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ABSTRACT. In the fast growing literature that addresses the problem of the optimal bidding behaviour
of power generation companies that sell energy in electricity auctions it is always assumed that every
firm knows the aggregate supply function of its competitors. Since this information is generally not
available, real data have to be substituted with forecasts. In this paper we propose two alternative ap-
proaches to the problem and apply them to the hourly prediction of the residual demand function of the
main Italian generation company.

1 INTRODUCTION

The last twenty years have witnessed in most European and many non European countries
a radical reorganization of the electricity supply industry. Government owned monopolies
have been replaced by regulated (generally pool) competitive markets, where the match be-
tween demand and supply takes place in hourly (in some cases semi-hourly) auctions. The
auction mechanism is generally based on a uniform price rule, i.e. once the equilibrium price
is determined, all the dispatched producers receive the same price per MWh.

The issue of determining the profit-maximising behaviour of a power company bidding
in electricity auctions has been addressed by economists both from the normative (profit
optimisation) and positive (market equilibrium) point of views (cf. Wolak (2003), Hortaçsu
and Puller (2008), Bosco et al. (2010)). If we assume that each firm wishes to maximise its
profit in each auction independently from the other auctions (as customary in the literature),
then we can summarise the optimisation problem as follows.

Suppose that D is the (inelastic) demand for electricity, S−i(p) is the aggregate supply
function of firm i’s competitors for any given price p, Ci(q) is the production cost function
of firm i for any given quantity of energy q, then for those values of the residual demand
D− S−i(p) that the production capacity of firm i can fulfill, the profit function of firm i is
given by

πi(p) = p ·
(
D−S−i(p)

)
−Ci

(
D−S−i(p)

)
.

This profit function can be extended to include financial contracts as in Hortaçsu and Puller
(2008) or vertical integration (i.e. the situation in which the producer is also a retailer and
plays in both sides of the auction) as in Bosco et al. (2010). Assuming the differentiability
of S−i and C, and the concavity of πi, first order conditions indicate that firm i maximises its



profit when it offers the quantity D−S−i(p∗) at price p∗ satisfying

p∗ =C′i
(
D−S−i(p∗)

)
+

D−S−i(p∗)
S′−i(p∗)

. (1)

Now, the quantity D and the supply function S−i are generally unknown, but while D can
be predicted using standard time series techniques, the prediction of the function S−i is more
involved. In this paper we propose two techniques for forecasting supply functions based
on principal component analysis and reduced rank regression. The techniques are applied
to the prediction of the hourly supply functions of the competitors of Enel, the main Italian
generation company, as observed in two years of Italian electricity auctions .

2 AUCTION RULES AND DATA

According to the rules of the Italian electricity market, each production unit can submit up to
four “packages” of price-quantity pairs. Each pair indicates how many MWh the plant owner
would sell for how many Euros, were they dispatched. All the submitted pairs are sorted by
price and the corresponding quantities are cumulated. When the cumulated quantity matches
the demanded quantity, the system marginal price (SMP) is determined and all the plants
offering energy up to that price are dispatched.

Each record of the Italian auction result database1 contains the price-quantity pair, the
name of the offering production unit and the name of the owner of that unit. This allows the
construction of the supply function of any bidding firm.

From the above reasoning it is clear that real supply schedules are step functions and,
thus, the optimal bidding theory discussed in the previous section is not directly applicable.
This issue is generally dealt with by approximating the step functions with differentiable
functions obtained though kernel smoothing. Smoothing is also necessary for regularising
functions before applying canonical correlation techniques such as reduced rank regression
(cf. Sec. 11.5 of Ramsay and Silverman (2005)). Since supply functions are nondecreasing in
price, we use the kernel S(p) = ∑

K
k=1 qkΦ

( p−pk
h

)
, where Φ is the standard normal cumulative

probability function, h is the bandwidth parameter and (qk, pk) are the observed quantity-price
pairs. Notice that the total number of offers K may change in each auction. The derivative of
the smoothed function needed in equation (1) is given by S′(p) = ∑

K
k=1 qk

1
h φ

( p−pk
h

)
, with

φ standard normal density. The left panel of Figure 1 depicts the actual supply function of
Enel’s competitors on 3 March 2008 at 10am and the kernel approximation thereof (h = 3).

