
Università degli Studi di Milano-Bicocca
Facoltà di Scienze Matematiche, Fisiche e Naturali
Dottorato di Ricerca in Informatica – Ciclo XXIV

The Time-Space Trade-Off
in Membrane Computing

Tesi di Dottorato di
Antonio Enrico Porreca

Supervisor: Prof. Claudio Zandron
Tutor: Prof.ssa Lucia Pomello

Coordinator: Prof.ssa Stefania Bandini

2

Acknowledgements

First of all, I would like to thank my supervisor Claudio Zandron, for all the
trust he put in me and his support during my research.

Then, the research group I’ve been working in, the “Milano Team” as they
call us, including Alberto Leporati, Giancarlo Mauri, and the aforementioned
Claudio Zandron, together with the “other half” of the team: Paolo Cazzaniga,
Dario Pescini and Daniela Besozzi, whom I haven’t had the pleasure to work
with due to different research interests.

I also wish to thank the Sevilla team, where I’ve spent six months during
my Ph.D.; in particular, I’d like to thank Mario J. Pérez-Jiménez, Miguel
Ángel Gutiérrez Naranjo, Agustin Riscos-Núñez, Manuel García-Quismondo,
Miguel Ángel Martínez-del-Amor, Ignacio Pérez-Hurtado, Luis Valencia
Cabrera, Luis Felipe Macías-Ramos, and last but not least Ana Ruiz. You
really made me feel at home.

Another fine lad I’ve had the pleasure to work with while in Sevilla is
Niall Murphy, a colleague and a friend. The two months we’ve shared in the
lab have probably been the most productive of my entire life. He and Satoko
Yoshimura, whom I also wish to thank, have been a wonderful company.

Of course, I want to thank my labmates in Milano: Stefano Beretta,
Mauro Castelli, Luca Manzoni and the new entry Carlo Maj, together with
all the other Ph.D. students, and in particular Lorenza Manenti and Luca
Panziera.

And finally, as usual, I want to thank Alice, because she’s been here all
the time.

3

4

Contents

1 Introduction 7
1.1 Motivation . 8
1.2 Contributions . 9

2 P systems 11
2.1 Membrane structures . 11
2.2 The contents of regions . 12
2.3 Computation rules . 14

2.3.1 Object evolution rules 14
2.3.2 Communication rules 15
2.3.3 Dissolution rules . 16
2.3.4 Elementary division rules 16
2.3.5 Nonelementary division rules 17

2.4 A formal definition . 17
2.4.1 Configurations and computations 18

2.5 Recogniser P systems . 19
2.5.1 Uniformity conditions 20

2.6 Time complexity of P systems 22

3 Computing with P systems 25
3.1 P systems are universal . 25

3.1.1 Simulating register machines 26
3.2 Solving NP-complete problems in polynomial time 28

3.2.1 Encoding of Boolean formulae 29
3.2.2 Solution to 3SAT . 30

4 Space complexity of P systems 37
4.1 Preliminaries . 37
4.2 The notion of space complexity 38

4.2.1 Basic results . 40
4.3 Solving problems in PSPACE 41

4.3.1 Simulating Turing machines 41
4.4 Simulating P systems via Turing machines 44

5

4.4.1 Simulation algorithm 44
4.4.2 Analysis of the algorithm 46
4.4.3 Complexity-theoretic implications 50

5 Counting by trading space for time 53
5.1 On the nature of membrane division 53
5.2 Counting problems . 54
5.3 Solving Threshold-3SAT 56
5.4 Solving the PP problems . 59

6 P systems as oracles 61
6.1 Oracle Turing machines . 61
6.2 Simulating an oracle machine 62

6.2.1 Informal description of the simulation 63
6.2.2 Technical details . 65
6.2.3 Main result . 67

7 Conclusions 69
7.1 Open problems . 70

6

Chapter 1

Introduction

The theory of computation investigates the nature and properties of al-
gorithmic procedures. This field emerged in the 20s and 30s of the 20th
century from the work on the philosophy and the foundations of mathem-
atics. Of great importance and inspiration was David Hilbert’s ambitious
program to “dispose of the foundational questions in mathematics once and
for all” [41], that lead to fundamental results in logic such as Gödel’s in-
completeness theorems [8], and ultimately to the birth of recursion theory
(nowadays mostly referred to as computability theory) and computer science
itself.

The formal notion of computability that is almost universally adopted
today is due to Alan Turing, who introduced in his ground-breaking paper On
computable numbers, with an application to the Entscheidungsproblem [38] a
simple, elegant and convincing mathematical formalisation of the notion of
computation, as it is carried out by a human executor equipped with enough
scratch paper. Turing’s work showed that, as long as we accept his notion of
computation, there exist well-formed mathematical questions whose answer
cannot be computed. In particular, one of the main challenges of Hilbert’s
program, the Entscheidungsproblem (finding a decision procedure for the
validity of statements in first-order logic) was proved to be unsolvable.

This formalisation, that rapidly became known as Turing machine, is still
the reference model for computing devices in theoretical computer science,
as it also enjoys the property of being a good model of actual electronic
computers; this is also due to the fact that it was itself an inspiration for the
design of automatic computing machinery [7].

With the development of computers as a technology, being able to solve
a particular problem proved not to be satisfying: fast, efficient solutions are
needed. This led to the development of computational complexity theory,
pioneered [10] by Hartmanis and Stearns in the paper On the computational
complexity of algorithms [13], that also gives the name to the field. Identifying
the notion of “efficient” with “polynomial-time computable” is due [10] to

7

Edmonds [9], while the central question of complexity theory, whether P =
NP, arose from the work of Cook [6] and Karp [15]. This question has shaped
the whole development of the field, and still remains open today.

However, the theory of computation is not entirely about Turing machines.
Several authors sought to draw inspiration from the way nature “computes”
in order to define alternative, unconventional computing models, or, from the
opposite point of view, to interpret natural phenomena as computation [1].
For instance, artificial neural networks [19] are inspired by the functioning of
neurons in the brain, and genetic algorithms seek to solve computationally
hard problems by simulating the processes of mutation, mating and natural
selection. A clear example of biological inspiration is given by DNA computing,
which provided an actual in vitro implementation of an algorithm for the
Hamilton path problem [2] (the theory was initiated a few years earlier,
particularly by Head [14]).

Inspired by the work on DNA computing [33], Păun introduced in 1998 [31]
the notion of membrane systems, initially called super-cells, and nowadays
usually P systems. Here the computing device is an abstraction of biological
cells. Unlike in neural networks, we do not deal with cells as atomic objects:
as the name suggests, the focus is on the membranes that define a cell and
its internal compartments, which work together by performing different indi-
vidual functions. The chemical environment of the various compartments are
described in terms of multisets of symbols (i.e., sets with multiplicity). An-
other defining feature of P systems (as they were initially defined) is maximal
parallelism: as many operations as possible are carried out simultaneously,
and no part of the systems remains inactive if it can carry out some part of
the computation.

Although P systems have also been investigated from the perspectives
of bioinformatics and systems biology, where they might be used as models
of biological phenomena in computer simulations, most of the research
in membrane computing has been carried out from a language-theoretic
(including the original paper [31]), computability-theoretic and complexity-
theoretic standpoint. This thesis aims to make a contribution in this latter
area.

1.1 Motivation

The goal of this work is to pursue further investigation regarding the compu-
tational complexity theory of P systems, particularly for the variant called
P systems with active membranes [32], which has a richer background from
this point of view. This kind of device presents an interesting trade-off,
whereby we may be able to solve classically hard problems in polynomial
time at the expense of space: an exponential number of membranes can be
created by membrane division in polynomial time, and they can then com-

8

pute in parallel. This allows us, for instance, to explore the whole candidate
solution space of an NP-complete problem in polynomial time. While this
time-space trade-off has often been exploited, no formal analysis has been
performed before.

The motivation for this work, besides the study of membrane systems
per se, is twofold.

As is common for research in complexity theory, we aim to gain further
insight into the nature of computation, with the aim of ultimately attacking
the central open problems of the field, by studying alternative models of
computation. The hope here is that by comparing the alternative model with
the traditional ones, and analysing how the notion of hardness translates
in the new framework, we may obtain results that can be then taken back
into the usual setting, possibly advancing the state of the art of general
complexity theory.

Another, less pragmatic reason why we feel that it is worth pursuing
research in complexity theory (whether or not involving membrane systems
or natural computing devices) is because we think that this discipline has a
relevance in philosophical discussion [1], as much as computability theory had
in the past. The fact that nature-inspired devices are involved, instead of the
original human-based notion of computation, can also hopefully contribute
to a better understanding of what “computing” means.

1.2 Contributions

The contributions this thesis makes can be summarised as follows.
First of all, we have introduced a space complexity measure for P systems,

in order to be able to prove results about the space-time trade-off, which has
always been acknowledged but never formally investigated before.

Space complexity classes for P systems have also been defined and ana-
lysed. The overall result here is a proof that P systems with active membranes
operating in polynomial space solve exactly the same problems solved by
Turing machines under the same restriction.

Then, P systems working in exponential space (using elementary mem-
brane division) have been considered. The previously known algorithms to
solve NP-complete problems in polynomial time have been improved, show-
ing that this class of devices can also solve the “counting” problems in the
complexity class PP.

This result has then been used, together with an efficient simulation of
Turing machines (the first proposed one, to the knowledge of the present
author), in order to simulate Turing machines with oracles. This proves
that elementary membrane division allows us to solve all problems in the
complexity class PPP in polynomial time.

9

10

Chapter 2

P systems

The variant of P systems we discuss in this thesis, called P systems with
active membranes, was introduced by Păun in 1999 [32]. The very subtitle of
that paper, Attacking NP-complete problems, shows how the focus on the
complexity-theoretic properties of these devices has been important since the
beginning. We begin our discussion of this topic by recalling the structural
definition of P systems with active membranes, defining how they can be
used to solve decision problems, and how we can measure their efficiency in
terms of time complexity; this will allow us to define an array of complexity
classes in order to classify decision problems.

2.1 Membrane structures

The main feature of all variants of P systems is their membrane structure.
Several variants have been proposed in the literature [34], but P systems
with active membranes retain the original cell-like shape [31]: a hierarchy of
membranes nested to an arbitrary depth. There is a clear bijective mapping
between the set of membranes and the regions they define, delimited by the
membrane itself from the outside, and any membrane immediately included
in it from the inside. The outermost membrane (sometimes called the skin)
separates the actual P systems from the surrounding environment, which is
a further implied region also playing a role in the computation. Membranes
not containing further membranes inside them are called elementary ; the
others are called nonelementary.

The abstract shape of a membrane structure in any given instant is
mathematically represented by a rooted, unordered tree. Here the membranes
(equivalently, the regions they delimit) correspond to vertices, the outermost
membrane being associated with the root of the tree, and an edge between
two vertices indicates that the corresponding membranes are located one
immediately inside the other; the “parent” and “child” roles are implied by
the distance from the root. The leaves of the tree correspond to elementary

11

membranes, while the internal nodes correspond to the nonelementary ones.
The tree is unordered (i.e., there is no distinguishable “first” or “leftmost”
child) because we do not keep track of any spatial relation between the
membranes other than simple containment1.

Membranes are not only set apart by their position in the membrane
structure, but also by the role they supposedly perform. This is represented
in P systems by attaching a label taken from a finite set Λ to each membrane
(formally, to the vertex representing it in the corresponding unordered tree).
As we shall see later, different labels correspond to different sets of rules
that can be applied to the membranes or their contents. Initially, each
membrane must be given a different label (although two distinct labels might
be associated to the same set of rules), while the process of membrane division
may create multiple membranes sharing the same label.

Finally, the original description of P systems with active membranes
introduces a notion of local state of the membrane itself: this is an electrical
charge, which can be positive, negative or neutral and, unlike its label, may
change during the computation. Formally, the charges are also attached to
the nodes of the unordered tree.

A membrane structure is traditionally described in a “linear” notation
by means of a string of balanced brackets. Given the unordered rooted tree
corresponding to the membrane structure, fix an arbitrary ordering of the
children of each node. The resulting ordered tree, ignoring the node labels,
is then uniquely interpreted a string of balanced brackets belonging to the
language defined by the following context-free grammar, beginning with the
nonterminal S1:

S1 → [S2] S2 → [S2] | S2S2 | ε.

These are all the non-empty strings of balanced brackets having a single
outermost pair. The nesting of brackets is induced by the shape of the
tree (and obviously corresponds to the containment relation of the original
membrane structure). Finally, each bracket is subscripted by the label of the
corresponding membrane, and superscripted by its charge. An example of
membrane structure, represented in a pictorial form, as a tree, and in bracket
notation can be found in Figure 2.1.

2.2 The contents of regions

A single molecule can be represented abstractly as a symbol taken from an
alphabet2 Γ. However, subsets of Γ are not an adequate description of a whole
chemical environment, as they do not carry any information related to the

1There exist other variants of P systems, such as the spatial ones, where the positions
of membranes and objects do actually matter [5].

2All alphabets in this thesis are assumed to be finite.

12

h0

h1

h4

h3

h2

+
0

0−

0

(h0, 0)

(h1,+)(h0, 0)

(h3, 0) (h4,−)

[
[]+h1

[[]0h3
[]−h4

]0h2

]0
h0

Figure 2.1: A membrane structure and two formalisms representing it.

(absolute or relative) quantities of molecules of the same species. Since the
concentrations of chemicals in a region do actually matter from a metabolic
standpoint, we use multisets to describe them.

A multiset w over a set Γ is simply a function w : Γ → N, mapping
each object to its multiplicity. Generalisations of the usual set-theoretic
operations can be defined on the sets of multisets over Γ; for instance, the
union of multisets w1 and w2 is the multiset where, for all a ∈ Γ, the object
a has multiplicity w1(a) + w2(a). From an algebraic point of view, the set of
multisets over Γ, together with the operation of union, is the free commutative
monoid on Γ. Compare this to the set Γ? of strings, which is the free monoid
on Γ: here the operation (i.e., string concatenation) is not commutative.
When describing the chemical environment of a region, we are interested in
the number of molecules, but not in any particular ordering of them.

Another equivalent characterisation can be given in terms of equivalence
classes of strings. For each string u ∈ Γ? and each symbol a ∈ Γ, let |u|a be
the number of occurrences of a in u. Now let u and v be strings, and let the
binary relation ' be defined by

u ' v if and only if |u|a = |v|a for all a ∈ Γ.

It is trivial to prove that ' is an equivalence relation, and in particular a
congruence relation with respect to the operation of string concatenation.
Then, the set of equivalence classes Γ?/ ' (together with the operation
induced by concatenation) is isomorphic to the set of multisets over Γ
(together with the operation of multiset union). This provides us with a
simple way to denote multisets in writing. Let w be a multiset, and let u
be any string such that w(a) = |u|a for all a ∈ Γ; then, we shall identify w
with [u]/' (the equivalence class of u modulo ') and, furthermore, we shall
drop the equivalence class notation, simply writing u for w, as the formal
meaning of the symbol is implied (correspondingly, multiset union will be

13

written as string concatenation).

2.3 Computation rules

The elements we have described until now, i.e., the membrane structure
(including labels and charges) and the multisets contained in its regions,
define the instantaneous configuration of P systems. A configuration evolves
by means of computation rules inspired by the biology of cells.

2.3.1 Object evolution rules

A first kind of computation rule describes simple chemical reactions taking
place inside a particular region. Consider, as an example, the following
formula for the burning of methane as it may be described in a chemistry
textbook:

CH4 + 2O2 → CO2 + 2H2O.

