PhD
PROGRAM IN TRANSLATIONAL
AND MOLECULAR MEDICINE
DIMET

UNIVERSITY OF MILANO-BICOCCA
SCHOOL OF MEDICINE AND FACULTY OF SCIENCE

A Brugada Syndrome mutation (S216L)
and its modulation by H558R polymorphism:
standard and dynamic characterization

Stefano Federico Marangoni

Coordinator: Prof. Andrea Biondi
Tutor: Prof. Antonio Zaza

XXIII CYCLE
ACADEMIC YEAR
2009-2010
# Table of Contents

## Chapter 1: General Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Brugada Syndrome: definition</td>
<td>7</td>
</tr>
<tr>
<td>Brugada syndrome ECG patterns</td>
<td>7</td>
</tr>
<tr>
<td>Diagnostic criteria</td>
<td>9</td>
</tr>
<tr>
<td>Epidemiology</td>
<td>10</td>
</tr>
<tr>
<td>Genetic factors underlying Brugada syndrome</td>
<td>10</td>
</tr>
<tr>
<td><em>Sodium current</em></td>
<td>12</td>
</tr>
<tr>
<td><em>Calcium current</em></td>
<td>14</td>
</tr>
<tr>
<td><em>Potassium currents</em></td>
<td>15</td>
</tr>
<tr>
<td><em>Other gene(s)</em></td>
<td>15</td>
</tr>
<tr>
<td><em>Genotype-phenotype relation</em></td>
<td>16</td>
</tr>
<tr>
<td>Arrhythmia initiation and mechanism</td>
<td>16</td>
</tr>
<tr>
<td>Proposed electrophysiological mechanisms</td>
<td>18</td>
</tr>
<tr>
<td><em>The repolarization hypothesis</em></td>
<td>18</td>
</tr>
<tr>
<td><em>The depolarization hypothesis</em></td>
<td>22</td>
</tr>
<tr>
<td><em>Repolarization vs depolarization hypothesis</em></td>
<td>25</td>
</tr>
<tr>
<td>Modulating factors of Brugada syndrome</td>
<td>28</td>
</tr>
<tr>
<td>Risk stratification</td>
<td>30</td>
</tr>
<tr>
<td>Diagnostic test, drugs and treatment of Brugada syndrome</td>
<td>34</td>
</tr>
<tr>
<td>The cardiac voltage-gated sodium channel</td>
<td>37</td>
</tr>
<tr>
<td><em>Structure</em></td>
<td>37</td>
</tr>
<tr>
<td><em>Selectivity</em></td>
<td>38</td>
</tr>
<tr>
<td><em>Activation</em></td>
<td>40</td>
</tr>
<tr>
<td><em>Inactivation</em></td>
<td>43</td>
</tr>
</tbody>
</table>
Persistent sodium current 45
Sodium current equation 47

Scope of the thesis 49

Reference List of Chapter 1 51

Chapter 2: A Brugada Syndrome mutation (S216L) and its modulation by H558R polymorphism: standard and dynamic characterization. 83

Abstract 84
Introduction 85
Methods 87
Clinical and genetic characterization 87
Site-directed mutagenesis and expression system 87
Functional characterization 88
Data analysis 89
Statistical analysis 90

Results 91
Case report: clinical and genetic profile 91
Functional characterization 93
Standard voltage-clamp analysis 93
Dynamic clamp analysis 98

Rescue of channel expression 103
Discussion 104
Relationship with the ECG phenotype 106
Comparison with previous studies 108
Appendix: List of Academic Contributions

- Peer-reviewed articles 143
- Proceedings 143
- Oral communication 144
- Posters 145
Chapter 1: General Introduction

The Brugada Syndrome: definition

Brugada syndrome has been firstly described in 1992 by Pedro and Joseph Brugada\(^1\) as a new clinical and electrocardiographic syndrome. It was defined by the presence of “right bundle branch block, normal QT interval and persistent ST segment elevation in precordial leads V\(_1\) to V\(_2\)–V\(_3\) not explainable by electrolyte disturbances, ischemia or structural heart disease”. As a consequence of these alterations, patients showed a higher susceptibility to malignant ventricular arrhythmias and consequent sudden cardiac death (SCD)\(^1\). Later on, it has been estimated that BS affects at least 5/10000 people, with a much smaller prevalence in Europe or North America than in Asian countries\(^2,3\), moreover it is considered the cause of 4% to 12% of SCD; this percentage rises up to 20% if considering SCD occurring in structurally normal hearts\(^4\).

Brugada syndrome ECG patterns

The Brugada syndrome is characterized by an ST-segment elevation in the right precordial leads (V\(_1\)-V\(_3\)) of a standard 12-leads electrocardiogram (ECG) and a high incidence of sudden death in patients with structurally normal hearts, generally manifests during adulthood. Usually the Brugada sign is more evident in the lead V\(_2\), especially in the third intercostals space (V\(_2\)\(_{IC3}\)) (Fig. 1.1).
Three types of repolarization patterns in the right precordial leads are recognized\(^6\) (Fig. 1.2). Type 1 ST-segment elevation is characterized by a coved ST-segment elevation ≥2 mm (0.2 mV) followed by a negative T wave. Type 2 ST-segment elevation has a saddleback appearance with a high take-off ST-segment elevation of ≥2 mm followed by a trough displaying ≥1 mm ST elevation followed by either a positive or biphasic T wave. Type 3 ST-segment elevation has either a saddleback or coved appearance with an ST-segment elevation of <1 mm.

Another electrocardiographic feature often associated with Brugada syndrome is right bundle branch block. Signs of conduction defects are often found at many levels: QRS widening\(^7\), electrical axis deviation\(^1;8;9\), and PQ prolongation, presumably reflecting a conduction delay\(^1;6;8;10;11\). Moreover sinus node dysfunction is
reported\textsuperscript{12}. In contrast, QTc duration is generally within the normal range\textsuperscript{6,10} but it may be occasionally prolonged\textsuperscript{1}.

\textbf{Figure 1.2.} Possible electrocardiographic patterns Brugada syndrome patients. Type I only is diagnostic of the syndrome.\textsuperscript{13}

\textbf{Diagnostic criteria}

Type 1 ST-segment elevation is diagnostic of Brugada syndrome, whereas Type 2 and 3 should not be considered diagnostic. Brugada syndrome is definitively diagnosed when a Type 1 ST-segment elevation (Brugada ECG) is observed in more than one right precordial lead (V1-V3), and in conjunction with arrhythmic event in the proband or in family history\textsuperscript{4,6}. Diagnosis of Brugada syndrome is also considered positive when a Type 2 or Type 3 ST-segment elevation is observed in more than one right precordial lead under baseline conditions and can be converted to the diagnostic Type 1 pattern during a drug test (i.e. exposure to sodium channel blocker, see also “Diagnostic test, drugs and treatment of Brugada syndrome”).
Drug-induced conversion of Type 3 to Type 2 ST-segment elevation is considered inconclusive for diagnosis of Brugada syndrome.