3 SUPPLY FUNCTIONS PREDICTION

Both prediction techniques we propose in this paper entail some common steps.
The first step consists in sampling the (smoothed) function on a grid of abscissa points.

This is necessary as the price set on which the function can be evaluated changes in every

1 It can be downloaded (one file per day) from the market operator web site
www.mercatoelettrico.org
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Figure 1. Left: supply function of Enel’s competitors on 3.12.2008 at 10am and kernel approximation.
Right: the same function sampled at 50-iles over one week.

auction. Since the function can be approximated more accurately where bid pairs are more
dense, we sample more frequently in these intervals by using quantiles. In particular, we used
50-iles of unique prices submitted over the entire sample (2007-2008). The forty-nine 50-iles
where supplemented with the minimum (0) and the theoretical maximum (500) due to the
price capping rule of the Italian market, obtaining 51 time series of ordinate points. The right
panel of Figure 1 shows one week of Enel’s competitors aggregate supply functions sampled
at 50-iles.

The second common step consists in transforming the original ordinate points in a way
such that the two features of positivity and non-decreasing monotonicity of the original func-
tions are guaranteed also in their predictions. If we denote with {p0, p1, . . . , p50} the points
in the price grid and with St(pi) the smoothed supply function at time t for price pi, then the
time series we work on are obtained as

qi,t :=
{

logSt(pi), for i = 0;
log

(
St(pi)−St(pi−1)+ c

)
, for i = 1, . . . ,50,

where c is a small constant. If we assume that the predictor of qi,t , say q̂i,t , is unbiased, and
the prediction error is approximately normal with standard error si,t , unbiased forecasts of the
original function can be recovered as

Ŝt(pi) =

{
exp

(
q̂i,t + s2

i,t/2
)
, for i = 0;

exp
(
q̂i,t + s2

i,t/2
)
+ Ŝt(pi−1)− c, for i = 1 . . . ,50.

Now, since we expect the 51 time series to share information, it is natural to seek some
form of dimension reduction. The two alternative algorithms we propose are based on prin-
cipal component (PC) analysis and reduced rank regression (RRR). We base the choice of
dimension reduction on one month of k-step-ahead out-of-sample predictions, where k = 1
for one-hour-ahead predictions and k = 24 for one-day-ahead predictions. In particular, the



model fit is carried out using the hourly observations of the years 2007-2008, while the di-
mension assessment is based on Jan-2009 prediction mean square errors (MSE).

In describing the two algorithms we collect the 51 transformed time series in vector qt
and the original supply function ordinate-points in vector St. The predictions will be based
on lagged responses and deterministic regressors.

Algorithm 1 (Principal components based) For r = {51,50, . . . ,1} iterate through

1. Take the first r PCs of qt (supply function log increments) based on its in-sample covari-
ance matrix, and name the scores yt .

2. Regress each score yi,t on its lags xi,t and deterministic regressors zt and compute pre-
dictions ŷt .

3. Regress the vector qt on the predicted scores ŷt (and a constant).
4. Compute the out-of-sample predictions of the supply function St and the relative MSE.

Pick the rank r that minimize the out-of-sample MSE.

In the PC approach, the time series are first reduced in number by taking the best linear
approximation to the original data and then these are be predicted using standard time series
models. The main advantage of this approach is the freedom left to the researcher to choose
the model to predict the PC scores. The drawback is that the rank reduction is not optimised
for prediction.

The second approach is based on reduced rank regression, but since this technique is less
popular than principal component analysis, we briefly survey the main points. Consider the
model

yt = Πxt +Γzt + εt

where xt and zt are regressors, Γ is a full-rank coefficient matrix, Π is a reduced-rank coeffi-
cient matrix and εt is a sequence of zero-mean random errors uncorrelated with the regressors.
The fact that Π is reduced-rank means that few linear combinations of the regressors xt are
sufficient to take account of all the variability of yt due to xt . Now, suppose that Π is n×m
with rank r < min(m,n), then Π can be factorised as Π = AB′, with A n× r and B m× r
matrices. The matrices A and B are not uniquely identified, but if one restricts the r (column)
vectors forming B to be orthonormal, then a least squares solution for B is found by solving
the following eigenvalue problem:

Sxx|zVΛ = Sxy|zS−1
yy|xSyx|zV,

where Sab|c indicates the partial product-moment matrix of a and b given c, V is an or-
thonormal matrix and Λ is a diagonal matrix. The first r columns of V provide least square
estimates of B. Least squares estimates of A and Γ are found by regressing yt simultaneously
on wt := B′xt and zt . For details on RRR refer to the excellent monograph by Reinsel and
Velu (1998).