This notation describes how a molecule of methane (CH4) reacts with two
molecules of oxygen (O2) yielding a molecule of carbon dioxide (CO2) and
two molecules of water (H2O).3 The molecules on the left-hand side of the
arrow are called reactants or reagents, while those on the right-hand side are
called products.

This kind of reaction corresponds quite closely with a limited form of
multiset rewriting, where a certain submultiset is replaced by another. The
notation is also quite similar, as for multisets we shall write u→ v to indicate
that multiset u is replaced by v (we use juxtaposition instead of the addition
symbol used in chemistry). The general notion of multiset rewriting is more
abstract, and it usually disregards the law of conservation of mass.4

A general chemical reaction viewed as a multiset rewriting rules possesses a
powerful feature from a language-theoretic perspective: it is context-sensitive.
For instance, methane may only burn if oxygen is also present, and we require
at least two molecules of oxygen for each molecule of methane. The notion
of multiset rewriting employed in the original model of P system [31] is
indeed context-sensitive (or cooperative, which is the term normally used in
membrane computing). P systems with active membranes, however, possess
other features that make them extremely powerful from a computational
perspective: as a consequence, we limit our rewriting rules to context-free (or
non-cooperative) ones.

3The molecules involved in this reaction are, in turn, made of several atoms; however,
in this discussion we consider compound objects such as H2O as indivisible.

4This is an area where our model diverges from a cell as it is described in biology,
although the theory could also be developed by taking conservation laws into account
(probably producing results different from those described in this thesis).

14

The first kind of computation rules used by P systems with active mem-
branes, called object evolution rules or rules of type (a), are thus denoted as
follows:

[a→ w]αh .

This rule can be applied inside each membrane labelled by h ∈ Λ, assuming
that membrane has a particular charge α ∈ {+, 0,−} in the current config-
uration; furthermore, the membrane must contain at least a copy of object
a ∈ Γ. When the rule is applied, a copy of object a is removed and replaced
by the multiset w on the right-hand side.

The rule may not be applied if the current charge of the membrane is
different from α: this implies that the rules that can be applied to membranes
having label h can be changed by adjusting their charges. This task can be
accomplished by applying other kinds of rules.

2.3.2 Communication rules

The main role of cell membranes is that of delimiting and separating regions
where different functions are performed. However, these distinct regions must
also cooperate: for instance, the products of a chemical reaction happened in
membrane h1 might be stored inside membrane h2. The cell membranes are
thus selectively permeable, allowing specific molecules to move between regions.
When modelling this kind process, usually referred to as communication,
we assume that only one unit of substance may move through a membrane
during each time unit.

First consider the case when a unit of substance is absorbed by a mem-
brane. This kind of rule is called send-in communication rule, or type (b)
rule, and is formally written

a []αh → [b]βh.

This rule can be applied to a membrane having label h ∈ Λ and charge
α ∈ {+, 0,−}; the region located outside the membrane must also contain at
least an instance of object a ∈ Γ. The effects of this rule are the following:
the instance of a is removed from the outside region, and a copy of object
b ∈ Γ appears inside the membrane; furthermore, the electrical charge of
the membrane becomes β ∈ {+, 0,−}. As we can see, the object a may be
rewritten into b as it is brought in, also causing a change in the state of the
membrane in the process (note that we may also have a = b or α = β). As
a restriction, we assume that no object can be brought into the outermost
membrane of the P system from the external environment.

The converse kind of rule describes the process by which a membrane
expels a unit of substance; these are called send-out communication rules or
type (c) rules:

[a]αh → []βh b

15

This rule can be applied to a membrane labelled by h ∈ Λ, having charge
α ∈ {+, 0,−} and containing a copy of object a. By applying this rule, we
remove the copy of a from the membrane, change its charge to β ∈ {+, 0,−},
and place an instance of object b ∈ Γ into the region immediately outside
the membrane.

2.3.3 Dissolution rules

A membrane does not necessarily last as long as the whole cell itself. When
its role is completed, it may dissolve, releasing its contents (including any
membrane located inside it) to the outside, while the rest of the cell continues
performing its tasks.

This kind of process is modelled in P systems by dissolution rules, also
called type (d) rules. The notation is the following one:

[a]αh → b.

This rule may be applied to a membrane having label h ∈ Λ, charge α ∈
{+, 0,−} and containing at least one instance of object a. When the rule
is applied, the membrane is deleted from the system: as a consequence, all
its children membranes (if any) become children of its parent membrane;
furthermore, the objects contained in the dissolving membrane are moved to
the outside regions, while the copy of a involved in the rule is rewritten as
b ∈ Γ. We assume that the outermost membrane of the P system cannot be
dissolved.

2.3.4 Elementary division rules

We have already seen how the membrane structure of a cell needs not remain
unchanged during its entire lifespan, as membranes may dissolve. However,
new membranes can also be created. The quintessential example is given by
the process of mitosis, whereby a whole copy of the original cell is produced
by division. The process of division also occurs internally in cells (that
is, without involving the outermost cell membrane), as mitochondria also
divide by binary fission [16]. In general, division allows the creation of new
“processing units” when the need arises.

Division is modelled in P systems with active membranes in two different
ways, depending on whether the dividing membrane is elementary (i.e., it
does not contain further membranes) or not. Let us start by considering
the former, simpler case. The corresponding elementary division rules, or
type (e) rules, have the following form:

[a]αh → [b]βh [c]γh.

A rule of this kind can be applied to a membrane labelled by h ∈ Λ, having
charge α ∈ {+, 0,−} and containing at least one instance of object a ∈ Γ. Its

16

effect is as follows: a whole new copy of the membrane is created and placed
into the same region as the original one; the contents are also copied, with
the exception of the instance of a mentioned above, which is replaced by an
instance of b ∈ Γ in one of the two resulting membranes, and by c ∈ Γ in the
other one. The charges of the two membranes are also set to β ∈ {+, 0,−}
and γ ∈ {+, 0,−} respectively. This kind of rule cannot be applied to the
outermost membrane.5

2.3.5 Nonelementary division rules

The original variant of P systems with active membranes [32] that we employ
here involves a different form of division rules for nonelementary membranes.
In particular, we do not replicate the whole internal structure; instead, the
children membranes are separated according to their charge, and only the
neutral ones are replicated.

Nonelementary division rules, or type (f) rules, have the following form:

[
[]+h1 · · · []+hi []−k1 · · · []−kj

]α
h
→
[
[]δh1 · · · []δhi

]β
h

[
[]εk1 · · · []εkj

]γ
h
.

This kind of rule can be applied to a membrane having label h ∈ Λ, charge
α ∈ {+, 0,−}. This membrane must contain positively charged children mem-
branes labelled by h1, . . . , hi ∈ Λ and negatively charged children membranes
labelled by k1, . . . , kj ∈ Λ; children membranes with other labels may be
present, but they must all be neutrally charged. When the rule is applied,
the outermost membrane h is divided; the charge of the two copies are set
to β ∈ {+, 0,−} and γ ∈ {+, 0,−} respectively. The internal membranes
labelled by h1, . . . , hi remain inside the copy having charge β, and their
charge is also changed to δ; the membranes labelled by k1, . . . , kj are moved
inside the other copy of h, having charge γ, and their own charge is set
to ε ∈ {+, 0,−}. Any neutral charge membrane inside the original one is
replicated (together with its internal structure) and placed inside both copies
of h. Finally, the multiset of objects located inside the original membrane h
is also replicated in both copies.

2.4 A formal definition

We are now able to give a precise definition of our model of computation of
interest.

Definition 1. A P system with active membranes of initial degree d ≥ 1 is
a structure Π = (Γ,Λ, µ, wh1 , . . . , whd , R) where

5Although division rules are mainly inspired by mitosis, here we are interested in
single-cell P systems. Multi-cell P systems have also been described, e.g., those modelling
tissues [17].

17

• Γ is the alphabet;

• Λ is the finite set of labels;

• µ is the membrane structure, a rooted undirected tree of d nodes
labelled in a one-to-one way by elements of Λ;

• wh1 , . . . , whd , with h1, . . . , hd ∈ Λ, are multisets over Γ;

• R is a finite set of rules.

For each h ∈ Λ, the multiset wh describes the objects initially located in the
region delimited by the membrane labelled by h.

2.4.1 Configurations and computations

An instantaneous configuration of Π is given by the rooted unordered tree
describing its current membrane structure, augmented as follows: each node
is labelled by a triple (h, α,w) where

• h ∈ Λ is the label of the corresponding membrane;

• α ∈ {+, 0,−} is the charge of the membrane;

• w is the multiset over Γ contained in the membrane.

In particular, in the initial configuration C0 each node is labelled by (h, 0, wh),
i.e., each membrane is initially assumed to be neutrally charged.

A computation step changes the current configuration by applying the
rules in a maximally parallel way, according to the following principles.

• Each membrane can be subject to at most one communication, dissol-
ution or division rule per step. Any number of object evolution rules
can be simultaneously applied inside the same membrane (except for
the restrictions on objects described below).

• Each object can be subject to at most one rule per step.

• A maximal combination of rules must be applied during each step.
Each object that appears on the left-hand side of an applicable object
evolution, communication, dissolution, or elementary division rule must
be subject to exactly one of them. We say that a rule is “applicable” if
the label and the current charge of the membrane containing the object
correspond to those appearing on the left-hand side of the rule. The
only objects that do not evolve are those associated to no applicable
rule (or to no rule at all).

18

• Each membrane that appears on the left-hand side of an applicable
(i.e., having the correct labels and charges on the left-hand side) com-
munication, dissolution, or division rule must be subject to exactly one
of them. The only membranes that do not evolve are those associated
to no applicable rule (or to no rule at all).

• When several maximally parallel combinations of rules can be applied
at the same time, a nondeterministic choice between them is made. As
a consequence, in the general case multiple possible configurations can
be reached by performing a computation step.

• After a legitimate maximally parallel combination of rules has been
chosen (i.e., every membrane and object that can evolve has been
assigned to a rule), the rules are applied in a logical bottom-up (depth-
first) way, from the elementary membranes towards the outermost
one. Inside each membrane in turn, first all object evolution rules are
applied, then the remaining communication, dissolution or division
rule.

A halting computation of Π is a sequence of configurations (C0, . . . , Ck) starting
from the initial one such that every Ci+1 is reachable from Ci by performing
a single computation step, and no rule at all can be applied in Ck. If Π
never reaches a halting configuration, the result is an infinite, non-halting
computation (Ci : i ∈ N).

2.5 Recogniser P systems

In this thesis we intend to investigate the use of P systems in solving decision
problems, or, equivalently, to decide the membership of strings in languages.
To achieve this goal, we need to define recogniser P systems.

Definition 2. A recogniser P system Π is a P system with the following
properties:

• all computations of Π are halting;

• the alphabet Γ of Π contains two distinguished objects yes and no;

• exactly one object between yes and no is sent out of the outermost
membrane during each computation, and only in the last computation
step.

A computation ~C of Π is said to be accepting if the object yes is output; it
is said to be rejecting if the output is no.

While P systems are defined as nondeterministic computation devices,
we can impose some restriction on the amount of nondeterminism.

19

Definition 3. A recogniser P system is said to be confluent iff all its
computations agree on the result (acceptance or rejection). When this is
not necessarily the case, we call the P system nonconfluent, and its overall
result is acceptance iff there exists an accepting computation, and rejection
otherwise (as for nondeterministic Turing machines).

When solving decision problems, we use families of P systems instead of
single ones, as it is done with other nonuniform computation models such as
Boolean circuits [40]. From this point on, we assume that all the inputs we
intend to process are given as strings over an alphabet Σ (not necessarily
related to the alphabet of the P systems).

Definition 4. A family of recogniser P systems is a infinite set Π = {Πx :
x ∈ Σ?} consisting of a recogniser P systems for each possible input string
(P systems corresponding to different strings need not be distinct).

A family Π is said to recognise or decide the language L ⊆ Σ? (or solve
the associated decision problem), in symbols L(Π) = L, iff for each x ∈ L
the P system Πx accepts, and for each x /∈ L the P systems Πx rejects.

2.5.1 Uniformity conditions

An arbitrary family of recogniser P system (like a nonuniform family of
circuits [23]) is not a realistic computation model, as the following example
shows.

Example 5. Let Πyes be a P system consisting of a single membrane h
containing the object yes and having [yes]0h → []0h yes as its only rule; also
let Πno be the P system consisting of a single membrane h containing no
and having [no]0h → []0h no as its only rule.

Now let L ⊆ Σ? be an arbitrary language. Finally, for each string x ∈ Σ?

let Πx be Πyes if x ∈ L, and Πno otherwise. Then, the family Π = {Πx :
x ∈ Σ?} decides L in one computation step. But L can be an arbitrary
language, including an undecidable one. The problem here is that we have
not done any actual computation at all (except for trivially sending out a
fixed object), and all the complexity is hidden into the mapping x 7→ Πx,
which is noncomputable whenever L also is.

In order to avoid this kind of problem, we proceed as for Boolean circuits,
by providing a uniformity condition [21], that is, by forcing the mapping
x → Πx to be a computable function and, in particular, an efficiently
computable one. This will ensure that the family of P systems does actually
contribute to the solution to the problem.

The first variant proposed in the literature is due to Obtułowicz [22],
although we employ the formalisation due Pérez-Jiménez et al. [24] here.

20

Definition 6. A family Π = {Πx : x ∈ Σ?} is said to be (polynomial-time)
semiuniform iff the mapping x 7→ Πx can be computed in polynomial time
by a deterministic Turing machine M .

Any encoding of Πx is allowed as an output ofM , as long as all membranes,
objects and rules are listed one by one; this is also called a permissible
encoding [21]. We enforce this restriction in order to mimic a hypothetical
“realistic” process of construction of the P systems, which presumably requires
placing a constant amount of membranes and objects per computation step,
and requires actual physical space proportional to their number (see also
Chapter 4 for further details). As an example, writing down the membrane
structure as a string of balanced brackets, the multisets as strings (i.e.,
in unary notation), and the rules as we did in Section 2.3 constitutes a
permissible encoding. If we were allowed to use a binary notation for the
multisets, as in a3b2c for aaabbc, or expressions such as “the complete binary
tree with 32 levels” for the membrane structure, then an exponentially large
(or even larger) P system could be created in polynomial time; this is not
consistent with our idea of a “realistic” construction.

In practise, computing with a semiuniform family of P systems is done as
follows: given the Turing machine M of Definition 6, for each string x ∈ Σ?

we give x as input to M , thus obtaining (the encoding of) the P system
M(x) = Πx. Then, the P system Πx computes and provides us with the
answer to the question “Is x ∈ L?” by sending out one of the answer objects
yes or no.

The usual uniformity conditions for Boolean circuits [40], however, do
not map every string to a (potentially) distinct circuit. Instead, there is a
single circuit Cn for all strings of the same length n, and the actual string is
then given as input to the circuit of the correct size. The following definition
follows the same spirit, albeit with an extra step required by the encoding of
strings as multisets.

Definition 7. A family Π = {Πx : x ∈ Σ?} is said to be (polynomial-time)
uniform iff the mapping x 7→ Πx can be computed as follows: there exist two
polynomial-time Turing machines F (for “family”) and E (for “encoding”)
such that

• the machine F , on input 1n, where n = |x| (i.e., the length of x in
unary notation), constructs a P system Πn with a distinguished input
membrane;

• the machine E, on input x, outputs a multiset wx (an encoding of the
specific string x);

• finally, Πx is simply Πn but with wx adjoined to the multiset placed
inside its input membrane.