Epidemiology

The average age at the time of initial diagnosis of Brugada syndrome is 40 ± 22. The youngest patient diagnosed with the syndrome is 2 days of age, and the oldest is 84 years\(^1\). Because the ECG is so dynamic and often concealed, it is difficult to estimate the true prevalence of the disease in the general population\(^1\). The prevalence of the Brugada syndrome is estimated at 1–5 per 10000 inhabitants worldwide. The frequency is lower in western countries and higher (≥5 per 10000) in Southeast Asia, especially in Thailand and the Philippines where Brugada syndrome is considered to be the major cause of sudden death in young individuals\(^1\).\(^2\)

Although the number of genetic mutations responsible for the Brugada syndrome is equally distributed between the sexes, the clinical phenotype is 8 to 10 times more prevalent in males than in females\(^1\).\(^8\)

Genetic factors underlying Brugada syndrome

Brugada syndrome is inherited via an autosomal dominant mode of transmission. The first gene to be linked to the Brugada syndrome was \(SCN5A\), the gene encoding for the \(\alpha\)-subunit of the cardiac sodium channel\(^1\).\(^9\). Since 1998\(^1\), it has been established that 15–30% of Brugada syndrome cases can be attributed to mutations in \(SCN5A\)\(^1\). A further 11–12% of Brugada syndrome cases can be attributed to \(CACNA1C\) and \(CACNB2\)\(^2\). Minor contributions to Brugada syndrome cases are made from mutations in other genes (\(GPD1L, SCN1B,\)
KCNE3 and SCN3B). All these genes encode proteins involved, directly or indirectly, in the execution of the cardiac action potential (AP) (Fig. 1.3).

**Figure 1.3.** Schematic representation of principal ionic currents driving cardiac action potential. The grey field underlie a phase considered crucial in Brugada syndrome (see also “Proposed electrophysiological mechanisms”).

A second way to classify Brugada syndrome types has been proposed, in addition to the ECG pattern-based one. This classification is based on the mutation-affected genes. Although the
“type 1” is always associated with SCN5A gene mutation, a consensus on the order to give to the other types (from 2 to N) is not yet reached. Below, a description of the genes associated with Brugada syndrome is reported, basing on the function of the encoded proteins.

**Sodium current**

The gene *SCN5A* has been associated with Brugada syndrome. This gene encodes the pore-forming α-subunit of the cardiac sodium channel (Na\(_v\)1.5) conducting the depolarizing sodium inward current, I\(_{\text{Na}}\). Mutations in *SCN5A* were initially found in four families with long-QT syndrome linked to chromosome 3\(^2^2\). Since then, a number of mutations in all domains of *SCN5A* have been associated with many arrhythmogenic pathologies as long-QT syndrome\(^{2^3-2^5}\), cardiac conduction disease\(^{2^6-2^9}\), atrial fibrillation\(^{3^0,3^1}\) and dilated cardiomyopathy\(^3^2\). *SCN5A* mutations are also found in the clinical sudden infant and adult death syndromes\(^{3^3-3^5}\).

In the late 1990s, *SCN5A* was associated with Brugada syndrome when mutations were identified in a number of families with idiopathic ventricular fibrillation\(^1^9\). With time, Brugada syndrome has been associated with almost 100 different mutations in *SCN5A*. The functional characteristics of some of the *SCN5A* mutations associated with Brugada syndrome have been usually analyzed in mammalian cell lines and mouse models\(^{3^6,3^7}\). In most cases, *SCN5A* mutations found in Brugada syndrome patients are loss-of-function types, that is, leading to reduced I\(_{\text{Na}}\) current, through several mechanisms such as decreased expression of the gene or changes in voltage- and time-dependence of I\(_{\text{Na}}\) activation, inactivation or reactivation\(^3^8\).
Mixed phenotypes, where SCN5A mutations are associated with a combination of hereditary arrhythmias and structural heart disease, have also been described\textsuperscript{31,32,39}. Some mutations also differently affects various aspects of sodium channel gating, thus leading to a mix of loss-of- and gain-of-function properties. This is the case of 1795insD mutation, whose carriers show a Type 1 Brugada ECG pattern and concomitant slightly prolonged PR and QRS duration (suggesting a mild conduction disorder) and a strongly prolonged QT interval (sign of a long-QT syndrome phenotype)\textsuperscript{40}. These ECG features were given by a drastic decrease of the transient component of I_{Na}\textsuperscript{40}, which drives AP phase 0 depolarization and impulse conduction, and a concomitant marked increase of its persistent component (I_{NaL})\textsuperscript{41}. I_{NaL} has a crucial role during AP plateau, thus its increase causes a delayed repolarization which leads to long-QT syndrome.

It has been demonstrated that the electrophysiological phenotype of SCN5A mutations is temperature dependent\textsuperscript{42}, and this may explain why Brugada syndrome can be precipitated by fever, particularly in children\textsuperscript{43,44}.

The gene SCN1B encodes the β1-subunit of the cardiac sodium channel\textsuperscript{45}. The β-subunits have several functions, including interaction with ankyrin-B and -G. In the heart the biophysical function of the β1-subunits (and β1b splicing variant) is to modify the function of Na\textsubscript{1.5}, by increasing the I_{Na} (+69% and +76%, respectively)\textsuperscript{45}. When the mutations (E87Q; W179X) were transiently expressed in CHO cells cotransfected with the SCN5A, it was found that the mutated forms of SCN1B were not able to increase I_{Na}\textsuperscript{45}. 

The β3-subunit of the cardiac sodium channel is encoded by the SCN3B gene. In the heart the function of the β3-subunit is to modify the function of Na$_{1.5}$, by increasing the $I_{Na}$, as for the β1 subunit, albeit with another kinetics$^{46}$. A mutation in SCN3B was found associated with Brugada syndrome$^{47}$. When the mutation, L10P, was expressed in TSA201 cells together with SCN5A and SCN1B, the mutation was found to result in defective trafficking of Na$_{1.5}$ and reduced $I_{Na}$$^{47}$.

**Calcium current**

Defects in the CACNA1C gene, which encodes a number of isoforms of the pore-forming α1-subunit of the long-lasting (L-type) voltage gated calcium channel (Ca$_{1.2}$)$^{48}$, cause Brugada syndrome. The Ca$_{1.2}$ channel is activated upon depolarization of the cardiomyocyte, and is responsible for the depolarizing influx of calcium, the L-type calcium current ($I_{CaL}$). $I_{CaL}$ inactivates very slowly, thus it is of major significance for maintaining the plateau phase of the AP. Furthermore, it is the most important source of intracellular calcium and it represents the coupling between excitation and contraction by inducing release of calcium from the sarcoplasmic reticulum. The association between CACNA1C and Brugada syndrome was established by the finding of two missense mutations in CACNA1C (A39V; G490R)$^{49}$. When expressed with other Ca$_{1.2}$ subunits in CHO cells, a clearly reduced $I_{CaL}$ was found in both cases$^{49}$. Thus, in these cases, the mechanism of Brugada syndrome was independent of SCN5A and it was the result of decreased depolarizing current during AP.
CACNB2 codes for the β2-subunit (Caβ2) of Ca1.2, which modifies gating, increasing the I_{CaL} and has been associated with Brugada syndrome. Caβ2 functions as a chaperone for the α-subunit of Ca1.2, ensuring its transport to the plasma membrane. It is the dominantly expressed Ca1.2 β-subunit in the heart. When the mutation was expressed in CHO cells together with other components of the Ca1.2 channel, I_{CaL} was markedly reduced, in absence of trafficking defects.

