results

The Carbonate concentration measured by FT-IR (figure 3) shows a similar trend to the same period and the concentration of Calcium measured by ED-XRF.

Conclusion

The comparison between the two approaches shows that the CaCO3 concentrations calculated by IB are higher than those by FT-IR. This is probably due to the absence of methane sulfonic compounds and mono and di-carboxilic short chain organic acids not determined in this work (Koulouri et al. 2008). The first one represents a significant portion of marine aerosol while organic anions, especially oxalate, can be an important portion of ionic compounds in particulate matter (Jankowski et al. 2008). This is confirmed by the anion deficit when in the IB we introduce the carbonate measured by FT-IR (figure 7). In our case ammonium is completely balanced by nitrate and sulfate while the molar ratio between Na+ and Cl- is 3.5±1.8.

Quantification of Carbonate by means of FT-IR spectroscopy

The analytical methodology here proposed for Carbonate Carbon (CC) quantification and based on FT-IR spectroscopy is reported in figure 2.

Carbonate in the particulate matter

Particulate matter (PM) carbonaceous fraction contains organic carbon (OC), elemental carbon (EC), and carbonate carbon (CC). The contribution of inorganic carbon is often neglected because its concentration is generally low and, moreover, there is not a reference analytical method for its quantification. Nevertheless in some cases, where a specific source of carbonate is present (mineral dust, street dust re-suspension, concrete plant, etc.), this fraction must be determined (Jankowski et al., 2008).

Results

The Carbonate concentration measured by FT-IR (figure 3) shows the same trend and the same concentration of Calcium measured by ED-XRF.

Ion Chromatography Analysis

In the anions analysis water is the most common solvent used for extraction (Fermo et al. 2006), but carbonate compounds have very low solubility in this solvent. Jankowski et al. (2008) suggest to use Methane Sulfonic Acid (MSA) to have a complete dissolution of all anions. This method is more laborious because it requires a double extraction, one for anions and one for cations. Nevertheless, in order to test the possibility of obtaining a complete dissolution of carbonate compounds in water, a subset of 10 samples has been analyzed using the two different solvents (water and MSA). As shown in figure 5, water dissolves completely the carbonate compounds.

References


References


TQ analyst performance

First derivatives were considered to minimize the baseline differences between the spectra and a smoothing with Savitsky – Golay filter (based on 7 data points, polynomial order 3) was applied in order to better evidence the peaks which were partially masked by the spectrum noise.

On X axis of the calibration curve the real concentrations of carbonate are reported, whereas on Y axis the concentrations calculated from algorithm using the FT-IR spectra are shown. The difference between calculated and actual concentration values are reported from 2.47 to - 3.71 μg/m³. The correlation coefficient is 0.999.

The obtained calibration curve shows low errors both in calibration and prediction.

RMSEC (Root Mean Square Error of Calibration) 2.26
RMSEP (Root Mean Square Error of Prediction) 0.350

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7