21

In this thesis, we shall only use this kind of uniformity condition. As
required, the P system Πn of Definition 7 is common for all strings of
length n. This differs from (and is possibly more restricted than) another
notion of uniformity commonly employed in the literature [24], in which the
machine F maps each input x to a P system Πs(x), where s : Σ? → N is
a “size function” for the input. In our definition, s(x) is always the length
function |x|. Even more restrictive notions of uniformity can be obtained
by replacing the polynomial-time Turing machines E and F by weaker
devices. For instance, the original notion of semiuniformity actually used
logarithmic space machines; Murphy and Woods [21] define complexity classes
for P systems parametric with respect to the chosen uniformity conditions,
and usually employ weak AC0 circuits as a concrete choice. This is useful
when comparing the computing power of P systems with “small” complexity
classes included in P, such as AC0, L, and P itself. On the other hand, in
this thesis we stick to polynomial-time uniformity, as we are interested in
complexity classes larger than P such as PSPACE, PP and the polynomial
hierarchy PH; however, most of our uniform constructions can probably be
done in logarithmic space (and some possibly even by AC0 circuits).

2.6 Time complexity of P systems

Having shown how to solve decision problems by means of uniform families
of P systems, we are also interested in measuring the efficiency of these
computing devices, and how it compares to standard computing devices such
as Turing machines with various time and space restrictions [24].

We begin by defining precisely the time complexity of a P system and a
family of P systems.

Definition 8. A recogniser P system is said to work in k steps if all its
computations have length at most k.

A family Π = {Πx : x ∈ Σ?} of recogniser P systems is said to work in
time f : N→ N if, for each n ∈ N and each x ∈ Σn, the P system Πx works
in f(n) steps.

It is now easy to define complexity classes for P systems [24] similarly to
those defined in terms of Turing machines [23].

Definition 9. Let f : N → N. The class of problems solvable by uniform
families of confluent P systems with active membranes in time f is denoted
by MCAM(f). The corresponding class for uniform families of nonconfluent
P systems with active membranes is NMCAM(f).

As usual in complexity theory, one of the most interesting classes is
defined by those problems that can be solved in a time-efficient way, i.e., in
polynomial time.

22

Definition 10. The class of problems solvable in polynomial time by uniform
families of confluent P systems with active membranes is denoted by PMCAM
(and by NPMCAM in the nonconfluent case).

When some types of rules are avoided, we will use another notation
instead of AM when discussing the related complexity classes. In particular,
PMCAM(−d,−n) will denote the class of problems solvable in polynomial time
by uniform families of confluent P systems with restricted elementary active
membranes, where dissolution and nonelementary division rules are not used.

23

24

Chapter 3

Computing with P systems

Can P systems be used in order to compute “interesting” functions? The
answer to this question is strikingly positive, as it turns out they are as
powerful as Turing machines. This fact was already mentioned in the original
paper [32]; here we prove this result by simulating another class of simple,
computationally universal devices, namely register machines. Furthermore,
we also show how P systems with membrane division can be used to solve
NP-complete problems in polynomial time by exploiting the time-space
trade-off that gives this thesis its title.

3.1 P systems are universal

Turing machines are a very simple and convincing mathematical formalism to
describe how computations can be carried out by a human executor provided
with a pencil and enough scratch paper. Although they were an important
inspiration for the design of electronic computers [7], these turned out to
be constructed with a very different internal structure. In particular, digital
computers normally have a random access memory, instead of a linear one
like Turing machines.

Register machines, also called counter machines or program machines [20],
are a model of computation which more accurately describes the functioning
of modern electronic computers. Register machines consist of a constant,
usually small number of registers able to contain arbitrary large natural
numbers1; a fixed number of instructions (labelled by consecutive natural
numbers) describes the way a register machine operates, and a program

1Actual digital computers, instead, have a large number of “registers” (memory loca-
tions) able to contain constant-sized integers. In a computability-theoretic context, “large”
translates to “potentially infinite”, and being able to randomly address a potentially infinite
memory space would require arbitrarily large registers in order to store pointers to memory
locations. Random access machines [23], a more sophisticated model of computation we
will make use of later, are defined this way.

25

counter keeps track of the label of the instruction to be executed. The
instructions themselves are of three very simple kinds.

• Increment the value of a fixed register r and proceed with a specified
instruction i; we denote this kind of instruction by inc(r), i.

• Test the value of a fixed register r: if it is nonzero, then it is decremented
by one and the execution proceeds with a first specified instruction i;
otherwise, the execution jumps to an alternate specified instruction j.
This is denoted by dec(r), i, j.

• Finally, halt the computation; we denote this instruction by halt.

Some of the registers of the machine, say the first m, are conventionally
chosen (on a machine-by-machine basis) to contain the input, while n of them
are devoted to the output. All non-input registers are assumed to be initially
null. The register machine starts computing from its first instruction, having
label 1, and keeps executing instruction until a halting one is reached. This
way, a register machine R can be thought of as computing a partial function
f : Nm ⇀ Nn; as usual, we assume that f is undefined on a particular m-tuple
if and only if R does not halt when given that input.

Example 11. Assume that a and b are the input registers of machine R,
and that c is the output register. Also, let z be an auxiliary register. Then,
the following instructions compute the sum of a and b:

1: dec(a), 2, 3
2: inc(c), 1
3: dec(b), 4, 5
4: inc(c), 3
5: halt

The first two instructions 1–2 form a loop that decrements a as long as
it is possible, while simultaneously incrementing c. When a becomes null,
the executions proceeds to the loop of instructions 3–4, which performs an
analogous task on register b. When b is also null, the execution jumps to the
halting instruction 5.

Register machines are computationally equivalent to Turing machines;
mutual simulations are described by [20]. Nonetheless, they are (in a way)
even simpler than Turing machines: this is precisely why we show how
to simulate them [34] in order to prove the computational universality of
P systems.

3.1.1 Simulating register machines

In order to simulate register machines via P systems, we exploit one of
the defining features of the latter devices: namely, that the contents of a

26

region are described by a multiset of objects, where the multiplicity of each
occurring object does actually matter.

Let R be a register machine having k registers r1, . . . , rk. We represent
each register r by a membrane, also labelled by r; these are enclosed by an
outermost membrane s. Hence the P system ΠR, whose task is simulating R,
has the following initial membrane structure:

µR =
[
[]0r1 · · · []0rk

]0
s
.

The value of each register r is represented by the multiplicity of an object
a inside the corresponding membrane r. Our simulation will also employ
another object pi, initially located inside the outermost membrane s. This
object represents the program counter of R, and its subscript i denotes the
label of the instruction currently being simulated.

If r1, . . . , r` are the input registers of R, and the input values are ~n =
(n1, . . . , n`), the P system ΠR simulating the computation of R on input ~n
has the following initial configuration:

C0 =
[
[an1]0r1 · · · [an`]0r` []0r`+1

· · · []0rkp1

]0
s
.

The evolution rules of ΠR are defined from the instructions of R. Consider
an increment instruction i : inc(r), j. This requires the creation of a new
instance of a inside membrane r, and replacing the object pi by pj inside
the outermost membrane. The former task is accomplished by the object pi
itself. First of all, we move it to membrane r by using a communication rule:

pi []0r → [pi]
0
r .

When it is inside membrane r, it produces a copy of a, while simultaneously
“priming” itself in order to avoid entering an infinite loop:

[pi → ap′i]
0
r .

Finally, the object p′i is sent back out as pj :

[p′i]
0
r → []0r pj .

It is easy to see that, by applying these three rules, our “simulation invariant”
(membrane r contains as many a’s as the value of register r, and the subscript
of pj corresponds to the label of the instruction to simulate) is restored.

Now consider a decrement instruction i : dec(r), j, k. In this case, we also
send the object pi to membrane r, but this time we change its charge to
negative:

pi []0r → [pi]
−
r .

27

When the charge of r is negative, one copy of a (if any appears) is sent out
from the membrane, while restoring its neutral charge:

[a]−r → []0r a.

Thus, the charge of r remains negative if and only if no instance of a is found
inside it, due to the maximal application of rules: the program counter object
can use this fact to choose the next value of its subscript. However, in order
to avoid interference with the rule [a]−r → []0r a, the object pi has to “wait”
one step first; we use an evolution rules to implement this:

[pi → p′i]
−
r .

Now p′i can be sent out from r as pj or pk, depending on the charge of the
membrane (which is set back to neutral in both cases):

[p′i]
0
r → []0r pj [p′i]

−
r → []0r pk.

After this last step, the “simulation invariant” is restored, and the next
instruction of R can be simulated.

As for the third and final kind of instruction, i : halt, the P system ΠR

does not need any rule: this way, when the subscript of the program counter
object reaches i, the computation of ΠR also halts.

This shows that register machines can be simulated by P systems using
only a subset of the available rules, namely object evolution and both kinds
of communication rules. The simulation is also quite fast, as each instruction
executed by a register machine requires at most three steps in a P system.

Theorem 12. Let R be a register machines having input registers r1, . . . , r`
and output registers r`+1, . . . , rm. Then there exists a P system ΠR, using
only object evolution and communication rules, with the following properties:
when its membranes r1, . . . , r` are initialised by putting n1, . . . , n` copies
of object a inside them, the P system computes the same function as R
on input (n1, . . . , n`); that is, the number of instances of a found inside
membranes r`+1, . . . , rm of ΠR when it halts correspond to the values of the
output registers of R, assuming R halts on that input. Whenever R does not
halt, neither does ΠR. Furthermore, the time required by ΠR is the same as
R but for a small multiplicative constant.

Corollary 13. P systems are computationally universal, even if only object
evolution and communication rules are allowed.

3.2 Solving NP-complete problems in polynomial
time

In order to provide an example illustrating the way we can exploit membrane
division and maximal parallelism of P systems to solve computationally hard
problems in polynomial time, we consider the 3SAT decision problem [23].

28

We are given a Boolean formula ϕ in ternary conjunctive normal form
(3CNF), that is, a formula consisting of a conjunction of clauses, each one
consisting in turn of a disjunction of exactly three literals; each literal is
either a variable, or a negated variable. We also assume that each variable
occurs at most once per clause. Our task is deciding whether ϕ admits at
least one satisfying assignment.

The 3SAT problem is one of the standard NP-complete problems [15],
and as such it is generally believed not to be solvable in polynomial time
by a deterministic Turing machine. On the other hand, the ability to make
nondeterministic choices allows us to solve 3SAT efficiently. Here we replace
nondeterminism with membrane division, which (together with maximal
parallelism) allows us to test simultaneously all possible assignments.

3.2.1 Encoding of Boolean formulae

We start by defining a simple encoding of formulae as binary strings, under
which formulae having the same number of variables have equally long
representations. This will help us design a uniform family of P system solving
the problems.

Given a set of m variables, we can choose three of them in
(
m
3

)
ways; the

three variables can be negated in 23 possible ways. Hence, the number of
possible clauses (as defined above) is 8

(
m
3

)
. Now fix an arbitrary total ordering

on the set of clauses; any ordering will do, as long as, for all i ∈ {1, . . . 8
(
m
3

)
},

we are able to identify the i-th clause in polynomial time with respect to m.
An appropriate ordering is given, for instance, by the algorithm in Figure 3.1
which, for m = 4, produces the following output:

x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ ¬x3 x1 ∨ ¬x2 ∨ x3 x1 ∨ ¬x2 ∨ ¬x3

¬x1 ∨ x2 ∨ x3 ¬x1 ∨ x2 ∨ ¬x3 ¬x1 ∨ ¬x2 ∨ x3 ¬x1 ∨ ¬x2 ∨ ¬x3

x1 ∨ x2 ∨ x4 x1 ∨ x2 ∨ ¬x4 x1 ∨ ¬x2 ∨ x4 x1 ∨ ¬x2 ∨ ¬x4

¬x1 ∨ x2 ∨ x4 ¬x1 ∨ x2 ∨ ¬x4 ¬x1 ∨ ¬x2 ∨ x4 ¬x1 ∨ ¬x2 ∨ ¬x4

x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ ¬x4 x1 ∨ ¬x3 ∨ x4 x1 ∨ ¬x3 ∨ ¬x4

¬x1 ∨ x3 ∨ x4 ¬x1 ∨ x3 ∨ ¬x4 ¬x1 ∨ ¬x3 ∨ x4 ¬x1 ∨ ¬x3 ∨ ¬x4

x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ ¬x4 x2 ∨ ¬x3 ∨ x4 x2 ∨ ¬x3 ∨ ¬x4

¬x2 ∨ x3 ∨ x4 ¬x2 ∨ x3 ∨ ¬x4 ¬x2 ∨ ¬x3 ∨ x4 ¬x2 ∨ ¬x3 ∨ ¬x4

Once an ordering has been fixed, a formula ϕ of m variables can be
encoded as a string pϕq of n = 8

(
m
3

)
bits, where the i-th bit is set if and

only if the i-th clause under that ordering appears in ϕ. Furthermore, all and
only the strings of length 8

(
m
3

)
are well-formed, and it easy to check that an

instance is well-formed, as well as recover m from n, simply by finding the

29

print-clauses(m)
if m > 3 then

print-clauses(m− 1)
end
for i← 1 to m− 2 do

for j ← i+ 1 to m− 1 do
print “xi ∨ xj ∨ xm”
print “xi ∨ xj ∨ ¬xm”
print “xi ∨ ¬xj ∨ xm”
print “xi ∨ ¬xj ∨ ¬xm”
print “¬xi ∨ xj ∨ xm”
print “¬xi ∨ xj ∨ ¬xm”
print “¬xi ∨ ¬xj ∨ xm”
print “¬xi ∨ ¬xj ∨ ¬xm”

end
end

end

Figure 3.1: A recursive, polynomial time algorithm enumerating all ternary
clauses over m variables.

unique positive root of the polynomial

p(m) = 8
(
m
3

)
− n = 4

3m
3 − 4m2 + 8

3m− n.
This can be accomplished, for instance, by trying all values of m in the range
(0, n]: this procedure runs in polynomial time with respect to the length of
the encoding pϕq, and if no m such that p(m) = 0 is found, then the input
can be safely rejected as malformed.

3.2.2 Solution to 3SAT

The algorithm for solving 3SAT via P systems we are going to describe
is based on the first polynomial-time solution to the SAT problem that
only uses elementary membrane division (instead of both elementary and
nonelementary division) due to Zandron et al. [42]. The following is a high-
level description of the procedure.

Algorithm 14. Solving 3SAT on input ϕ, a 3CNF Boolean formula of m
variables.

A Generate 2m membranes using elementary division, each one containing
objects representing a different truth assignment to the variables of ϕ.

B Evaluate ϕ under the 2m assignments, in parallel, and send out from
each membrane an object sn whenever the assignment contained in that
membrane satisfies ϕ.

30

C Output yes if at least one instance of sn has been sent out, and no
otherwise.

Assume we are given a well-formed encoding pϕq of ϕ having length n.
The machine F of Definition 7, given 1n as input, construct a P system
with input membrane Πn able to process all instances of size n. Its initial
configuration is the following one:

C0 =
[
[x1 · · ·xm wm]0e ot not+2

]0
s

where t = m + 3n + 3 (as we shall see later, this number is related to the
duration of Phases A and B described above). The membrane labelled by e
is the input membrane of Πn.

The “encoding” machine E of Definition 7 takes as input the whole string
pϕq and translates the string into a multiset encoding of ϕ as follows:

E(pϕq) = {ci : the i-th clause does not appear in ϕ, for 1 ≤ i ≤ 8
(
m
3

)
}

that is, a multiset describing the clauses missing in ϕ. This multiset is placed
inside membrane e of Πn, and then the actual computation may begin. The
details of the three phases of Algorithm 14, including the rules output by F ,
are described below.