Later on, many other mutations in CACNA1C and in other genes encoding for calcium channel subunits (CACNB2B; CACNA2D1) were described in Brugada syndrome patients.

**Potassium currents**

Brugada syndrome is caused by mutations in KCNE3 (R99H). This gene encodes for one of five homologous ancillary β-subunits (KCNE peptides) of voltage-gated potassium ion channels. The KCNE peptides modulate several potassium currents in the heart, including I_{Ks}, I_{Kr}, and I_{to}. When the mutated KCNE3 was coexpressed in CHO cells with Kv4.3, the α-subunit of the I_{to} channel, an increase in the I_{to}, as well as an accelerated inactivation of the current, was found. As the KCNE peptides are “promiscuous” in their choice of interacting α-subunit, it cannot be said for certain that this is the mechanism of the association between the R99H mutation and Brugada syndrome.

**Other gene(s)**

Mutations associated with Brugada syndrome were also described in a gene which does not encode for an ion channel-forming
protein. This is the case of the GPD1L gene (E83K; I24V; R273C), which encodes glycerol-3-phosphate dehydrogenase 1-like protein (G3PD1L)\textsuperscript{64}. Although the protein is predicted to contain a NAD\textsuperscript{+}-binding site and a dehydrogenase catalytic site\textsuperscript{64}, its function has not been established. The link with Brugada syndrome was established through linkage analysis\textsuperscript{65}, followed by candidate gene analysis\textsuperscript{64}. The mutations were coexpressed with SCN5A in HEK cells and neonatal cardiomyocytes, and found to reduce the I\textsubscript{Na} current and/or surface expression of Na\textsubscript{1.5}\textsuperscript{64,66}.

**Genotype-phenotype relation**

In a comparison between the ECG morphology of SCN5A mutation carriers versus patients where mutations in SCN5A had been excluded, it was found that SCN5A mutation carriers had significantly longer PQ intervals on the ECG and prolonged His-to-ventricle time during electrical programmed stimulation. No significant differences were found in QT or QRS duration and the magnitude of ST segment elevation\textsuperscript{11}. No significant difference with respect to prognosis have been found between SCN5A-positive Brugada syndrome patients and non-SCN5A carriers\textsuperscript{67}. The patients with mutations involving calcium channel express a phenotype that is essentially a combination of Brugada and short-QT syndrome, due to early repolarization, as expected by reduction of inward current during AP plateau\textsuperscript{49}.

**Arrhythmia initiation and mechanism**

In many cases, arrhythmia initiation is bradycardia-related\textsuperscript{68}. This may contribute to the higher incidence of sudden death at night in
individuals with the syndrome and may account for the success of pacing in controlling the arrhythmia in isolated cases of the syndrome\(^6^9\). However, not all patients die at night and not all the cases are controlled with rapid ventricular pacing. It has been reported that loss-of-function \(SCN5A\) mutations resulting in Brugada syndrome are distinguished by profound bradyarrhythmias\(^7^0\). Pertinent to this observation is the report of the expression of the cardiac sodium channel gene, \(SCN5A\), in intracardiac ganglia\(^7^1\). This interesting finding suggests that loss-of-function mutations in \(SCN5A\) may not only create the dangerous substrate in ventricular myocardium, but may also increase vagal activity in intracardiac ganglia, thus facilitating the development of arrhythmias in patients with the Brugada syndrome. Febrile state is often associate with Brugada syndrome\(^7^2\). This observation is mechanistically supported by the finding that mutation-induced loss-of-function of the sodium channel could be temperature-dependent\(^4^4\).

General mechanisms of arrhythmias include reentry, early afterdepolarizations (EADs), delayed afterdepolarizations (DADs), and abnormal automaticity. Reentry is regarded as the dominant mechanism in Brugada syndrome, based on: conduction slowing, easy ventricular tachycardia/fibrillation induction during electrophysiologic study (EPS), and the polymorphic nature of the arrhythmias. Although polymorphic tachycardia and tachycardia onset during slow heart rates are also compatible with EADs, EADs typically require QT prolongation, which is usually not present in Brugada syndrome. Furthermore, efficacy of quinidine in preventing tachyarrhythmias\(^7^3;7^4\), while also causing QT prolongation, argues
against a causative role of EADs. DADs are even less likely: DADs typically occur during calcium overload (e.g. during fast heart rates). Attenuation of ST elevations by catecholamines provides further evidence against DADs, as catecholamines generally increase calcium overload and facilitate DADs. Abnormal automaticity does not usually present as a polymorphic tachycardia and exhibits a warm-up phenomenon, rather than the abrupt tachyarrhythmia onset seen in Brugada syndrome.

**Proposed electrophysiological mechanisms**

The pathophysiologial mechanism of Brugada syndrome remains a matter of debate. This is partially because Brugada syndrome, similarly to other inheritable arrhythmia syndromes, is characterized by a large variability in clinical and molecular phenotype among patients, although there seems to be a consensus on a right ventricular origin and the positive association between the Type I ECG and arrhythmias. Although the actual mechanisms still remain uncertain, two leading hypotheses have been proposed. The “repolarization hypothesis” was initiated by studies in canine wedge preparations. This hypothesis relies on transmural dispersion of repolarization between the right ventricular endocardium and epicardium, especially in the outflow tract. In contrast, the “depolarization hypothesis” relies on right ventricular conduction slowing and involvement of mild structural abnormalities.

**The repolarization hypothesis**

This model was developed by to explain Brugada syndrome, basing on the study of arterially perfused right ventricular wedge
preparations of dogs\textsuperscript{77,78}. Repolarization hypothesis revolves around an imbalance between inward and outward currents during AP phase 1 (AP notch). The unequal expression of the transient outward potassium current ($I_{to}$) between epicardium and endocardium\textsuperscript{79,80} provides basis for AP heterogeneity in this phase, rendering epicardium more susceptible to the effects of reduced depolarizing force (e.g. a mutation-induced loss of $I_{Na}$). Moreover, this difference between right ventricular walls is also supported by the lower functional expression of $I_{Na}$ in the epicardium\textsuperscript{81}.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Repolarization disorder model. The imbalances between inward depolarizing current ($I_{Na}$) and outward repolarizing one ($I_{to}$) generates the electrocardiographic features of Brugada syndrome and arrhythmogenic events (phase 2 Reentry).\textsuperscript{82}}
\end{figure}
Fig. 1.4 schematizes in detail the repolarization hypothesis. The presence of a $I_{\omega}$-mediated spike and dome morphology or notch in the ventricular epicardium, but not endocardium, of larger mammals creates a transmural voltage gradient responsible for the inscription of the electrocardiographic J wave (Osborn wave)\(^{83}\). Under normal conditions, the J wave is relatively small, in large part reflecting the left ventricular AP notch, since that of the right ventricular epicardium is usually buried in the QRS. The ST segment is isoelectric because of the absence of transmural voltage gradients at the level of the AP plateau (Fig. 1.4A). Accentuation of the right ventricular notch under pathophysiological conditions is attended by exaggeration of transmural voltage gradients and thus exaggeration of J point elevation and the appearance of a saddleback configuration of the repolarization waves (Fig. 1.4B). The development of a prominent J wave can also be construed as ST segment elevation. Under these conditions, the T wave remains positive because epicardial repolarization precedes repolarization of the cells in the M and endocardial regions. Further accentuation of the notch may be accompanied by prolongation of the epicardial AP such that the direction of repolarization across the right ventricular wall and transmural voltage gradients are reversed, thus leading to the development of a coved-type of ST segment elevation and inversion of the T wave (Fig. 1.4C), typically observed in the ECG of Brugada patients.