Algorithm 2 (Reduce rank regression based) For r = {51,50, . . . ,1} iterate through

1. Regress the vector yt = qt on its lags xt imposing rank r on the matrix Π and on the
deterministic regressors zt without restricting the rank.



2. Compute the out-of-sample predictions of the supply function St and the relative MSE.

Pick the rank r that minimize the out-of-sample MSE.

The main advantage of the RRR-based algorithm is that the rank reduction is optimised
for prediction. The drawback is that only (vector) autoregressive models with exogenous
variables are allowed.

4 APPLICATION TO THE ITALIAN ELECTRICITY AUCTIONS

We apply the two algorithms to the hourly Italian electricity auction results for the years 2007-
2008 (17544 auctions); Jan-2009 (744 auctions) is used for choosing the rank r as explained
in the previous section.

We build models for predicting one-hour-ahead and models for forecasting one-day-
ahead. As for the deterministic regressors (zt ) we implement the following three increasing
set of variables.

1. Linear trend, cos(ω jt), sin(ω jt), with ω j = 2π j/(24 ·365) and j = 1, . . . ,20.
2. Regressors at point 1. plus dummies for Saturday, Sunday and Monday.
3. Regressors at point 2. plus cos(λit), sin(λit), with λi = 2πi/24 and i = 1, . . . ,6.

Both autoregressive models and error correction mechanisms are explored. In particular, we
regress

Level 1-step: yt on yt−1,yt−24,yt−168,zt ;
Diff 1-step: ∆yt on yt−1,∆yt−1,∆yt−24,∆yt−168,∆zt ;
Level 24-step: yt on yt−24,yt−168,zt ;
Diff 24-step: ∆24yt on yt−24,∆24yt−24,∆24yt−168,∆24zt .

The chosen rank and the actual root MSE (RMSE) are summarized in Table 1. Three

Table 1. Out-of-sample root mean square error for the two algorithms and 12 models.

one-hour-ahead one-day-ahead
Reg. 1. Reg. 2. Reg. 3. Reg. 1. Reg. 2. Reg. 3.

rank RMSE rank RMSE rank RMSE rank RMSE rank RMSE rank RMSE
RRR-Level 50 76.5 50 76.5 50 67.1 44 216.1 44 216.1 44 215.5
RRR-Diff 51 73.7 51 73.7 51 73.7 51 198.7 51 198.7 51 198.7
PC-level 50 80.9 50 80.9 50 72.7 41 191.1 41 191.1 41 188.8
PC-Diff 37 73.7 47 73.7 37 73.7 51 198.8 51 198.8 51 198.8

remarks appear evident from these figures: i) the optimal rank of both PC and RRR models is
very close to the full rank (51), indicating that almost all the information that time series carry
is relevant for forecasting; ii) there is no clear indication about the choice of the algorithm:
the best algorithm for hour-ahead predictions is RRR, while that for day-ahead predictions is
PC; iii) many deterministic regressione are better then few.



Figure 2 depicts the out-of-sample RMSE as a function of time (first panel) and of price
(second panel). It appears clear that the precision of the predictions vary over time and price.
In particular, the first half of Jan-2009 seems to be harder to predict then the following part
of that month. Indeed, those days are characterised by holidays and school vacations that
we have not explicitly modelled. As for the precision of the prediction at different points of
the supply function, the hardest quantities to predict are those in correspondence of the price
intervals [0,20] and [220,250]. Most observed SMPs are in the range [50,100], and so this
interval is probably the most interesting for a bidding firm. The RMSE in that interval is not
particularly large, even if it peaks in a neighbourhood of 90 Euros.

The proposed prediction algorithms, maybe supplied with other relevant regressors such
as temperature and whether forecasts, seem to represent a valuable tool for helping generation
companies to design their bidding strategies in a more profitable way.
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Figure 2. Root mean square error of prediction as functions of time and price.
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