Phase A (Generate) The variable-objects x1, . . . ,xm are exploited in
order to divide the membrane containing them m times. Each division also
causes the value of one of the variables to be fixed, by rewriting it as a t
object on one side, and as a f object on the other. The corresponding division
rules are

[xi]0e → [ti]0e [fi]0e for 1 ≤ i ≤ m.

These rules are applied for m steps, after which 2m copies of membrane e
exist, and each of them contains a multiset representing a different truth
assignment to ϕ: the occurrence of ti (resp., fi) indicates that the variable
xi is set to true (resp., false). Notice that one variable-object is chosen
nondeterministically during each of these m steps, but the final result is
independent of the sequence of choices made. All the input objects cj are
replicated among all copies of e.

While the membranes labelled by e divide, the subscript of object wi is
used to count down to 0 by using the following object evolution rules:

[wi → wi−1]0e for 1 ≤ i ≤ m.

At the end of this phase, we have 2m membranes labelled by e, and each
of them contains either object ti or fi for all i ∈ {1, . . . ,m}; a different
truth assignment can be found in each copy of membrane e. The duration of
Phase A is m computation steps.

31

Phase B (Evaluate) After the last membrane division in Phase A has
occurred, each copy of membrane e contains an instance of w0, which is
sent out in order to change the charge of those membranes to +. This is
accomplished by using the following communication rules:

[w0]0e → []+e w0.

When the e membranes are positively charged, each object ti and fi is
rewritten into a set of objects representing all clauses (whether they actually
appear in ϕ or not) that are satisfied by setting the corresponding variable
to that truth value:

[ti → ci1 · · ·ci`]+e for 1 ≤ i ≤ m, where clause ij contains the literal xi
[fi → ci1 · · ·ci`]+e for 1 ≤ i ≤ m, where clause ij contains the literal ¬xi.

Here we have ` = 4
(
m−1

2

)
= 2m2 − 6m+ 4, as this is the number of clauses

over m variables that contain a particular literal. Notice that the set of
clauses satisfied by setting each variable to a particular truth value can
be computed in polynomial time by enumerating all clauses and checking
which literals they contain (e.g., by using a simple variant of the algorithm
of Figure 3.1); this set only depends on the length n, and not on the actual
input formula ϕ

In the same computation step, while the clause-objects cj are introduced,
the objects w0 are brought back into the membranes labelled by e as s0.
Each instance of e gets exactly one copy of s0, as only one communication
rule per step may be applied to a membrane, and only one step is needed,
as the communication rules are applied in a maximally parallel way. The
corresponding communication rule is

w0 []+e → [s0]+e .

Now each copy of membrane e contains the following objects:

• One or more instances of ci, 1 ≤ i ≤ m, for each possible clause i over
m variables (not necessarily appearing in ϕ) that is satisfied by the
truth assignment corresponding to that particular membrane.

• At least one copy of ci for each clause i that does not appear in ϕ,
whether it is satisfied by the truth assignment or not: a missing clause
is always considered to be satisfied. These are the objects that have
been given as input to Πn.

• An instance of object s0.

The occurrence of object si (for some 1 ≤ i ≤ n) inside a copy of membrane
e denotes the fact that the first i clauses of m variables have been found

32

to be satisfied by the truth assignment corresponding to that membrane
(possibly because they are altogether missing from ϕ).

From this point on, whenever a membrane e is positive, a copy of object
c1 (if present) is sent out from e as a “junk” object # in order to switch the
charge to negative:

[c1]+e → []−e #. (3.1)

When the membranes labelled by e are negative, all objects c2, . . . ,cn are
temporarily “primed”:

[ci → c′i]
−
e for 2 ≤ i ≤ n.

and, simultaneously, all remaining copies of object c1 are discarded:

[c1 → #]−e .

Object si is also sent out:

[si]−e → []−e si for 0 ≤ i ≤ n− 1.

During the next computation step, each object c′i becomes ci−1: this way,
checking whether all clauses are satisfied (or missing) only amounts to
repeatedly checking whether object c1 occurs.

[c′i → ci−1]−e for 2 ≤ i ≤ n.

At the same time, the object si is brought back in as si+1 (as long as i < m),
denoting the fact that a further clause has been found to be satisfied, and
simultaneously restoring the positive charge of membrane e:

si []−e → [si+1]+e .

Now the rules starting at (3.1) can be executed again to check for the next
clause. Whenever a clause does actually appear in ϕ, but it is not satisfied
by the assignment corresponding to a particular membrane e, the object
c1 will be missing from the membrane at some point; that membrane will
stop computing altogether, and the subscript of the corresponding si object
will never reach n. On the other hand, if a membrane e initially contains at
least an instance of all possible clause-objects c1, . . . ,cn, the object sn will
eventually be found inside it.

The total duration of Phase B is 3n+ 2 steps.

Phase C (Output) At the beginning of the last phase, the objects sn are
sent out (without changing the charge of the membrane e they are located
in) by using the rule

[sn]+e → []+e sn.

33

Now, the outermost membrane s contains at least one copy of sn if and only
if the formula ϕ admits a satisfying assignment.

We have not described yet the behaviour of the objects ot and not located
inside membrane s. During all the computation until now they implement
timers counting down to zero, according to the following object evolution
rules:

[oi → oi−1]0s for 1 ≤ i ≤ t
[noi → noi−1]0s for 1 ≤ i ≤ t+ 2.

The subscript of oi reaches 0 exactly during the last step of Phase B. In the
next step, while the objects sn are sent out, it is in turn sent out from s
while changing its charge to positive:

[o0]0s → []+s #.

If any object sn is found inside the outermost membrane, it is sent out during
the next step as yes, changing the charge of the membrane to negative and
halting the computation in a successful way:

[sn]+s → []−s yes.

On the other hand, if not sn is found, then membrane s is still positively
charged after the subscript of noi has reached 0 (i.e., after step t + 2). In
this case, that object is sent out as no, halting the computation by rejecting:

[no0]+s → []−s no.

The duration of Phase C is either 2 or 3 steps, depending on whether ϕ is
satisfiable or not.

Theorem 15. The problem 3SAT can be solved in polynomial time by
a uniform family of confluent P systems with active membranes (without
using dissolution or nonelementary division rules). In symbols, 3SAT ∈
PMCAM(−d,−n).

Proof. Each P system Πn, once it has been provided with the encoding
E(pϕq) as input multiset, decides whether ϕ has a satisfying assignment in
m+ (3n+ 2) + 2 or m+ (3n+ 2) + 3 computation steps, which is polynomial
(actually, linear) time with respect to the input size. The behaviour of each
P system is confluent, as the only nondeterministic choices (made in Phase A)
always produce the same configuration at the beginning of Phase B, and the
rest of the computation is deterministic.

Furthermore, the whole family Π = {Πx : x ∈ Σ?} solving 3SAT is
uniform. Indeed, the initial configuration of Πn (without input multiset) and
the rules described above only depend on the input length n, and can be
computed in polynomial time by a deterministic Turing machine F . The
multiset encoding the input formula ϕ can also computed in polynomial time
(given pϕq) by another deterministic Turing machine E.

34

Notice that we have not stated yet that this result implies NP ⊆
PMCAM(−d,−n), as the latter class is not currently known to be closed
under polynomial-time reductions. We will deal with this technical detail in
Chapter 5.

35

36

Chapter 4

Space complexity of
P systems

A large part of the literature on the complexity-theoretic properties of
P systems with active membranes investigate polynomial-time solutions
to classically intractable problems. In most cases this requires a trade-off:
polynomial time solutions are achieved by creating exponentially many
membranes (by membrane division) and exploiting maximal parallelism
in order to let them compute simultaneously, as for the solution of 3SAT
described in the previous chapter. In order to better characterise this trade-
off and prove actual theorems on the subject, we start by formalising the
notion of space complexity for P systems [25]. Although our focus here is
on P systems with active membranes, most definitions can be carried over
to other models, with the due adjustments. We then prove that P systems
with active membranes operating in polynomial space have exactly the same
computing power as Turing machines working in polynomial space.

4.1 Preliminaries

P systems are, in principle, defined an abstraction of biological cells, although
some features deviate from actual biology for reasons of generality or elegance.
As a consequence, our aim is to define a notion of space complexity that
keeps a “scientific” spirit as far as it is possible, while being at the same time
simple enough to admit a mathematical treatment. An analogy is given by
the usual space complexity measure for Turing machines [23], that amounts
to counting the number of tape cells; while very simple, this notion of space
complexity is clearly related to the amount of paper needed by the human
computer postulated by Turing himself [38], who carries out the computation
by hand.

In our case, we wish our space complexity measure to be related to
the physical space occupied by a cell. First of all, consider the molecules

37

forming the cell that are not part of a membrane, which are represented
by symbol-objects in P systems. Here we adopt a very simple molecular
model, where the volume of the molecule is proportional to the volume of
its constituent atoms. We also make a further simplification: since we are
mostly dealing with polynomial-time uniform families of P systems, at most
a polynomial number of different molecular species may be involved at one
time; assuming we can afford to “choose” the smallest molecules available for
our computation, the largest one is going to be at most polynomially larger
than the smallest one.1 Disregarding these polynomial variations in size, we
postulate that all molecules (i.e., objects) have unit size.

The volume required by a membrane usually depends on the volume of
its contents. An approximation can be given as follows. Assume that the
membrane has spherical shape and it is filled by n molecules of unit size;
its interior radius is then r = 3

√
3n
4π = Θ(3

√
n) and its surface A = 4πr2 =

Θ(n2/3). The volume required by the membrane itself is then approximately A
multiplied by its thickness. Assuming a constant thickness for all membranes,
this volume is still Θ(n2/3), which is o(n); this means that, asymptotically,
the total volume of a membrane and the molecules it contains, taken together,
is mostly due to the molecules. As we are dealing with the space required
asymptotically by P systems, we might be tempted to completely ignore the
volume of the membranes themselves and only focus on their contents. On
the other hand, we do not want to disregard the case of an empty membrane,
whose volume is not null. As a compromise, we shall adopt the following
principle: each membrane also has unit size.

The resulting notion of space complexity for the instantaneous configura-
tion of a P system is then immediate.

Definition 16. Let C be the instantaneous configuration of a P system with
active membranes. The size of C, in symbols |C|, is given by the sum of the
number of membranes constituting the membrane structure and the total
number of objects it contains.2

4.2 The notion of space complexity

Having defined the size of an instantaneous configuration of a P system, we
need to establish how much space is required by a whole computation.

Definition 17. Let ~C = (C0, . . . , Ck) be a halting computation of a P system.

1Where these simplifications turn out to be unrealistic, more sophisticated measurements
may be employed. This kind of analysis is beyond the scope of this work.

2Different notions of space might be more adequate when P systems are not considered
as “physical objects” but, for instance, as models of cells in a computer simulation of
some biological phenomenon. One such alternative measure might be simply given by “the
number of bits required in order to store the current configuration”.

38

The space required by ~C, in symbols |~C|, is given by

|~C| = max{|C0|, . . . , |Ck|}.

If ~C = (Ci : i ∈ N) is an infinite computation, by extension the space required
by it is given by

|~C| = sup{|Ci| : i ∈ N}.

Non-halting computations require an infinite amount of space, i.e., |~C| =
∞, when the sequence |C0|, |C1|, . . . is unbounded.

When discussing the overall space requirements |Π| of a P system Π, in
general multiple computations must be taken into account. Clearly, if only
one computation ~C is possible (the P system is strictly deterministic) then a
sensible definition is simply |Π| = |~C|. In the confluent case, when we have
multiple computations leading to the same result, we opt for a worst-case
analysis, assuming that any given computation may occur. In this thesis,
we make the same choice even when nonconfluent P systems are considered.
Alternative definitions, based for instance on the space of the computation
that minimises the requirements, are of course possible; whether the use of
these alternative notions changes the actual results in a significant way is
left as an open problem.

Definition 18. Let Π be a P system with active membranes. The space
required by Π is defined as

|Π| = sup{|~C| : ~C is a computation of Π}.

The case |Π| =∞ may occur when Π admits non-halting computations
requiring infinite space, or an infinite set of halting computations requiring
unbounded space.

Finally, we can define the space requirements of a family of P systems, a
parameter that will allow us to classify decision problems in terms of their
space complexity with respect to membrane computing solutions.

Definition 19. Let Π = {Πx : x ∈ Σ?} be a family of recogniser P systems
with active membranes, and let f : N→ N. We say that Π operates within
space f iff |Πx| ≤ f(|x|) holds for all x ∈ Σ?.

We can now define complexity classes in terms of families of recogniser
P systems.

Definition 20. Let f : N→ N. The class of problems solvable by uniform
families of confluent recogniser P systems with active membranes operating
within space f is denoted by MCSPACEAM(f). The corresponding class
for families of nonconfluent P systems is denoted by NMCSPACEAM(f).

39

Definition 21. The class of problems solvable in polynomial space by uniform
families of confluent (resp., nonconfluent) recogniser P systems with active
membranes is denoted by PMCSPACEAM (resp., NPMCSPACEAM).

The class of problems solvable in exponential space by uniform families of
confluent (resp., nonconfluent) recogniser P systems with active membranes
is denoted by EXPMCSPACEAM (resp., NEXPMCSPACEAM).

4.2.1 Basic results

A few properties of the space complexity classes for P systems follow imme-
diately from their definitions [25]. We have the obvious set-theoretic ones,
such as

PMCSPACEAM ⊆ EXPMCSPACEAM

NPMCSPACEAM ⊆ NEXPMCSPACEAM

and, given f, g : N→ N, if g is pointwise larger than f then

MCSPACEAM(f) ⊆MCSPACEAM(g)

NMCSPACEAM(f) ⊆ NMCSPACEAM(g).

Other properties are due to the fact that confluence is actually a special case
of nonconfluence; hence, for all f : N→ N we have

MCSPACEAM(f) ⊆ NMCSPACEAM(f)

and, as a consequence,

PMCSPACEAM ⊆ NPMCSPACEAM

EXPMCSPACEAM ⊆ NEXPMCSPACEAM.

However, due to the nature of P systems (in particular with respect to object
evolution and division rules) we do not have immediate results relating time
complexity classes, such as PMCAM, to space complexity classes, such as
PMCSPACEAM; compare this to Turing machines, where the inclusion
P ⊆ PSPACE trivially follows from the definitions of those classes [23].
Closure under polynomial time reductions also seems to be nontrivial (and
it is actually not yet known to hold for our definition of uniformity3).

It is, instead, very easy to prove that the confluent space complexity
classes are closed under complement.

Proposition 22. For all f : N→ N we have

MCSPACEAM(f) = coMCSPACEAM(f)

3Closure under polynomial-time reductions for semi-uniform complexity classes, or for
the more general notion of uniformity, are instead easy to prove [24].

40

As a consequence,

PMCSPACEAM = coPMCSPACEAM

EXPMCSPACEAM = coEXPMCSPACEAM.

Proof. Let L ∈MCSPACEAM(f) be decided by a polynomial-space uniform
family of P systems Π = {Πx : x ∈ Σ?}. For each x ∈ Σ?, define Πx to
be exactly like Πx, except that every time the object yes is mentioned in
its definition (both as an object in a multiset and in a rule) it is replaced
by no, and similarly every instance of no is replaced by yes. Clearly, Πx

behaves exactly like Πx (including its time and space requirements) but it
rejects whenever Πx accepted, and accepts whenever Πx rejected. Hence,
Π = {Πx : x ∈ Σ?} decides L, and it is also uniform (we just need to
exchange yes and no during the construction phase).