Although the typical Brugada morphology is present in Fig. 1.4B and C, the substrate for reentry is not. A further shift in the balance of current, leading to loss of the AP dome at some epicardial
sites, would manifest in the ECG as an additional ST segment elevation (Fig. 1.4D). The loss of the AP dome in epicardium but not endocardium results in the development of a marked transmural dispersion of repolarization and refractoriness, responsible for the development of a vulnerable window during which a premature impulse or extrasystole can induce a reentrant arrhythmia. Since loss of the AP dome in the epicardium is generally not spatially uniform, a striking epicardial dispersion of repolarization develops (Fig. 1.4D).

Conduction of the AP dome from sites where it is maintained to sites where it is lost causes local reexcitation via a phase 2 reentry mechanism, leading to the development of a closely coupled extrasystole, capable of triggering circus movement reentry (Fig. 1.4E and 1.5). The phase 2 reentrant beat fuses with the negative T wave of the basic response. Because the extrasystole originates in the epicardium the QRS is largely comprised of a Q wave, which serves to accentuate the negative deflection of the inverted T wave, thus giving the ECG a more symmetrical appearance. This morphology is often observed in the clinic preceding the onset of polymorphic ventricular tachycardia. Phase 2 reentry has been shown to trigger circus movement reentry in isolated sheets of the right ventricular epicardium as well as in the intact wall of the canine right ventricle.
The depolarization hypothesis

An alternative explanation for the ECG signature in Brugada syndrome, which does not invoke fundamentally different AP shapes, is based on conduction delay in right ventricular outflow tract (RVOT) (Fig. 1.6). The RVOT AP (Fig. 1.6B, top) is delayed with respect to the rest of right ventricle (RV) (Fig. 1.6B, bottom). During the hatched phase of the cardiac cycle in Fig. 1.6D, the membrane potential in RV is more positive than in the outflow tract, thus acting as a source, and driving intercellular current to RVOT, which acts as a sink (Fig. 1.6C, a). To ensure a closed-loop circuit, current passes back from RVOT to RV in the extracellular space (Fig. 1.6C, c), and an ECG electrode positioned over the RVOT (V2) inscribes a positive signal, as it records the limb of this closed-circuit which travels towards it (Fig. 1.6C, b). Thus, this electrode inscribes ST elevation during this phase of the cardiac cycle (Fig. 1.6D, bottom, bold line). Reciprocal events are recorded in the left precordial leads. Here,
current flowing from the extracellular space into RV (Fig. 1.6C, d) causes ST depression. In the next phase of the cardiac cycle (following the upstroke (Fig. 1.6F, hatched phase) of the delayed AP in RVOT), the potential gradients between RV and RVOT are reversed, as membrane potentials are now more positive in RVOT than RV. Thus, RVOT now acts as the source, driving the closed-loop circuit in the opposite direction (Fig. 1.6E), with current now passing away from lead V2 (Fig. 1.6E, d), thus resulting in the negative T wave (Fig. 1.6F, bottom, bold line). Note that in Fig. 1.5D and F, the delayed AP of RVOT is abbreviated in comparison to RV one, as electrotonic interaction between RV and RVOT (which is present when RV and RVOT are electrically well-coupled) accelerates repolarization of RVOT AP because the mass of RV strongly exceeding that of RVOT86.
This qualitative model of ST elevation in Brugada syndrome derives from the mechanism believed to cause ST-segment elevation in regional transmural ischemia, where large differences in membrane potential exist between ischemic and nonischemic zones. Similar to regional ischemia, where premature beats which trigger reentrant
tachyarrhythmias originate in the border zone between areas with disparate membrane potentials, the first beat of the ventricular tachyarrhythmia in Brugada syndrome may originate in the border zone between early and delayed depolarizations.\(^8^7\)

**Repolarization vs depolarization hypothesis**

The repolarization hypothesis (RH) or the depolarization one (DH) differentially explained many features of Brugada syndrome.

The presence of the ECG changes in right, but not left, precordial leads is justified by larger \(I_{to}\) expression in right than left ventricular epicardium\(^8^8\) by RH, whereas the finding of a conduction delay in RVOT\(^8^9\) and its embryological origin, which is different from left ventricular one\(^9^0\), are invoked by DH. The outflow tract derives from the same group of cells that compose the atrioventricular region, thus possessing slow, \(I_{CaL}\)-mediated conduction properties\(^9^1;9^2\). RH or DH ascribe the large prevalence of the syndrome in males to the sexual differences in \(I_{to}\)\(^1^8\) or \(I_{CaL}\)\(^9^3\) expression, respectively.

Autonomic modulation strongly affects ST-segment elevations in Brugada syndrome\(^6^8;9^4;9^6\). Indeed, parasympathetic stimulation increases ST-segment elevation and an augmented vagal tone usually precedes ventricular fibrillation episodes\(^6^8\). Accordingly, opposing effects of sympathetic stimulation were reported, as isoproterenol reduced ST-segment elevation and prevented ventricular tachycardia/fibrillation inducibility\(^7^5;9^4\). Interestingly, abnormal norepinephrine recycling was identified in Brugada syndrome\(^9^7\) indicating that abnormal autonomic innervations may cause ST-segment elevation. Both RH and DH ascribe this autonomic regulation to the vagal-induced reduction of \(I_{CaL}\). \(I_{CaL}\) is crucial to sustain AP
plateau\textsuperscript{98} or the RVOT conduction, from the RH or the DH point of view. Parasympathetic activity also reduces heart frequency. The observations that long RR intervals\textsuperscript{99;100} augment ST-segment elevations and that ventricular tachycardia/fibrillation occurs at night were used as support for the repolarization disorder hypothesis. These observations were ascribed to slow gating kinetics of $I_{to}$, which increase this current at slow heart rates\textsuperscript{80}. Accordingly, pacing provided an effective therapy against bradycardia-related ventricular arrhythmia onset in Brugada syndrome patients\textsuperscript{101}. Yet, ST-segment elevations may also increase at fast heart rates\textsuperscript{9;41;102;103}.

Many \textit{in vitro} studies provide additional support to RH by demonstrating that $I_{Na}$ blockers\textsuperscript{104;105} and $I_{K\text{-}ATP}$ openers\textsuperscript{106} worsen transmural dispersion generating a spike-and-dome AP wave in the epicardium of RV wedge preparation, also generating a phase 2 reentry mechanism. By contrary, $I_{to}$ blockers ameliorate transmural dispersion\textsuperscript{88;107}. However, to support DH, these findings were only partially confirmed by another investigation on isolated RV preparation\textsuperscript{108}. Removal of transmural gradient of $I_{to}$ by 4-aminopyridine ($I_{to}$ blocker), restored the AP dome and electrical homogeneity in the canine wedge preparation\textsuperscript{77;82}, consistent with the clinical efficacy of quinidine in normalizing the ECG pattern\textsuperscript{94;109} and preventing spontaneous or induced arrhythmias\textsuperscript{73;110}. RH ascribed this phenomena to $I_{to}$ blocking properties of quinine, although DH considered this effects due to its anticholinergic action\textsuperscript{111;112} and to blockade of delayed rectifier potassium channel\textsuperscript{113;114} which suppress reentrant arrhythmias by prolonging AP duration.
In vivo studies (both open- or closed-chest)\textsuperscript{115-117} are ambivalent. Indeed, spike-and-dome AP shapes were recorded, even though loss of the dome was never observed and RVOT was always involved in the experiments.

Ventricular late potentials reflect delayed and fragmented ventricular conduction and are strong predictors of ventricular arrhythmias\textsuperscript{118}. Late potentials have been shown to be highly prevalent in Brugada syndrome\textsuperscript{68;99;103;118-120}, thus supporting DH; furthermore, they usually coincide with spontaneous ST-segment elevation in right precordial leads (V1–V3)\textsuperscript{68}. Moreover, flecainide, a sodium channel blocker, elicits late potentials along with ST-segment elevations\textsuperscript{99}. Nevertheless some studies failed to document delayed potentials of RV\textsuperscript{94}.

DH was also supported by the idea that the large transmural dispersion required by RH is unlikely in a tissue with normal electrical coupling. The presence of non-excitable tissue (e.g. fibrosis) and/or mild structural defects, not observable under routine analysis, provides an argument in favor of a slow-conduction explanation of Brugada syndrome. Electron beam tomography scan studies revealed RV enlargement, abundant adipose tissue\textsuperscript{121} and RV wall motion abnormalities\textsuperscript{122}. The link between structural and functional derangements was further tightened by another electron beam tomography scan study, in which wall motion abnormalities were exacerbated/provoked with a pharmacological challenge\textsuperscript{123}. Using cardiac magnetic resonance imaging, a sensitive tool for detection of RV structural abnormalities\textsuperscript{124}, significant RVOT enlargement was found in Brugada syndrome patients\textsuperscript{125}. Moreover, the explanted heart
of a Brugada syndrome patient with a SCN5A mutation substantial structural derangements (fatty replacement and intense fibrosis) in the RVOT, while LV was normal\textsuperscript{126}. This study found no spike-and-dome AP shapes in RV epicardium, but prominent conduction slowing, arguing in favor of the DH\textsuperscript{126}.

A cause-effect relation between functional and structural derangements has been also suggested basing on the finding that SCN5A loss-of-function mutations can provoke severe degenerative changes in the specialized conduction system\textsuperscript{26}. Moreover, transgenic mice with SCN5A haploinsufficiency developed cardiac fibrosis as they aged\textsuperscript{127}.

**Modulating factors of Brugada syndrome**

A number of factors modulate the electrocardiographic and arrhythmic manifestations of Brugada syndrome and ST-segment elevation is often dynamic. Brugada ECG may often be concealed, but can be unmasked or modulated by many drugs including sodium channel blockers, vagotonic agents, $\alpha$-adrenergic agonists, $\beta$-adrenergic blockers, tricyclic or tetracyclic antidepressants, first generation antihistaminic (dimenhydrinate), a combination of glucose and insulin, hyperkalemia, hypokalemia, hypercalcaemia, and by alcohol and cocaine toxicity\textsuperscript{94,128-137}. These agents may also induce acquired forms of Brugada syndrome. A list of drugs interacting with the syndrome and a guidance about their administration has been recently formulated\textsuperscript{138} (see also “Diagnostic test, drugs and treatment of Brugada syndrome”).
Arrhythmia and sudden death in Brugada syndrome usually occur at rest and at night. Circadian variation of sympathovagal balance, hormones, and other metabolic factors are likely to contribute to this circadian pattern. Bradycardia, due to altered sympathovagal balance or other factors, may contribute to arrhythmia initiation\textsuperscript{68,69,95}. A presynaptic sympathetic dysfunction has also been proposed to play a role in arrhythmogenesis\textsuperscript{139}. Hypokalemia, known to unmask Brugada syndrome in asymptomatic patients\textsuperscript{129}, has been implicated as a contributing cause for the high prevalence of sudden death in the Northeastern region of Thailand where potassium deficiency is endemic due to low level in food\textsuperscript{129,139}.

An association between a large meal of carbohydrates ingested and sudden death has been observed\textsuperscript{139}. Consistent with this observation, it was found that glucose and insulin could unmask the Brugada ECG\textsuperscript{134}. Another possibility is that sudden death in these patients is due to the increased vagal tone produced by the stomach distention\textsuperscript{118}.

\textit{SCN5A} mutation functional defects have been shown to be accentuated at higher temperature\textsuperscript{18}, providing a mechanism to explain the several case reports where a febrile illness revealed the Brugada ECG and precipitate ventricular arrhythmia\textsuperscript{43,140-142}.

Although the genetic mutation responsible for the Brugada syndrome is equally distributed between sexes, the clinical phenotype is largely more prevalent in males than in females\textsuperscript{18}. Indeed, about 80% of all published patients with Brugada syndrome, or asymptomatic individuals with a Brugada ECG, are male\textsuperscript{143}. The basis for this sex-related distinction are still not completely elucidated.
Different explanation to gender-based prevalence is provided by repolarization hypothesis or by depolarization one. The former involved the prominent $I_{a0}$ expression in males$^{18}$ and the consequent accentuated AP notch and facilitation to loss of the AP dome; whereas the latter ascribed this difference to the lower expression of $I_{CaL}$ which would lead to conduction delay in the right ventricular outflow tract. To justify the higher prevalence of the syndrome in males, a role of hormones, especially testosterone, has been also proposed$^{144}$ and supported by some reported effects on various ionic currents$^{145,146}$. The hypothesis of an involvement of sex hormones is also supported by the apparent absence of gender-based differences before 16 years of age$^{147}$.

**Risk stratification**

A great deal of focus and debate has centered around the issue of risk stratification of patients. It is generally accepted that Brugada syndrome patients presenting with aborted sudden death are at high risk for recurrence and that they should be protected by an implantable cardioverter defibrillator (ICD). There is also little argument that patients presenting with syncope, particularly those with a spontaneous Type 1 ECG, are at higher risk. By contrast, risk stratification of asymptomatic patients diagnosed with the disease has met with considerable debate$^{148-151}$. Several invasive and non-invasive parameters have been proposed for identification of patients at risk of sudden death, including the presence of spontaneous Type 1 ST-segment elevation, the characteristics of the S wave$^7$, the presence of late potentials$^{12}$, and inducibility of ventricular tachycardia/fibrillation
using programmed electrical stimulation (PES). All the major registry studies agree that Brugada syndrome patients at higher risk for the development of subsequent events are those presenting with a spontaneous Type 1 (diagnostic) ST-segment elevation or Brugada ECG and/or those with a previous arrhythmic event\textsuperscript{149}.