Since L was arbitrary, we have coMCSPACEAM(f) ⊆MCSPACEAM(f),
and the reverse inclusion is proved in a completely analogous way.

It is also true that coNPMCSPACEAM = NPMCSPACEAM, although
this result requires more work and will be proved later. The same proof as
that of Proposition 22 applies to time complexity classes for P systems.

4.3 Solving problems in PSPACE

In this section we prove that polynomial-space Turing machines can be simu-
lated efficiently (i.e., within the same time and space bounds) by P systems
with active membranes [39, 27]. Furthermore, we only need communica-
tion rules to implement the simulation. As a consequence, the inclusion
PSPACE ⊆ PMCSPACEAM holds (see also [28] for a different approach to
the same topic).

4.3.1 Simulating Turing machines

LetM be a deterministic Turing machine working in time t(n) and polynomial
space p(n). Here we assume that such Turing machine is completely described
by a partial transition function

δ : Q× Γ ⇀ Q× Γ× {/, .}

where Q is the set of states ofM , including distinguished states q0 (the initial
state), qyes (the accepting state), and qno (the rejecting state); Γ = {0, 1,t}
is the tape alphabet (t denotes a blank cell), and / and . denote movements
to the left and right respectively. We also assume, without loss of generality,
that δ is undefined on (and only on) the accepting and rejecting states.

41

Consider another deterministic Turing machine FM that, on input 1n,
produces a P system with input ΠM,n having the following initial configura-
tion:

[
h []00[]01[]02 · · · []0p(n)

]0
s .

The outermost membrane s is the input membrane. Each membrane having
numerical label 0, . . . , p(n) represents a cell tape ofM . The symbol contained
in that cell in a given configuration of M is represented by the charge of the
corresponding membrane: a neutral charge represents a t, a positive charge
a 1, and a negative charge a 0. In the following discussion, we denote both
the tape symbols of M and the corresponding charges by lower case Greek
letters α, β.

The P system ΠM,n is meant to simulate M on all inputs of length n.
The precise input x ∈ {0, 1}? is encoded as a multiset by another Turing
machine EM simply by subscripting the i-the symbol of x (counting from 0)
by its position i. For instance,

EM (11001) = 1011020314.

This encoding can be clearly computed in polynomial time with respect to n.
Once the input multiset EM (x) has been placed into the input membrane

s of FM (1n) = ΠM,n, the resulting P system PM,x computes according to the
following algorithm.

Algorithm 23. Simulating the Turing machine M on input x.

A Initialise the charges of membranes 0, . . . , n− 1 according to the input x,
thus reconstructing the initial configuration of M .

B Simulate the computation of M on x step-by-step until the simulated
machine halts.

C Output yes if M accepted, and no if it rejected.

The three phases of Algorithm 23 are detailed below.

Phase A (Initialise) During the first step, the input objects encoding the
string x are used in order to initialise the charges of membranes 0, . . . , n− 1.
This is accomplished by using the following communication rules:

1i []0i → [#]+i

0i []0i → [#]−i

}
for 0 ≤ i ≤ n− 1.

At the same time, the object h in s is rewritten into h0,q0 . In general,
the presence of object hq,i indicates that the simulated Turing machine is
currently in state q, and its tape head is positioned on the i-th cell.

After this one step of Phase A, the initial configuration of M on input x
has been recreated in ΠM,x.

42

Phase B (Simulate) The instruction provided by the transition function δ
of M are simulated by using communication rules. Each transition δ(q1, α) =
(q2, β, /) is implemented by

hi,q1 []αi → [hi−1,q2]βi

[hi−1,q2]βi → []βi hi−1,q2

}
for 0 < i ≤ p(n).

First the head-object is sent into the membrane corresponding to the current
tape cell, rewriting its symbol (by changing the charge α to β), shifting to the
tape cell on the left, and changing the state to the next one (by modifying
its subscripts). Then, in the next step, the head-object is brought back to
membrane s; this way we may proceed simulating another step of M .

Simulating a transition such as δ(q1, α) = (q2, β, .), where the tape head
moves to the right, is completely analogous:

hi,q1 []αi → [hi+1,q2]βi

[hi+1,q2]βi → []βi hi+1,q2

}
for 0 ≤ i < p(n).

We continue simulating M one step at a time (requiring two steps on ΠM,x

each) until the Turing machine halts, by entering its accepting or rejecting
state. Since we assumed δ to be undefined on these states, no rule described
in this phase applies, and we proceed to Phase C.

The total duration of Phase B is at most 2t(n) steps.

Phase C (Output) After the simulated machine M has halted, either ob-
ject hi,qyes or hi,qno will appear inside membrane s, for some i ∈ {0, . . . , p(n)}.
This object encodes the result of the simulated computation, and can be
immediately used by ΠM,x in order to produce the same result:

[hi,qyes]
0
s → []0s yes

[hi,qno]0s → []0s no

}
for 0 ≤ i ≤ p(n).

This concludes the description of the simulation algorithm, allowing us
to obtain the following result.

Theorem 24. A deterministic Turing machine M , running in time t(n)
and polynomial space p(n), can be simulated by a uniform family of confluent
P systems with active membranes ΠM = {ΠM,x : x ∈ Σ?} in time O(t(n))
and space O(p(n)), and using only communication rules.

Proof. Each P system ΠM,x correctly simulates the computation of M on
input x and produces the same result. The simulation requires at most
1 + 2t(n) + 1 = O(t(n)) steps for its three phases; the number of objects
required by the simulation is n + 1 (n input objects and one head object)
and the number of membranes is p(n) + 2, for a total of O(p(n)) space.

The family ΠM is uniform, since

43

• The encoding machine EM runs in polynomial time given x, as it only
needs to subscript the string symbols with their positions.

• The family machine FM needs to output an initial configuration of size
O(p(n)) and a set of rules of the same size (a constant given by the
size of the transition table of M times the number of positions on the
tape). These items can be also computed in polynomial time.

The following corollary is immediate.

Corollary 25. For all polynomials p we have

SPACE(p) ⊆MCSPACEAM(p).

As a consequence, PSPACE ⊆ PMCSPACEAM holds.

4.4 Simulating P systems via Turing machines

In order to prove the reverse inclusion PMCSPACEAM ⊆ PSPACE, we
provide a simulation algorithm for P systems running on a Turing machine
(actually, on an equivalent random access machine). Instead of just simulating
confluent P systems, we provide a more general simulation that also works
on nonconfluent ones, as this will allow us to prove the stronger result
NPMCSPACEAM = PSPACE.

4.4.1 Simulation algorithm

For convenience, the actual simulating device we use is a nondeterministic
random access machine (or RAM for short, see [23] for definitions), where
the operations of addition and subtraction between registers are assumed
to require constant time, while multiplication is performed in logarithmic
time with respect to the size of the integers involved (i.e., linear time with
respect to their length in bits); it is known that such a RAM can be simulated
by a Turing machine with only a polynomial increase in time and space
complexity [23].

The membrane structure is represented internally as a rooted tree, where
each node corresponds to a membrane (the outermost one corresponds to the
root) and possesses a list of children membranes and attributes describing
the label and current charge of each membrane. The multisets of objects are
represented as k-tuples of integers, where k is the size of the alphabet and
the i-th entry represents the multiplicity of the i-th object under any fixed
ordering of the alphabet. Finally, the set of rules of Π is represented as a list
of records [30], each one containing a field for each component of the rule
(i.e., the objects, and the labels and charges of the membranes involved in
that rule).

The following is a high-level description of the simulation algorithm.

44

Algorithm 26. Simulating a nonconfluent P system with active membranes
Π = (Γ,Λ, µ, wh1 , . . . , whd , R).

A For each rule in R, nondeterministically select the membranes and objects
to which it has to be applied during the current simulated step.

B Check whether the rules have been chosen in a maximally parallel way; if
this is not the case, abort the simulation by rejecting.

C Apply the rules in the current configuration of Π, starting from the
elementary membranes and moving up towards the outermost one.

D If either yes or no were sent out from the outermost membrane, then
halt and accept or reject accordingly; otherwise, simulate the next step
by jumping to A.

The nondeterministic assignment of rules to objects and membranes in step A
can be described in details as follows.

A1 Let R′ be the set of currently unused rules; set R′ ← R.

A2 While R′ 6= ∅ pick a rule r ∈ R′, otherwise go to step B.

A3 If r = [a → w]αh then, for each membrane of the form []αh ,
nondeterministically choose an amount k of copies of object a to
be rewritten into w; this amount can be anywhere from 0 to the
multiplicity of a in that particular membrane. Subtract k from
the number of available copies of a in h.

A4 If r = a []αh → [b]βh then, for each available membrane of the form
[]αh having an available instance of a in the region immediately
outside, nondeterministically choose whether to apply r and, in
that case, assign those particular instances of a and h to r making
them unavailable.

A5 If r = [a]αh → []βh b or r = [a]αh → b or r = [a]αh → [b]βh [c]γh then, for
each available membrane of the form []αh containing an available
instance of a, nondeterministically choose whether to apply r and,
in that case, assign those particular instances of a and h to r
making them unavailable.

A6 If r =
[
[]+h1 · · · []+hk []−hk+1

· · · []−hn
]α
h
→
[
[]δh1 · · · []δhk

]β
h

[
[]εhk+1

· · · []εhn
]γ
h

then, for each available membrane of the form []αh containing the
available membranes []+h1 , . . . , []+hk , []−hk+1

, . . . []−hn and possibly
some neutral available membranes, nondeterministically choose
whether to apply r or not; if so, assign all the involved membranes
to r making them unavailable.

A7 Set R′ ← R′ − {r} and go back to step A2.

45

Deciding in step B whether the assignment of rules computed in A is indeed
maximally parallel simply requires us to check, for each membrane and object
still available in the current configuration, whether there exists a rule in R
that could be applied to them. If this is the case, then the choice of rules
is not maximal, and we abort the simulation by rejecting. This does not
change the behaviour of the simulating device, since the existence of one
accepting computation is not influenced by adding further rejecting ones
(in other words, the RAM simulating Π is designed to have an accepting
computation iff Π has one).

The actual application of the rules chosen in A is performed in step C
according to the following sub-steps.

C1 For each r = [a → w]αh , remove k instances of a, where k is the
multiplicity chosen for r in step A3, and add k times the objects in w.

C2 For r = a []αh → [b]βh remove an instance of a from the external region,
add an instance of b to the internal one, and change the charge to β.

C3 For r = [a]αh → []βh b remove an instance of a from the internal region,
add an instance of b to the external region, and change the charge to β.

C4 For r = [a]αh → b move all the objects from the internal region to
the external one, replacing an instance of a with b, then, remove the
membrane h from the current configuration; the children of h are
adopted by its parent.

C5 For r = [a]αh → [b]βh [c]γh duplicate membrane h and its contents, re-
placing an instance of a by one of b on one side, and by an instance
of c on the other; set the charges of the new membranes to β and γ
respectively.

C6 For r =
[
[]+h1 · · · []+hk []−hk+1

· · · []−hn
]α
h
→
[
[]δh1 · · · []δhk

]β
h

[
[]εhk+1

· · · []εhn
]γ
h

create a new instance of h, placing inside it all the negative membranes
hk+1, . . . , hn from the current membrane, and a deep copy of all neutral
membranes inside h (i.e., including the substructure having them as
the root, including its contents); finally, update the charges according
to r.

Finally, in step D we decide whether the computation of Π has ended, giving
the same result if this is the case, and simulating the next step of Π otherwise.

4.4.2 Analysis of the algorithm

The correctness of this simulation algorithm follows immediately from its
description, since it is a straightforward implementation of the usual semantics
of P systems with active membranes. The only point worth highlighting

46

is that the rejecting computations of step B, due to having chosen a non-
maximal combination of rules, do not influence the overall result of the
simulating machine, which accepts if and only if the simulated P system
accepts.

Before analysing the time and space required by the simulation algorithm,
we prove two auxiliary lemmata.

Lemma 27. Let Π be a nonconfluent P system with active membranes
having an encoding of length m. Then, the number of membranes in any
configuration of Π after t computation steps is bounded by 2tm+m logm.

Proof. Since the number of membranes that Π can generate depends on the
shape of the initial membrane structure, we begin by choosing a “worst-case
membrane structure” [18]. The initial number of membranes of Π is at most
m; clearly, each membrane structure of degree m, when viewed as a tree,
is a subtree of the complete m-ary tree Tm of depth m − 1 (i.e., with m
levels). Since this tree is uniform, that is, the number of children of each node
only depends on its depth, it can be represented by a m-tuple of integers
T (k0, . . . , km−1) where ki denotes the number of nodes on level i, and k0 is
always 1, since the root is unique. Hence, the initial membrane structure is
contained in Tm = T (1,m,m2, . . . ,mm−2,mm−1).

Now suppose that, during each computation step, every possible mem-
brane divides; for the sake of simplicity, also assume that nonelementary
division rules cause the duplication of all the children (instead of separat-
ing positive and negative ones, and only duplicating the neutral ones). We
consider this scenario only for the sake of finding an upper bound, since it
cannot really occur in practice.

The result of the application of rules are computed in a bottom-up
way: first the elementary membranes divide, and the resulting “intermediate”
membrane structure is T (1,m,m2, . . . ,mm−2, 2mm−1). Then, the membranes
of depth m−2 divide; this also causes another doubling of those having depth
m − 1, giving T (1,m,m2, . . . , 2mm−2, 22mm−1). By repeating this process
all the way to the level below the root (which does not divide) we obtain a
structure which is a subtree of T (1, 2m, 22m2, . . . , 2m−2mm−2, 2m−1mm−1),
that is

T
(
(2m)0, (2m)1, (2m)2, . . . , (2m)m−2, (2m)m−1

)

Notice how this tree can be obtained by replacing m with 2m in the initial
tree Tm: analogously, after another computation step we obtain the tree T22m

and, in general, after t steps we obtain the tree T2tm. Since this tree has m
levels, the number of nodes is bounded by m times the number of leaves, i.e.,

(2tm)m−1 ·m ≤ (2tm)m−1 · 2tm = (2tm)m = 2tm+m logm.

47

We also prove an upper bound on the number of objects.

Lemma 28. Let Π be a nonconfluent P system with active membranes having
an encoding of length m. Then, the number of objects in any configuration
of Π after t computation steps is bounded by 2O(t2m logm).

Proof. The initial number of objects of Π, and in particular the initial number
contained inside each membrane, is bounded by the length m of the whole
encoding. The only way to increase this number, besides using membrane
division, is to use evolution rules. The right-hand side of each evolution rule
[a→ w]αh contains at most m objects (once again, because of the length of
the encoding), hence the number of objects after step i + 1 is at most m
times the amount of step i. If no communication or dissolution rules are
ever used, after t steps each membrane contains at most mt+1 = 2(t+1) logm

objects, for a total of 2tm+m logm · 2(t+1) logm = 2O(t2m logm) objects in the
whole configuration (using Lemma 27). This upper bound also holds when
communication or dissolution rules are used, because these kinds of rules
only move the objects around without increasing their number.

We are now able to prove that the simulation is at most exponentially
slower.

Theorem 29. Let Π be a nonconfluent P system with active membranes,
running in time T and having an encoding of length m. Then, the simulation
algorithm computes the same result as Π in time 2O(T 2m logm).

Proof. We analyse the complexity of each step of the simulation algorithm,
applied during the simulation of step t of Π, beginning with the sub-steps
of A.

• In step A1 we copy the set of rules in time O(m).

• Step A2 consists of checking if R′ is empty and going to step B, which
can be done in constant time; a nondeterministic choice of a rule
involves scanning the set R′, which requires O(m) time.