The registries also agree that PES inducibility is greatest among patients with previous ventricular tachycardia/fibrillation or syncope, moreover approximately one-third of asymptomatic patients are inducible. Nevertheless, although the results of the divergent groups are gradually coming together, a consensus on the positive predictive value of the procedure has been not yet reached. Some studies failed to reveal an association between inducibility of ventricular tachycardia/fibrillation in asymptomatic patients and higher risk\textsuperscript{149;152}. On the other hand, it has been reported that the risk for developing ventricular tachycardia/fibrillation is much greater in patients who were inducible during PES, independently of presence of Type 1 ST-segment elevation and/or symptomatology\textsuperscript{15}. These discrepancies may be due to differences in patient characteristics and the use of multiple testing centers with non-standardized or non-comparable stimulation protocols\textsuperscript{153}. Some studies on both humans and animal models suggested that PES applied to the epicardium may provide a more accurate assessment of risk than the current approach in which stimuli are applied to the endocardial surface\textsuperscript{14;154}.

Transmural dispersion of repolarization (TDR) within the ventricular myocardium has been suggested to underlie arrhythmogenesis in a number of syndromes, including Brugada, short- and long-QT syndromes\textsuperscript{155}. Thus, the time interval between
peak and end of the T wave, reflecting transmural dispersion \textsuperscript{156-158}, has been proposed to be helpful in forecasting risk for the development of life-threatening arrhythmias \textsuperscript{156;158-161}. Supports to this idea have been provided in many studies on several pathophysiological conditions \textsuperscript{156;158-161}, including Brugada syndrome \textsuperscript{11;163}, thus suggesting that these parameters may be useful in risk stratification of patients.

As discussed above (“Modulating factors of Brugada syndrome”), Brugada syndrome prevalence is largely higher in males \textsuperscript{18}. The actual mechanism underling this phenomenon is still matter of debate, nevertheless it is widely accepted that male population is at higher risk than female one.

Race-related differences in Brugada syndrome prevalence are largely accepted (see also “Epidemiology”). In addition to food (see also “Modulating factors of Brugada syndrome”), it has been proposed a genetic base to explain endemic presence of Brugada syndrome in Asian \textsuperscript{164}. A reduction of SCN5A expression through a lower activity of its promoter has been observed as a consequence of a haplotype variant consisting of 6 polymorphisms in near-complete linkage disequilibrium. This haplotype occurred at an allele frequency of 22% in Asian subjects and was absent in whites and blacks. The results of this study demonstrate that sodium channel transcription in the human heart may vary considerably among individuals and races, suggesting that some ethnic group could be associated with higher risk of arrhythmias.

The ethnic-specific frequency of many SCN5A polymorphisms (both common and rare) has been investigated because some of them are suspected to modulate sodium channel expression and/or function,
although the mechanisms of these modulations are still extremely uncertain\textsuperscript{23,165}. Thus, the study of the role of polymorphisms in increasing susceptibility to arrhythmias would be of interest to develop a genetic background-based risk stratification.

The role of the common Na\textsubscript{v}1.5 polymorphism H558R is still a matter of debate. A higher frequency of the H558R polymorphism has been observed in patients affected by atrial fibrillation\textsuperscript{166}, and in subjects with a long (non pathologic) QT interval\textsuperscript{167}. Similar results have been obtained analysing Brugada syndrome patients. This finding led some author to postulate a negative role of H558R interpreting its presence as a risk factor\textsuperscript{168}. By contrary, the observation that the higher frequency was restricted to SCN5A mutation-based patients and the analysis of some ECG parameters in this population, suggested that H558R could be a protective factor, maintained by positive selection in a high risk population\textsuperscript{169}. This point of view is supported by some functional studies carried out on heterologous expression systems, which demonstrate a positive effects of rescuing gating and folding/trafficking defects induced by various mutations have been described\textsuperscript{170-172}. Nevertheless, a reduced conductance in a constitutive sodium channel splicing variant due to H558R presence was also reported\textsuperscript{173}. Although the effects of H558R interaction with different mutations are probably unpredictable, the observation that a single genetic variant may compensate diverse abnormalities, caused by different mutations, is intriguing and the unknown underlying mechanism, which seems to be a gain-of-function, deserves to be investigated.
Diagnostic test, drugs and treatment of Brugada syndrome

Given that the ECG pattern of patients with Brugada syndrome varies over time and even can be temporarily normal, the use of drug challenge tests has grown in recent years. Sodium channel blockers are the most often used drugs, mainly because they are effective, easily available, and have rapid activity. Brugada syndrome is confirmed if, after testing, a Type 1 ECG pattern appears or is accentuated (Fig. 1.2). Although both ajmaline and flecainide challenge test are widely used, the former seems to be better. This clinical evidence are also supported by patch-clamp studies which verified that flecainide, in addition to blocking the sodium channel, decreases Ito, thus reducing its effectiveness as compared to ajmaline.

Due to the limited value of the standard electrocardiogram, even when facilitated by drug challenge, new strategies have been proposed to help clinicians in the diagnosis of Brugada syndrome. It has been demonstrated that positioning the right precordial leads in higher intercostal spaces (third and even second intercostal space) increases sensitivity in relation to the baseline electrocardiogram and after administration of sodium channel blockers. This strategy demonstrated to facilitate identification of patients at risk who would not have been otherwise identified.

Many other drugs have been reported to induce the Type 1 ECG pattern and/or arrhythmias in patients with Brugada Syndrome. Although the most appropriate treatment of the syndrome is still under discussion, avoidance of potentially proarrhythmic drugs and treatment of fever are generally accepted to be an important part
of prophylactic treatment. To this aim, a list of drugs interacting with Brugada syndrome and a guidance for their administration have been recently formulated\textsuperscript{138}. Drugs have been classified in four categories: 

\begin{itemize}
\item[a)] drugs to be avoided,
\item[b)] drugs preferably avoided,
\item[c)] potential antiarrhythmic drugs and
\item[d)] diagnostic drugs.
\end{itemize}

Both the former were suggested to be avoided; the third category contained drugs with therapeutic properties for Brugada syndrome patients (see below); in the latter, in addition to ajmaline and flecainide, pilsicainid and procainamide were identified as useful drugs for diagnostic challenge test.

An ICD is the only treatment with demonstrated efficacy in Brugada syndrome. The current indications for ICD follow the recommendations of the II International Consensus\textsuperscript{182}, where, in general, ICD implantation has been recommended for all patients who have already had symptoms and for asymptomatic patients in whom the EPS induces ventricular arrhythmias, especially if they present a spontaneous Type 1 ECG pattern. In the asymptomatic patients, without a family history of arrhythmias or sudden death and whose Type 1 ECG pattern is only documented after drug challenge test, periodic follow-up has been recommended without the need of an EPS for risk stratification\textsuperscript{182}. It has been shown that the rate of inappropriate shocks during an ICD therapy was considerable (20\% to 36\%\textsuperscript{183;184}). The leading causes of inappropriate therapy were reported to be, sinus tachycardia, supraventricular arrhythmias, T-wave oversensing and lead failure\textsuperscript{183;184}. Thus, and because the ICD is not universally applicable therapy, in recent years a special effort has been
dedicated to search for possible drug options for the treatment of Brugada syndrome.