• In A3 we traverse the whole membrane structure to find the membranes
of the form []αh ; for each of those (assume they all have this form for
the sake of argument) we choose a number of objects to be rewritten:
this requires a linear number of steps with respect to the number of
bits used to store the multiplicities of the objects, that is O(t2m logm)
by Lemma 28. Since by Lemma 27 the number of membranes is at most
2tm+m logm, this step requires a total time bounded by 2tm+m logm ·
O(t2m logm), which is 2O(tm+m logm).

• Steps A4 and A5 also require traversing the membrane structure, but
checking whether a rule is applicable and choosing whether to actually

48

apply it only requires constant time. Hence these steps require time
proportional to the number of membranes, which is also bounded by
2O(tm+m logm).

• While traversing the membrane structure in A6, we need to inspect all
the children of the current membrane in order to establish whether the
nonelementary division rule can be applied. The number of children
is bounded by 2tm+m logm; thus, this step also requires 2O(tm+m logm)

time.

• Finally, removing the selected rule from R′ and going back to A2 in
step A7 requires at most O(m) time.

The loop consisting of steps A2–A7 is executed once for each of the O(m)
rules; hence, the total time required for executing step A (when simulating
step t of Π) is O(m) · 2O(tm+m logm), which is still 2O(tm+m logm).

The analysis for step B is very similar; the only difference is that we need
to iterate through the different kinds of object in order to establish whether
an evolution rule could be applied. However, this only adds a smaller term
to the exponent, and the time remains 2O(tm+m logm).

The cost of the sub-steps of step C are computed as follows.

• In C1 we perform a number of multiplications bounded by the size
O(m) of the alphabet of Π, and the size of the operands is bounded by
O(t2m logm); the total time is thus O(t2m2 logm).

• Steps C2 and C3 only require constant time.

• In C4 we need to move all the objects of the dissolving membrane to
its parent: this requires O(m) constant-time additions. We also need
to move all its children, which are at most 2O(tm+m logm).

• Step C5 requires us to create a new membrane and duplicate the
contents of the dividing one; duplicating the multiset requires O(m)
time.

• Finally, in C6 we duplicate a whole substructure of membranes with its
contents. By Lemmata 27 and 28, the size of this structure is bounded
by 2tm+m logm · 2O(t2m logm), which is 2O(t2m logm).

One step among C1–C6 has to be executed for each membrane and each rule;
since the most expensive one is C6, we can bound the total time required by
step C by

O(m) · 2tm+m logm · 2O(t2m logm) · 2O(t2m logm) = 2O(t2m logm)

The last step of the simulation algorithm is D, and it requires only constant
time.

49

This proves that executing steps A–D in order to simulate step t of Π
requires 2O(t2m logm) time, due to step C. Simulating all T steps of Π requires
summing this amount for 1 ≤ t ≤ T ; this sum is clearly bounded by T times
the cost of the last step, that is, by 2O(T 2m logm) time.

Nevertheless, the space required by the simulation is only polynomially
larger.

Theorem 30. Let Π be a nonconfluent P system with active membranes,
running in space S and having an encoding of length m. Then, the simulation
algorithm computes the same result as Π using space O(S logm).

Proof. Explicitly storing the current configuration of Π as described above
requires at most the same space as Π (and much less in some cases, since we
store the multiplicity of objects in binary instead of unary). However, our
simulation also requires storing the labels of the membranes, which do not
occupy space in Π. Since Π initially contains at most m membranes, logm
bits are sufficient to represent the labels. Hence, the configuration of Π can
be stored in space O(S logm).

The auxiliary data structures needed by the simulation algorithm do not
exceed this amount of space: the largest one is a stack required to perform a
depth-first search of the membrane structure, and the number of items on
the stack is bounded by the depth of the structure.

4.4.3 Complexity-theoretic implications

The analysis of Algorithm 26 allows us to prove that polynomial space has
the same power for P systems and Turing machines, even when nonconfluence
is taken into account.

Theorem 31. PMCSPACEAM = NPMCSPACEAM = PSPACE.

Proof. The inclusion PSPACE ⊆ PMCSPACEAM is proved in Section 4.3.
The inclusion NPMCSPACEAM ⊆ PSPACE is proved by first performing
the uniform polynomial-time construction x 7→ Πx, then using the simulation
algorithm on Πx: this requires polynomial nondeterministic space by The-
orem 30, which can be reduced to polynomial deterministic space by using
Savitch’s theorem [23].

Clearly, this result also proves that NPMCSPACEAM is also closed under
complement, as stated previously. Theorem 30 also has another corollary,
this time related to exponential space complexity classes.

Corollary 32. Both EXPMCSPACEAM and NEXPMCSPACEAM are
subsets of EXPSPACE.

50

In other words, exponential-space P systems with active membranes are
no more powerful than exponential-space Turing machines [30]. Whether
the reverse inclusions also hold is an open problem; we cannot extend the
simulation of Turing machines of Section 4.3.1 to exponential-space machines,
as our uniformity condition does not allow us to construct the required
membranes, which are exponential in number.

As an aside, notice that Theorem 29 implies that PMCAM ⊆ NPMCAM ⊆
EXP holds: P systems with active membranes are at most exponentially
faster than Turing machines.

51

52

Chapter 5

Counting by trading space
for time

As we showed in Chapter 3, P systems with active membranes using division
rules are able to solve problems that are conjectured to be intractable by
classic computing devices. The speed-up is achieved at the expense of space,
which becomes exponential. In this chapter we prove that polynomial-time
P systems where division only applies to elementary membranes can solve
counting problems, which are possibly even harder than NP-complete ones.

5.1 On the nature of membrane division

The most important feature of P systems with active membranes, at least from
a complexity-theoretic standpoint, is the ability to generate exponentially
many membranes in polynomial time. When no division rules are allowed,
indeed, they cannot solve problems outside of P in polynomial time.

Theorem 33 (Milano Theorem [42]). Let D denote the class of P systems
with active membranes using no elementary or nonelementary division rules.
Then PMCD = P.

Notice that P systems without division rules can still generate an expo-
nentially large workspace, by using object evolution rules with more than
one object on the right-hand side. What the Milano theorem essentially says
is that some form of membrane division is required to go beyond P.

In the original paper where P systems with active membranes were
introduced [32], the decision problem SAT was solved semi-uniformly in
polynomial time by using both elementary and nonelementary division rules.
This result was then [42] showed to hold even if only elementary division
rules are allowed, and further improved to provide a uniform solution [24]
(this is the result we presented as an example in Chapter 3).

53

It was also shown that P systems using nonelementary division can solve
problems harder than NP: the PSPACE-complete ones, like Quantified SAT
(QSAT) [4, 4]. The reason that makes nonelementary division apparently
stronger than elementary division is related to the shape of the membrane
structure that can be crated during the computation. Nonelementary division
can create membrane structures shaped like full elementary binary trees
having exponentially many nodes; this allows us to carry out what essentially
amounts to a quantifier elimination algorithm for quantified Boolean formulae,
based on the following identities:

∀x ϕ(x, ~y) = ϕ(0, ~y) ∧ ϕ(1, ~y)

∃x ϕ(x, ~y) = ϕ(0, ~y) ∨ ϕ(1, ~y).

Essentially, nonelementary division can be used to transform a membrane
structure having the shape of the parse tree quantified Boolean formula to a
membrane structure shaped like the parse tree of the expanded formula. The
depth of the membrane structure, in this case, is directly proportional to
the number of quantifiers in the original formula. This procedure cannot be
carried out by using elementary division only, as this kind of rule can only
create exponentially many leaf membranes.

Later, an upper bound to the computing power of polynomial-time P sys-
tems using division rules was provided by Sósik and Rodríguez-Patón [35]:
they can always be simulated in polynomial space by deterministic Turing
machines.

Theorem 34. PMCAM ⊆ PSPACE.

This provides a characterisation of PSPACE in terms of P systems with
active membranes using nonelementary division. On the other hand, the
computing power of the variant using only elementary division has not been
characterised yet.

5.2 Counting problems

Each positive instance x of an NP problem L possesses a short certificate
proving the membership of x in L [23]. This certificate is a string y of
polynomial length with respect to |x| such that, given x and y, it can be
checked in deterministic polynomial time that x ∈ L. For instance, a short
certificate for the membership of a formula ϕ in SAT is simply a truth
assignment satisfying ϕ.

Nondeterministic polynomial-time Turing machines can both guess the
short certificate and check it in polynomial time. If nondeterminism is not
available, we usually need to check a large amount of potential certific-
ates (the total number is exponential for NP-complete problems), requiring
superpolynomial time (unless P = NP).

54

A generalisation of NP problems involves not only deciding whether a
short certificate exists, but how many candidates are actually certificates. A
question of this form is “How many satisfying assignment does the Boolean
formula ϕ admit?”. Here we deal with a decision version of these problems,
asking whether the majority of the candidates are membership certificates.

Definition 35. The complexity class PP [12] consists of all the languages
L ⊆ Σ? that can be decided by nondeterministic Turing machines N with
the following acceptance criterion: N accepts x ∈ Σ? if and only if more than
half of the computations of N on input x are accepting.

The name PP stands for “Probabilistic P”, as an equivalent definition can be
given in terms of probabilistic Turing machines [12].

Alhazov et al. proved in 2009 [3] that P systems with elementary active
membranes (and no dissolution rules) can be used to solve PP-complete
problems; however, their result is not directly related to the complexity class
PMCAM(−d,−n), as their solution requires either context-sensitive object
evolution rules (a powerful feature that is not part of the standard definition)
or post-processing an exponential-size multiset of objects.

In this chapter we show that PP ⊆ PMCAM(−d,−n) actually holds [29, 26].
We prove this result by solving the following decision problem.

Problem 36 (Threshold-3SAT). Given a Boolean formula ϕ over m
variables and a non-negative integer k < 2m, do more than k assignments
(out of 2m) satisfy it?

Proposition 37. Threshold-3SAT is PP-hard.

Proof. We reduce the following standard PP-complete problem [23] to
Threshold-3SAT.

Problem 38 (Majority-SAT). Given a Boolean formula ϕ
in CNF, having c clauses over m variables and such that each
variable occurs at most once per clause, do more than half the
assignments (i.e., more than 2m−1 assignments) satisfy it?

The reduction is similar to that from SAT to 3SAT described in [11]. We
first transform ϕ into a formula having at most three literals per clause.
Observe that ϕ is satisfied iff the formula obtained by replacing a clause of
p > 3 literals

∨p
i=1 `i with

(y ⇔ `1 ∨ `2) ∧
(
y ∨

p∨

i=3

`i

)

is also satisfied, assuming y is a new variable. In CNF, that is equivalent to

(¬`1 ∨ y) ∧ (¬`2 ∨ y) ∧ (`1 ∨ `2 ∨ ¬y) ∧
(
y ∨

p∨

i=3

`i

)
.

55

This substitution doubles the number of total assignments of the formula,
due to the addition of a new variable, but the number of satisfying ones
is left unchanged, as the value of y is forced to be equal to `1 ∨ `2. The
substitution decreases by one the number of literals of the initial clause; by
repeating the process p− 3 times, and then again to any other clause having
more than three literals, we obtain a formula ϕ′ having at most three literals
per clause, and the same number of satisfying assignments as ϕ. The number
of variables of ϕ′ is bounded by m+ cm.

Next, we transform every clause of one or two literals into a clause of
exactly three. A clause of a single literal ` is replaced by

(` ∨ z1 ∨ z2) ∧ (` ∨ ¬z1 ∨ z2) ∧ (` ∨ z1 ∨ ¬z2) ∧ (` ∨ ¬z1 ∨ ¬z2),

where z1 and z2 are new variables, which is clearly satisfied iff ` is. Each
replacement like this one multiplies by 22 = 4 the number of satisfying
assignments of the whole formula, as the values of z1 and z2 are actually
irrelevant.

A clause of two literals `1 ∨ `2 is replaced by

(`1 ∨ `2 ∨ z) ∧ (`1 ∨ `2 ∨ ¬z),

where z is a new variable, which is also equivalent to the original clause but
doubles the number of satisfying assignments of the formula.

Call ϕ′′ the formula obtained from ϕ′ by replacing single and 2-literal
clauses by conjunctions of 3-literal clauses as described above, and let q be
the number of variables added in the process (notice that q is O(cm)). Then
it should be clear that ϕ has more than 2m−1 satisfying assignments iff ϕ′

does, and the latter is equivalent to ϕ′′ having more than 2m+q−1 satisfying
assignment.

Since the mapping R(ϕ) = (ϕ′′, 2m+q−1) is computable in polynomial
time with respect to c and m, it is a reduction from Majority-SAT to
Threshold-3SAT.

5.3 Solving Threshold-3SAT

A solution to Threshold-3SAT can be designed by considering our solution
to 3SAT given by Algorithm 14. Notice that, at the beginning of Phase C,
the number of instances of sn that are sent out to the outermost membrane is
exactly the number of satisfying assignments admitted by the input formula
ϕ. A simple change of the structure of Algorithm 14 provides a way of
checking whether that amount is larger than k.

Algorithm 39. Solving 3SAT on input ϕ, a 3CNF Boolean formula of m
variables.

A Initialise the contents of the membranes.

56

B Generate 2m membranes using elementary division, each one containing
objects representing a different truth assignment to the variables of ϕ.

C Evaluate ϕ under the 2m assignments, in parallel, and send out from
each membrane an object sn whenever the assignment contained in that
membrane satisfies ϕ.

D Delete k instances of sn (or all of them, if less than k exist).

E Output yes if at least one instance of sn remains, and no otherwise.

Here we add an initialisation step for technical reasons. The real deviation
from the standard membrane computing algorithm for NP-complete problems
is given by Phase D, first proposed by Alhazov et al. [3] but not implemented
by them using standard P systems with active membranes. We will use
elementary division and communication rules to implement it.

We also need a new encoding of the input instances, as we are not
only given a Boolean formula ϕ as input but also the threshold k. The
Boolean formula itself is encoded exactly as in Section . Also notice that
the integer k, being in the range [0, 2m), can be encoded using exactly m
binary digits. Let us denote by pkq the binary encoding of k. Then, the
whole Threshold-3SAT instance is encoded as the juxtaposition of the
encodings of its parts:

pϕ, kq = pϕqpkq.

The length of this binary string for a formula of m variables is exactly
8
(
m
3

)
+ m, or n + m by letting n = 8

(
m
3

)
. As in Section , we can recover

m from n+m and detect malformed input instances by finding the unique
positive integer root of the polynomial p(m) = 8

(
m
3

)
+m.

Each input size n+m (in unary notation) is mapped by a “family” machine
F to a P system Πn+m, having the following initial configuration:

C0 =
[
[in]0e []0k0

· · · []0km−1
ot not+2

]0
s

that is, the same initial configuration of the P systems of Algorithm 14
augmented by m membranes representing the bits of k. We also have t =
5n+ 4; this is due to a different duration of the computation.

The input provided to Πn+m is computed by another polynomial time
Turing machine E (the “encoding” machine) that, given an m-variable 3CNF
formula as described in the previous section and an integer k, outputs the
following set of objects:

E(pϕ, kq) = {ci : the i-th clause does not appear in ϕ, for 1 ≤ i ≤ 8
(
m
3

)
} ∪

{ki : the i-th bit of k (counting from 0) is 1, for 1 ≤ i ≤ m− 1}.

After the input multiset is placed inside the outermost membrane s of
Πn+m, the computation proceeds as described below.