With the aim of reducing the ion current imbalance during AP phase 1 and/or sustaining the AP dome, the strategies of pharmacologically reduce $I_o$ or increase $I_{CaL}$ have been proposed. Unfortunately many potentially useful drugs are not cardiac-specific, thus their administration is almost impossible. Nevertheless, it has been demonstrated that quinidine, an antiarrhythmic agent that blocks $I_o$, reduces the incidence of induced arrhythmias in patients with Brugada syndrome\textsuperscript{73}, and it has been used successfully in specific clinical situations, such as the treatment of arrhythmia storms\textsuperscript{110}. Furthermore, its usefulness has been demonstrated as adjunctive therapy to ICD in patients with multiple shocks\textsuperscript{74} or as a therapeutic alternative to ICD in children at risk of arrhythmias\textsuperscript{147}. In turn, betamimetic drugs, such as isoproterenol, that increase $I_{CaL}$, have been used with positive results\textsuperscript{185}. Finally, the administration of a phosphodiesterase III inhibitor (i.e. cilostazol) which decreases $I_o$ and increases $I_{CaL}$ has emerged as a promising therapy, although results are still inconsistent\textsuperscript{186}. 
The cardiac voltage-gated sodium channel

Structure

The main physiological role of sodium current is to mediate the impulse propagation in excitable tissues. Indeed, during an action potential, sodium channels first activate, allowing the sodium ion flux (i.e. sodium current) which drives the upstroke, and then inactivate, facilitating repolarization to the resting potential mediated by outward currents. The channel purified from mammalian brain consists of the large, pore-forming α-subunit (more than 250 kDa) associated with smaller modulatory β-subunits (30 to 40 kDa) (Fig. 1.7).

Although α-subunit is sufficient for conduction, interaction with the extracellular domain of β-subunit modulates voltage-dependency and kinetics, mainly resulting in a large increase of sodium current flowing through the channel\textsuperscript{187,188}. The α-subunit consists of four domains (D1-D4), each with six transmembrane α-helical segments (S1-S6), of which S4 bears several positive charges originating from arginine or lysine residues. The four domains wrap around a central pore such that the P-loops between S5 and S6 form part of the pore lining. Several isoforms of both α- and β-subunits are expressed in mammals. In the cardiac tissue SCN5A gene encodes for the largely most expressed α-subunit (Na\textsubscript{v}1.5), whereas the prevalent β-subunit is the β1, encoded by SCN1B gene.
Details of molecular mechanisms of many sodium channel functions are still not completely demonstrated, nevertheless some of the speculative or empirical models which were proposed, have gained further supports with time, thus reaching a widely acceptance.

**Selectivity**

Voltage clamp studies provided both the demonstration of selectivity of the channel for sodium ions and a model of the action of tetrodotoxin and saxitoxin as plugs of the selectivity filter, in the outer pore of sodium channels. Mutational analysis identified firstly a glutamate (at position 387) in the membrane-reentrant loop in domain I (between S5 and S6, P-loop) as a crucial residue for tetrodotoxin and
saxitoxin binding\textsuperscript{191}. Subsequent studies revealed a pair of important amino acid residues, mostly negatively charged, in analogous positions in all four domains (Fig. 1.7)\textsuperscript{192}. These amino acid residues were postulated to form outer and inner rings that serve as the receptor site for tetrodotoxin and saxitoxin and as the selectivity filter in the outer pore of sodium channels (Fig. 1.8A). This view derives strong support from the finding that selectivity of sodium and calcium channels can be inverted by exchanging the amino acid residues in the inner ring\textsuperscript{193}. Other mutations in this ring of four amino acid residues have been reported to have strong effects on selectivity for organic and inorganic monovalent cations, in agreement with the idea that they form the selectivity filter\textsuperscript{194;195}. The ability of ion channels to discriminate among monovalent cations is supposed to be based on the differences in dimensions of the ion itself and of its waters of hydration\textsuperscript{190}. Thus, on one hand, sodium channel allows the flowing of sodium ions because they are smaller than potassium ones; on the other, potassium channel pores are too small for the large waters of hydration of sodium ions. Once in the pore, sodium ions lose their waters of hydration and are weakly and transiently bound by the negative charged residues of the rings of the selectivity filters (Fig. 1.8B). The weakly nature of this electrostatic bond allows the electrochemical gradient to drive the flux of ions, thus generating the sodium current.
Activation

The voltage dependence of activation of the sodium channel derives from the outward movement of gating charges in response to changes in the membrane electric field. It has been demonstrated that about 12 electronic charges in the sodium channel protein move across the membrane electric field during activation. The S4 transmembrane segments contain repeated motifs of a positively charged (gating charges) amino acid residue followed by two hydrophobic residues, potentially creating a cylindrical α-helix with a spiral ribbon of positive charge around it. The negative internal transmembrane electrical field would exert a strong force on these positive charges arrayed across the plasma membrane, pulling them into the cell in a cocked position (Fig. 1.9A and 1.10B). It has been proposed that these positively charged amino acid residues may be
stabilized in the transmembrane environment by forming ion pairs with negatively charged residues in adjacent transmembrane segments\textsuperscript{200}. Depolarization of the membrane was proposed to release the S4 segments to move outward, initiating a conformational change that opens the pore (Fig. 1.9B, 1.10B and C). All the four S4 segments are required to move to make the channel conductive (open state) (Fig. 1.9B, 1.10C and D). The first empirically inferred hypothesis of the activation mechanism\textsuperscript{198} has been later on supported when channel sequence and predicted structure were described\textsuperscript{201}. The final confirmation and widely acceptance has been reached with some mutagenesis and covalent modification studies which demonstrated that cysteine residues, in place of positively charged residues of S4 segments, became progressively more accessible to reaction with extracellular reagents and less accessible to reaction with intracellular reagents as the membrane was depolarized\textsuperscript{202,203}.

**Figure 1.9.** Sodium channel activation mechanism. **Left,** hyperpolarized membrane potential maintain S4 segments in a cocked position; **Right,** depolarization induced S4 segments outward movement and consequent channel activation.\textsuperscript{196}
The conformational change course of channel, allowing the sodium current flowing within the cell, is graphically simplified in Fig. 1.10. Some aspects shown in the figure are discussed below.

**Figure 1.10.** Conformational change course. To simplify, only S4 segments of domain II and IV are represented. **Bold arrows** show the classical course of conformational changes; **open arrows** represent the close-state inactivation mechanism; **thin dashed arrow** shows the proposed mechanism for persistent current."

42
**Inactivation**

Sodium channels inactivate, becoming non-conductive, within a few milliseconds of opening. The main physiologic effect of the inactivation is the refractoriness of excitable tissues. Indeed, to allow the reopening of the channels it is necessary to remove inactivation. This process of recovery from inactivation takes place only with a few milliseconds of repolarization of the membrane\textsuperscript{198}.