57

Phase A (Initialise) In the first computation step, the object ci, corres-
ponding to the clause that do not appear in the input formula ϕ, are moved
to membrane e by using the communication rules

ci []0e → [ci]0e for 1 ≤ i ≤ n.

This takes a number of step at most equal to n (if ϕ contains no clauses). In
the mean time, the object in has its subscript decremented by one for n− 1
computation steps, and it is finally replaced during the n-th step, according
to the rules

[ii → ii−1]0e for 1 ≤ i ≤ n
[i1 → x1 · · ·xmwm]0e.

Hence, after n computation steps, membrane e contains ci for each missing
clause i, and the variable-objects x1, . . . ,xm.

At the same time, the objects ki are first moved to their respective
membranes in the first time step, making them positively charged

ki []0ki
→ [ki]+ki

for 0 ≤ i < m

then each ki divides its membrane i times:

[ki]+kj
→ [ki−1]+kj

[ki−1]+kj
for 0 ≤ j < m and 1 ≤ i ≤ j.

After at mostm steps (the largest possible subscript ism−1), there are exactly
k positively charged membranes among those labelled by k0, . . . ,km−1.

The total duration of Phase A is n steps.

Phase B (Generate) This phase works exactly as Phase A of Algorithm 14,
generating all possible truth assignments inside copies of membrane e. The
duration is also m computation steps.

Phase C (Evaluate) This phase is also identical to Algorithm 14 (Phase B),
where each copy of membrane e evaluates ϕ under a different truth assign-
ment. Its total duration is also 3n+ 2 steps.

Phase D (Delete) At the beginning of the this phase, the objects sn are
sent out (without changing the charge of the membrane e they are located
in) by using the rule

[sn]+e → []+e sn.

In the next step, k copies of sn (or all of them, if less than k exist) are
“deleted” from membrane s by sending them into any of the membranes

58

having label k0, . . . ,km−1 and positive charge. The membranes are set to
negative in the process, to avoid absorbing multiple objects:

sn []+ki
→ [#]−ki

for 0 ≤ i < m.

Recall that the number of positively charged membranes ki is exactly k.
Hence, after a single computation step, one or more copies of sn remain in
membrane s if and only if the number of satisfying assignments of ϕ was
greater than k.

The duration of this phase is 2 computation steps.

Phase E (output) The output phase is the same as Phase C of Al-
gorithm 14, except that the objects sn have already been sent out, and that
the initial value of t is different, as in this case we have t = 5n+ 4.

5.4 Solving the PP problems

The existence of Algorithm 39 proves that elementary division suffices to
solve one particular PP-complete problem.

Theorem 40. The problem Threshold-3SAT can be solved in polynomial
time by a uniform family of confluent P systems with active membranes
(without using dissolution or nonelementary division rules). In symbols,
3SAT ∈ PMCAM(−d,−n).

Being able to solve one PP-complete problem implies PP ⊆ PMCAM(−d,−n)

if the uniformity condition is defined as in [24], as closure under polynomial-
time reductions is immediate. However, our uniformity condition is possibly
weaker, as the P system associated with each input strictly depends on
its size (as length of the string encoding it), and the class PMCAM(−d,−n)

defined this way is currently not known to be closed under polynomial-time
reductions. The main problem is that arbitrary polynomial-time reductions
do not necessarily map strings of the same length into strings of the same
length.

Hence, to prove the PP inclusion [26] we operate as follows.

Theorem 41. PP ⊆ PMCAM(−d,−n).

Proof. Let L ∈ PP, and let R be a Turing machine reducing L to the problem
Threshold-3SAT in polynomial time p(n), where n is the length of the
instance of L. Also let F and E be the Turing machines providing the uni-
formity condition for the family of P systems Π solving Threshold-3SAT
designed in the previous section; the P system deciding the instances of
size n + m is denoted by Πm+n. We describe two polynomial-time Turing
machines F ′ and E′ constructing a family of P systems Π′, also running in
polynomial time, such that L(Π′) = L.

59

The machine F ′, on input 1n (where n = |x|), constructs a P system
able to solve the largest Threshold-3SAT instance (ϕ, k) that might be
produced as the output of R; if the actual output of R is smaller than that, we
can pad it to the correct length by adding enough zeroes (this is a legitimate
possibility, as described below). Let f be defined as follows:

f(n) = min{n′ +m′ : n′ +m′ ≥ n and n′ = 8
(
m′

3

)
}

that is, f(n) is the smallest integer of the form 8
(
m′

3

)
+m′ greater than or

equal to n. Then, F ′ behaves as follows:

F ′(1n) = F
(
1f(p(n))

)
= Πf(p(n)).

Since R runs in time p(n), the P system Πf(p(n)) is large enough to receive
as input any formula ϕ obtained via the reduction R, as |R(x)| = |(ϕ, k)| ≤
p(|x|), as long as it is padded to length f(p(n)) as described above.

Notice that the value f(n) can be obtained in polynomial time with
respect to n by simply computing 8

(
m′

3

)
+m′ for all integers m′ until n is

reached or exceeded; furthermore, f(n) itself is at most polynomial in n (e.g.,
a trivial upper bound is 8

(
n
3

)
+ n).

The encoding machine E′, on input x, produces an output formula
encoding ϕ′, obtained from (ϕ, k) = R(x) as follows:

ϕ′ = ϕ0` where ` = f(p(n))− |ϕ|.

Observe that the enumeration algorithm of Figure 3.1 has the following
property: the sequence of clauses over m variables is a prefix of the sequence
of clauses over m′ ≥ m variables. As a consequence, each formula over
m variables can also be considered as a formula over m′ variables (where
the only clauses that actually appear only involve the original variables)
by padding its encoding to the correct length 8

(
m′

3

)
with zeroes. Here m′

satisfies f(p(n)) = 8
(
m′

3

)
+m′. The number of required assignments k has to be

adjusted accordingly: every assignment of the original formula ϕ corresponds
to 2m

′−m assignments of ϕ′ (obtained by extending it with arbitrary values
to the new variables) that satisfy it iff the original assignment satisfies ϕ,
since the new m′−m variables do not actually appear in ϕ′. Hence, we define
k′ = 2m

′−m × k.
Summarising, the machine E′ behaves as follows:

E′(x) = E
(
ϕ0`, 2m

′−mk
)

where (ϕ, k) = R(x).

Since (ϕ′, k′) ∈ Threshold-3SAT iff (ϕ, k) ∈ Threshold-3SAT by con-
struction, and the latter is equivalent to x ∈ L by reduction, we obtain
L ∈ PMCAM(−d,−n). But L was an arbitrary PP language: hence the inclu-
sion PP ⊆ PMCAM(−d,−n) holds as required.

60

Chapter 6

P systems as oracles

Having proved that P systems with elementary active membranes can solve
the decision version of counting problems in polynomial time, we are interested
in finding improvements to that result. In this chapter we describe a technique
whereby an existing family of P systems solving a problem L can be embedded
into another family of P systems, that simulates a Turing machine, as a
“subroutine”. The procedure is, in principle, quite general, although the
technical details may vary (in particular, depending on the encoding of the
instances of the problem we consider). We shall then exploit this technique
in order to prove that certain classes of Turing machines with oracles can be
simulated in polynomial time by P system [27]. This will provide us with a
better lower bound on the complexity class PMCAM(−d,−n).

6.1 Oracle Turing machines

An oracle for a language L ⊆ Σ? is a “device” of unspecified nature that can
answer queries of the form “Is y ∈ L?” for all strings y ∈ Σ?, and provides the
correct answer instantaneously. A Turing machine may be equipped with an
oracle for L in order to increase its computing power by deciding membership
in L “for free”. Oracle Turing machines are not meant to model realistic
computations, but are useful to characterise the hardness of problems in a
finer way: for instance, the polynomial hierarchy (described below) classifies
some of the problems between P and PSPACE with respect to the kind of
oracle needed in order to solve them in polynomial time.

Oracle Turing machines normally [23] use an extra tape to write the
query string y, then enter a distinguished “query state” and, during the next
computation step, their state is automatically changed to either qy or qn
(distinct from the accepting and rejecting states qyes and qno) depending
on whether the query string belongs to the oracle language L or not. When
simulating an oracle machine (Section 6.2) we will use a slightly different
definition (which is equivalent with respect to the results we present). We

61

will also fix our query language to Threshold-3SAT, as the details may
differ for other problems.

Let us recall a few definitions related to oracle machines. [23]

Definition 42. Let L ⊆ Σ? be a language. The complexity class PL consists
of all problems solvable by deterministic polynomial-time Turing machines
with access to an oracle for L.

Similarly, NPL is the class of problems solvable by polynomial-time
nondeterministic Turing machines with an oracle for L, and coNPL the class
of problems solvable by co-nondeterministic Turing machines (i.e., machines
that reject iff a rejecting computation exists) in polynomial time.

Definition 43. Let C be any complexity class. Then

PC =
⋃

L∈C
PL NPC =

⋃

L∈C
NPL coNPC =

⋃

L∈C
coNPL.

The polynomial hierarchy is defined as follows [23, 36].

Definition 44 (The polynomial hierarchy). Let ∆0P = Σ0P = Π0P = P,
and for all i ∈ N

∆i+1P = PΣiP Σi+1P = NPΣiP Πi+1P = NPΣiP.

The cumulative polynomial hierarchy defined as PH =
⋃
i∈N ΣiP.

The cumulative hierarchy PH thus contains some very hard problems. It
is contained in PSPACE, and it is conjectured to be strictly contained in
it, but it is, in a way, very close to it. Complete problems for each level [36]
are given by the validity problems for quantified Boolean formulae having a
number of quantifier alternations bounded by a constant.

However, an even larger class can be identified by choosing oracles for
counting problems.

Theorem 45 (Toda’s theorem [37]). PH ⊆ PPP.

In other words, we can solve arbitrarily hard problems in the polynomial
hierarchy with an oracle for a counting problem.

6.2 Simulating an oracle machine

First of all, we assume that the Turing machine with oracle M has a single
tape, which is used as input space, scratch space, and as a place to write the
oracle queries. The oracle querying procedure works as follows: first M writes
down the query string y on the tape, then it moves the head to the first
symbol of y, and finally enters the query state q?. In the next computation
step, the state of M will be changed, in order to reflect the answer of the

62

oracle to the question “is y ∈ L?”, to qy or qn, and the tape head will be
repositioned to the first tape cell. A further assumption we are allowed to
make is that all query strings have the same length ` = 8

(
m
3

)
+m, where ` is

the largest integer of that form to be less than or equal to p(n); we are allowed
to do this because, as we described in Chapter 5, a pair (ϕ1, k1), where ϕ1 is
a formula over m1 variables, is a positive instance of Threshold-3SAT if
and only if (ϕ2, k2) is, where ϕ2 is a formula having the same clauses of ϕ1

but over m2 ≥ m1 variables.
Let Π` ∈ Π be the P system associated to the Threshold-3SAT in-

stances of length ` = 8
(
m
3

)
+m (see Section 5.3). We construct the P system

ΠM,n simulating M on inputs of length n (a variation of the simulation of
Section 4.3.1) as follows:

[
h []00 []01 []02 · · · []02p(n)[Π`]

0
q[Π`]

0
q . . . [Π`]

0
q[]0a

]0
s .

This initial configuration contains p(n) copies of Π`, each one enclosed by
a further membrane having label q. The number p(n) is chosen as it is the
maximum number of queries that M can perform1. However, the initial
configuration of the embedded P systems Π` is changed by erasing the initial
objects and keeping only the membrane structure and the rules; this is
required in order for these P systems to avoid starting their computation
immediately, as their input will be provided later during the computation
of ΠM,n. Membrane a will be used to store (in its charge) the result of an
oracle query.

Notice how the number of simulated tape cells has been increased to
2p(n) + 1: this is due to the fact that we require all query strings to be of
length `, hence we need to leave extra space on the tape for padding them
to this length.

The simulation of M by ΠM,n works exactly as in Section 4.3.1 as long
as M does not enter its query state. We shall describe how oracle queries are
simulated, first in an informal way, then by giving all the technical details.

6.2.1 Informal description of the simulation

This is an overview of the oracle query simulation:

1. The tape positions corresponding to the query string are inspected,
and the multiset of objects w encoding it is produced.

2. At the same time, one of unused copies of the embedded P systems Π`

is chosen; it will be used to simulate the current query.
1Although, for the sake of a simpler exposition, this configuration contains several

membranes having the same label, the labels can be made unique by subscripting them
and replicating the rules accordingly (this does not affect the construction time by more
than a polynomial amount).

63

3. The objects in w are moved to their initial position inside that copy of
Π`.

4. The objects missing from the initial configuration of Π` are created
and moved to the correct membranes.

5. Now the embedded P system performs its computation as in Section 5.3,
and produces the answer to the query.

6. Finally, the answer is communicated to the object simulating the
tape head of M ; it switches to the corresponding state and resumes
simulating the Turing machine.

In more details, the procedure works as follows. WhenM enters the query
state q?, the object hi,q? is produced and moved to membrane s. According
to the convention described above, the query string y (necessarily of length
`) is now located on tape cells i, . . . , i+ `− 1.

First, the object hi,q? is rewritten into the following multiset:

h′i,q? c′1,i c
′
2,i+1 · · · c′`−m,i+`−m−1 k′0,i+`−m k′1,i+`−m+1 · · · k′m−1,i+`−1

The objects cj,i and kj,i represent potential input objects cj and kj for an
instance of Π`, which will be actually produced depending on the particular
query string y. The procedure is the following one: each object cj,i and kj,i
enters the corresponding membrane j, and is either rewritten into a “junk”
object #, or sent out as cj or kj depending on the symbol contained in the
tape cell (thus simulating the encoding machine EL described above).

In the mean time, the object h′i,q? nondeterministically selects one of the
neutral membranes having label q and “opens” it by setting its charge to
positive. The P system Π` contained inside that membrane will be used to
answer the current query. The object is moved back as w` to membrane s,
where it “waits” for ` steps by decreasing its subscript.

While the object w waits, the objects cj and kj that were actually
produced (there are at most ` of them) move through the positive membrane
q and inside the membrane s of the selected copy of Π`, thus reaching their
initial position. At that point, the subscript of w will have reached 0. The
object w0 then enters the active instance of Π`, and inside membrane s
it produces by evolution the objects i`−m+1, ot+2, and not+4, and is itself
rewritten into w′0. Notice how the subscripts of i, o, and no are incremented
by one: this is done in order to give the opportunity to i`−m+1 to move (as
i`−m) to its initial position inside membrane e, and also to w′0 to exit Π`

and move back to membrane q.
While w′0 moves to membrane s, the chosen embedded P system Π`

finally starts computing as if it were in stand-alone form, as in Section 5.3.
This computation requires a polynomial amount of time, after which either
the object yes or no will be sent out to the surrounding membrane q. That

64

result object then exits q, setting its charge to negative (thus signalling
that the enclosed P system Π` has been used, and cannot be reused again)
and moving to membrane a. When entering it, the charge is set to positive
(if the result object is yes) or negative (if it is no); the result object is
simultaneously rewritten into #.

When membrane a is non-neutral, the object w′0 can enter it, and be
sent out as h0,qy or h0,qn depending on the result; the charge of a is also reset
to neutral to allow further queries. The simulation now proceeds again as in
Section 4.3.1, until another oracle query is made or until the computation of
M finally terminates.

6.2.2 Technical details

When the simulated Turing machine enters the query state, an object hi,q?
appears inside the outermost membrane s of ΠM,n. It is immediately subject
to the following evolution rule, which is replicated for 0 ≤ i ≤ 2p(n):

[hi,q? → h′i,q? c1,i · · · c′`−m,i+`−m−1 k′0,i+`−m · · · k′m−1,i+`−1]0s

During the next step, the objects c′j,i enter the corresponding membrane
labelled by i, where they are either deleted (if that membrane represents a
tape cell containing 1, i.e., if the j-th clause occurs in the input formula ϕ),
or sent back out as cj (if the tape cell contains 0).

c′j,i []αi → [c′j,i]
α
i

[c′j,i → #]+i

[c′j,i]
−
i → []−i cj

for 0 ≤ i ≤ 2p(n) and 1 ≤ j ≤ `−m and α ∈ {+,−}

The same occurs to the objects kj,i, except that they are deleted when the
corresponding tape cell contains a 0, according to the encoding performed
by the machine EL.

k′j,i []αi → [k′j,i]
α
i

[k′j,i → #]−i

[k′j,i]
+
i → []+i kj

for 0 ≤ i ≤ 2p(n) and 0 ≤ j ≤ m− 1 and α ∈ {+,−}

While the objects encoding the Threshold-3SAT instance are produced,
the object h′i,q? changes the charge of one of the neutral membranes labelled
by q to positive, and moves back to s as w`.

h′i,q? []0q → [hi,q?]
+
q

[h′i,q?]
+
q → []+q w`

}
for 0 ≤ i ≤ 2p(n)

65

The objects cj and kj (which are at most ` in number) are then sequentially
moved to the system Π` corresponding to the positive membrane q.

cj []+q → [cj]+q
cj []0in → [cj]0in

}
for 1 ≤ j ≤ `−m

kj []+q → [kj]+q
kj []0in → [kj]0in

}
for 0 ≤ j ≤ m− 1

The object w` “waits” until the last object has entered membrane q by
decreasing its subscript

[wi → wi−1]0s for 1 ≤ i ≤ `
then it also enters the selected embedded P system Π` in order to initialise
its configuration:

w0 []+q → [w0]+q

w0 []0in → [w0]0in

[w0 → w′0 i`−m+1 ot+2 not+4]0in

The object w′0 is sent back to membrane s, while the newly created objects
reach their actual position and/or subscript inside Π`, allowing the actual
computation of the embedded P system to start.

[w′0]0in → []0in w′0
[w′0]+q → []+q w′0
i`−m+1 []0e → [i`−m]0e

[ot+2 → ot+1]0in

[not+4 → not+3]0in

When the computation of the active instance of Π` terminates, a result object
is sent out to membrane q, and it is moved in order to set the charge of
membrane a appropriately.

[yes]+q → []−q yes

[no]+q → []−q no

yes []0a → [#]+a

no []0a → [#]−a

Now the object w0 can “read” the answer from the charge of a, reset it to
neutral and be rewritten into the corresponding object encoding the new
state of the simulated machine M .

w0 []αa → [w0]αa for α ∈ {+,−}
[w0]+a → []0a h0,qy

[w0]−a → []0a h0,qn

66

Now the simulation of M continues as in Section 4.3.1.

6.2.3 Main result

We are finally able to prove the result anticipated above.

Theorem 46. PPP ⊆ PMCAM(−d,−n).

Proof. The previous discussion shows how any polynomial-time Turing ma-
chine equipped with an oracle for Threshold-3SAT can be simulated with
a polynomial slowdown. Since Threshold-3SAT is PP-hard, any other
problem in PP can be efficiently reduced to it by the simulated Turing
machine before performing the query. As a consequence, the whole class PPP

is included in PMCAM(−d,−n).

By Toda’s theorem (PH ⊆ PPP) [37], this result implies that the whole
polynomial hierarchy PH is contained in PMCAM(−d,−n), bringing this class
closer to the known PSPACE upper bound [35].

67

68

Chapter 7

Conclusions

This work started as an attempt to analyse in formal terms the advantage
given by allowing P systems with active membranes the use of an exponential
workspace, while restricting the amount of available time to polynomial.

We first defined a measure of space complexity for P systems, first by
considering them from an (approximated) biological and physical standpoint
(rather than a purely mathematical point of view), and then abstracting by
taking into account our planned use of this measure, that is, the asymptotical
analysis of the space required to solve computationally hard problems. The
resulting notion of space complexity is mathematically simple and similar in
nature to that of Turing machines.

The computing power of polynomial-space families of P systems with
active membranes has then been analysed, showing that it coincides with the
computing power of polynomial-space Turing machines. Mutual simulations
among the two kinds of devices have been instrumental in proving this result.

By allowing exponential space, we also improved the previously known
results related to P systems using elementary membrane division. Starting
from the known inclusion of NP in PMCAM(−d,−n), we first improved the
result to PP ⊆ PMCAM(−d,−n), then finally to PPP ⊆ PMCAM(−d,−n). The
latter result builds on the intermediate one and on the simulation of Turing
machines mentioned above; the way they have been presented here actually
reflects the way these results were obtained during the research.

In the opinion of the present author, the topics discussed in this thesis
have another interesting aspect: most of the definitions can be immediately
transferred to other variants of P systems, and some work in progress seems
to suggest that some of the actual results (in particular, the solution to
PP-complete problems) may also apply there.

69

7.1 Open problems

Although this work provides some new and improved results in the area of
the complexity theory of P systems, several open questions remain to be
settled.

Our characterisation of the computational power of P systems with
active membranes working under space restrictions only holds as far as
polynomial space is involved. As soon as we try to investigate exponential-
space bounded P systems, the techniques we described here break down.
Indeed, our simulation of Turing machines relies on the ability to create one
membrane per tape cell, and all those membranes required different labels.
While creating exponentially many membranes by division is possible, they
do not possess exponentially many individual labels, and it is doubtful that
they can be correctly identified by a “tape head object” moving back and
forth, as in the simulation of Section 4.3.1.

We also think it might be worth investigating sub-polynomial space
P systems, particularly those working in logarithmic space, in order to estab-
lish whether their behaviour differs from similarly limited Turing machines.
In this case, another complication arises: the polynomial-time uniformity
conditions are too powerful (as L ⊆ P), and they could be used for “cheating”
and solving the problem during the construction phase. The most logical
solution here seems to be the use of weaker uniformity conditions such as
AC0 circuits, taking inspiration from the research on complexity classes for
P systems below P [21].

Finally, a precise characterisation of the efficiency gained by trading
space for time when using P systems with elementary active membranes is
still missing. While or PPP ⊆ PMCAM(−d,−n) result might suggest that the
latter class could be equal to PSPACE, proving this result does not seem
to be a trivial task. On the other hand, we find no reason to consider the
result PPP = PMCAM(−d,−n) implausible, and it would probably be more
interesting and insightful, as complexity classes for P systems often tend to
be identified either with P or PSPACE.

70

Bibliography

[1] Scott Aaronson. Why philosophers should care about computational
complexity. Technical report, http://eccc.hpi-web.de/report/2011/
108/, 2011.

[2] Leonard M. Adleman. Molecular computation of solutions to combinat-
orial problems. Science, 266(5187):1021–1024, 1994.

[3] Artiom Alhazov, Liudmila Burtseva, Svetlana Cojocaru, and Yurii Ro-
gozhin. Solving PP-complete and #P-complete problems by P systems
with active membranes. In David W. Corne, Pierluigi Frisco, Gheorghe
Păun, Grzegorz Rozenberg, and Arto Salomaa, editors, Membrane Com-
puting 9th International Workshop, WMC 2008, volume 5931 of Lecture
Notes in Computer Science, pages 108–117. Springer, 2009.

[4] Artiom Alhazov, Carlos Martín-Vide, and Linqiang Pan. Solving a
PSPACE-complete problem by recognizing P systems with restricted
active membranes. Fundamenta Informaticae, 58(2):67–77, 2003.

[5] Roberto Barbuti, Andrea Maggiolo-Schettini, Paolo Milazzo, Giovanni
Pardini, and Luca Tesei. Spatial P systems. Natural Computing, 10(1):3–
16, 2011.

[6] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Com-
puting, STOC ’71, pages 151–158, 1971.

[7] Jack Copeland, editor. The Essential Turing: Seminal Writings in
Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life,
Plus the Secrets of Enigma. Oxford University Press, 2004.

[8] Martin Davis, editor. The Undecidable: Basic Papers on Undecidable
Propositions, Unsolvable Problems and Computable Functions. Raven
Press, 1965.

[9] Jack Edmonds. Paths, trees and flowers. Canadian Journal of Mathem-
atics, 17:449–467, 1965.

71

http://eccc.hpi-web.de/report/2011/108/
http://eccc.hpi-web.de/report/2011/108/

[10] Lance Fortnow and Steve Homer. A short history of computational com-
plexity. Bulletin of the European Association for Theoretical Computer
Science, 80:95–133, 2003.

[11] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
1979.

[12] John T. Gill. Computational complexity of probabilistic Turing machines.
In Proceedings of the Sixth Annual ACM Symposium on Theory of
Computing, STOC ’74, pages 91–95, 1974.

[13] Juris Hartmanis and Richard E. Stearns. On the computational complex-
ity of algorithms. Transactions of the American Mathematical Society,
117:285–306, 1965.

[14] Tom Head. Formal language theory and DNA: An analysis of the generat-
ive capacity of specific recombinant behaviors. Bulletin of Mathematical
Biology, 49(6):737–759, 1987.

[15] Richard M. Karp. Reducibility among combinatorial problems. In
Complexity of Computer Computations, pages 85–104. Plenum Press,
1972.

[16] Tsuneyoshi Kuroiwa, Haruko Kuroiwa, Atsushi Sakai, Hidenori Taka-
hashi, Kyoko Toda, and Ryuuichi Itoh. The division apparatus of
plastids and mitochondria. International Review of Cytology, 181:1–41,
1998.

[17] Carlos Martín-Vide, Gheorghe Păun, Juan Pazos, and Alfonso Rodríguez-
Patón. Tissue P systems. Theoretical Computer Science, 296(2):295–326,
2003.

[18] Giancarlo Mauri, Alberto Leporati, Antonio E. Porreca, and Claudio
Zandron. Computational complexity aspects in membrane computing.
In Fernando Ferreira, Benedikt Löwe, Elvira Mayordomo, and Luís
Mendes Gomes, editors, Programs, Proofs, Processes, 6th Conference
on Computability in Europe, CiE 2010, volume 6158 of Lecture Notes
in Computer Science, pages 317–320. Springer, 2010.

[19] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical Biophysics,
7:115–133, 1943.

[20] Marin Minsky. Computation: Finite and Infinite Machines. Prentice-
Hall, 1967.

72

[21] Niall Murphy and Damien Woods. The computational power of mem-
brane systems under tight uniformity conditions. Natural Computing,
10(1):613–632, 2011.

[22] Adam Obtułowicz. Note on some recursive family of P systems with
active membranes. http://ppage.psystems.eu/index.php/Papers,
2001.

[23] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1993.

[24] Mario J. Pérez-Jiménez, Álvaro Romero-Jiménez, and Fernando Sancho-
Caparrini. Complexity classes in models of cellular computing with
membranes. Natural Computing, 2(3):265–284, 2003.

[25] Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio
Zandron. Introducing a space complexity measure for P systems. Interna-
tional Journal of Computers, Communications & Control, 4(3):301–310,
2009.

[26] Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio
Zandron. Elementary active membranes have the power of counting.
International Journal of Natural Computing Research, 2(3):329–342,
2011.

[27] Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio
Zandron. P systems simulating oracle computations. In Marian Ghe-
orghe, Gheorhge Păun, and Sergey Verlan, editors, Pre-Proceedings of
the Twelfth International Conference on Membrane Computing 2011
(CMC12), pages 433–445, 2011.

[28] Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio
Zandron. P systems with active membranes: Trading time for space.
Natural Computing, 10(1):167–182, 2011.

[29] Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio
Zandron. P systems with elementary active membranes: Beyond NP and
coNP. In Marian Gheorghe, Thomas Hinze, Gheorghe Păun, Grzegorz
Rozenberg, and Arto Salomaa, editors, Membrane Computing, 11th
International Conference, CMC 2010, volume 6501 of Lecture Notes in
Computer Science, pages 338–347. Springer, 2011.

[30] Antonio E. Porreca, Giancarlo Mauri, and Claudio Zandron. Complexity
classes for membrane systems. RAIRO Theoretical Informatics and
Applications, 40(2):141–162, 2006.

[31] Gheorghe Păun. Computing with membranes. Journal of Computer
and System Sciences, 61(1):108–143, 2000.

73

http://ppage.psystems.eu/index.php/Papers

[32] Gheorghe Păun. P systems with active membranes: Attacking NP-
complete problems. Journal of Automata, Languages and Combinatorics,
6(1):75–90, 2001.

[33] Gheorghe Păun. Membrane computing: History and brief introduction.
In Erol Gelenbe and Jean-Pierre Kahane, editors, Fundamental Concepts
in Computer Science, pages 17–41. Imperial College Press, 2009.

[34] Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors. The
Oxford Handbook of Membrane Computing. Oxford University Press,
2010.

[35] Petr Sosík and Alfonso Rodríguez-Patón. Membrane computing and
complexity theory: A characterization of PSPACE. Journal of Computer
and System Sciences, 73(1):137–152, 2007.

[36] Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Com-
puter Science, 3(1):1–22, 1976.

[37] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM
Journal on Computing, 20(5):865–877, 1991.

[38] Alan M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
42:230–265, 1936.

[39] Andrea Valsecchi, Antonio E. Porreca, Alberto Leporati, Giancarlo
Mauri, and Claudio Zandron. An efficient simulation of polynomial-
space Turing machines by P systems with active membranes. In Ghe-
orghe Păun, Mario J. Pérez-Jiménez, Agustín Riscos-Núñez, Grzegorz
Rozenberg, and Arto Salomaa, editors, Membrane Computing, 10th
International Workshop, WMC 2009, volume 6501 of Lecture Notes in
Computer Science, pages 461–478. Springer, 2010.

[40] Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Ap-
proach. Texts in Theoretical Computer Science: An EATCS Series.
Springer, 1999.

[41] Richard Zach. Hilbert’s program then an now. In Dale Jacquette, editor,
Philosophy of Logic, volume 5, pages 411–447. Elsevier, 2006.

[42] Claudio Zandron, Claudio Ferretti, and Giancarlo Mauri. Solving NP-
complete problems using P systems with active membranes. In Ioannis
Antoniou, Cristian S. Calude, and Michael J. Dinneen, editors, Uncon-
ventional Models of Computation, UMC’2K, Proceedings of the Second
International Conference, pages 289–301. Springer, 2001.

74

	Introduction
	Motivation
	Contributions

	P systems
	Membrane structures
	The contents of regions
	Computation rules
	Object evolution rules
	Communication rules
	Dissolution rules
	Elementary division rules
	Nonelementary division rules

	A formal definition
	Configurations and computations

	Recogniser P systems
	Uniformity conditions

	Time complexity of P systems

	Computing with P systems
	P systems are universal
	Simulating register machines

	Solving NPNPNPNP-complete problems in polynomial time
	Encoding of Boolean formulae
	Solution to 3SAT

	Space complexity of P systems
	Preliminaries
	The notion of space complexity
	Basic results

	Solving problems in PSPACEPSPACEPSPACEPSPACE
	Simulating Turing machines

	Simulating P systems via Turing machines
	Simulation algorithm
	Analysis of the algorithm
	Complexity-theoretic implications

	Counting by trading space for time
	On the nature of membrane division
	Counting problems
	Solving Threshold-3SAT
	Solving the PPPPPPPP problems

	P systems as oracles
	Oracle Turing machines
	Simulating an oracle machine
	Informal description of the simulation
	Technical details
	Main result

	Conclusions
	Open problems