Basing on its sensitivity to intracellular proteases, inactivation was thought to be mediated by an intracellular gate that binds to the intracellular mouth of the pore and was modeled as a ball tethered to the intracellular surface of the channel by a flexible chain\textsuperscript{197} (Fig. 1.10). Further antibody binding studies identified both the highly conserved intracellular loop connecting domains III and IV, responsible for inactivation, and its receptor site within the pore\textsuperscript{205;206}. Later on, these studies have been confirmed by the identification of a hydrophobic triad of residues (isoleucine, phenylalanine and methionine) with a key role for inactivation\textsuperscript{207}. Similar scanning mutagenesis experiments have revealed multiple amino acid residues that may form the inactivation gate receptor within and near the intracellular mouth of the pore\textsuperscript{208-213} (Fig. 1.7). These findings demonstrated the mechanism of sodium channel inactivation in which multiple peptide segments form a complex inactivation gate receptor into which the inactivation gate closes to occlude the inner pore (graphically represented in Fig. 1.10E and F).

Inactivation process was firstly viewed as voltage-dependent\textsuperscript{198}. Later works showed that inactivation gate does not have a voltage sensor, but it derives most of its voltage dependence from coupling to
the activation process\textsuperscript{214,215}, thus, inactivation occurrence depends on the availability of inactivation receptor site, consequent to S4 segments transmembrane movement (Fig. 1.10D and E).

Further studies on the sodium channel inactivation revealed some features which were not considered above. One of these properties is the close-state inactivation, actually the inactivation of the channel without its full activation\textsuperscript{216,217}. Taking together both studies on gating currents and channel structure\textsuperscript{204}, a model to account for close-state inactivation has been proposed\textsuperscript{204} (dashed arrow course in Fig. 1.10). The model suggested that opening the activation gate requires S4 segment movement in domains I-III, with partial activation of the S4 segment of domain IV. By contrast, close-state inactivation would require only S4 segment activation of domains III and IV, which are not sufficient to open the activation gate. Close-state inactivation takes place during slow depolarizations. Thus it would have its major physiological relevance during the passive electrotonic depolarization of membrane which occurs before action potential onset. The close-state inactivation model, provide also an explanation for the observed voltage dependency of recovery from inactivation, as a consequence of its relation with S4 segments of domain III and IV\textsuperscript{204}.

A different inactivating process has been also described and named slow inactivation. Slow inactivation take places during very long depolarizations (seconds), with strong differences among channel isoforms\textsuperscript{218}. It is a separate process that does not involve the linker segment between domain III and IV\textsuperscript{219}. A hypothesis to explain slow inactivation is that it results from a structural rearrangement of the
pore, even though mutational studies aimed to test this hypothesis provided controversial results. However, the involvement of conformational changes in other channel segments has been proposed. Thus, although it is accepted that slow inactivation might involve a significant conformational change, the actual mechanism that prevents ionic flow is still unknown.

An even slower process termed ultra-slow inactivation has been also observed. Although ultra-slow inactivation is also distinct from fast inactivation, it has been shown to be inhibited by binding of the fast inactivation particle, possibly because of allosteric modulation. This finding demonstrated that there are interactions among the different inactivation events.

**Persistent sodium current**

Even during sustained depolarizations, a very small portion of sodium current can be recorded. This component of sodium current, with very slow or negligible inactivation has been named persistent (or late) sodium current, by contrast with the transient component which occurs in the very first milliseconds of depolarization. Persistent sodium current results from channel reopening during sustained depolarization by two different modes, burst openings and scattered late openings (Fig. 1.11). The burst opening mode undergoes slow but complete voltage-dependent inactivation and quickly deactivates upon repolarization. On the other hand, scattered late openings inactivate very slowly and may include a non-inactivating component, which supports, in terms of macroscopic current, a truly steady-state or “background” sodium current. These behaviors were interpreted as a sort of instability of the inactivated state of the
channel\textsuperscript{228}, moreover, the sustained nature of persistent sodium current is supposedly due to direct transitions between the inactivated and open states of the channel\textsuperscript{228} (Fig. 1.10, dashed arrow from E to D). Sodium current persistent component produced by the cardiac channel isoform is usually smaller than 1\% (0.2\% to 0.5\%,\textsuperscript{35,41}) of the transient one. Nevertheless, since it flows during phase 2 of the action potential, where net transmembrane current is extremely small, it plays a crucial role in maintaining the plateau phase and in determining the action potential duration\textsuperscript{229}.

Figure 1.11. Persistent sodium current. Single channel recordings showing the scattered late (A) and the burst (B) component of persistent sodium current.\textsuperscript{228}
**Sodium current equation**

Hodgkin and Huxley in 1952 quantitatively described sodium current and provided an empirical mathematical model to account for its non-ohmic features. They postulated the presence of four voltage-dependent processes; three of them led sequentially to the channel activation whereas the fourth to its inactivation. At the end of their work they implemented the Ohm equation \( I = G \cdot \Delta V \) as following:

\[
I_{Na} = G_{Na} \cdot m^3 \cdot h \cdot (E - E_{rev})
\]

where \( I_{Na} \) is the sodium current, \( G_{Na} \) sodium channel conductance, \( m^3 \) account for the three activation processes, \( h \) account for the inactivation one, \( E \) is the actual membrane potential and \( E_{rev} \) is the reversal potential for the ion (thus \( E - E_{rev} \) represents the driving force). The \( m \) and \( h \) factors change between 0 to 1, as a function of membrane voltage and time, in an opposite way. This original model could be perfected, since it considers activation and inactivation processes as fully independent and not couplet each other; moreover, it takes account only of three identical activation processes in spite of the four S4 segments, differentially charged and thus differentially dependent from membrane voltage; finally, it views \( I_{Na} \) in every moment as a function which merely depends on membrane potential (voltage-dependency) and time (kinetic properties), with no regard for the state of each molecular process in the former moment during dynamic voltage changes. The latter required a very elaborate and completely different modeling (i.e. markovian model).
Nevertheless, the Hodgkin-Huxley model easily account for the large majority of voltage- and time-dependent properties of sodium current; moreover, every further feature (e.g. slow inactivation or persistent current) which would be considered requires only simple implementations. For these reasons this model is still widely used.
Scope of the thesis

This work is aimed to electrophysiologically characterize the effects of the mutation S216L in the α-subunit of the cardiac sodium channel and how the common polymorphism H558R modulates these effects, in order to explain the Brugada syndrome phenotype of a proband carrying this genotype.

Moreover, since many times the physiological role of classical steady-state voltage-clamp findings remains uncertain, this work has carried out the first quantitative dynamic voltage-clamp analysis applied to this kind of study, in order to investigate the actual relevance of the mutation effects in the cellular electrophysiological activity.
Reference List of Chapter 1


42. Rivolta I, Abriel H, Tateyama M, Liu H, Memmi M, Vardas P, Napolitano C, Priori SG, Kass RS. Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium...


segment variations and reverse changes in left precordial leads. 


93. Pham TV, Robinson RB, Danilo P, Jr., Rosen MR. Effects of gonadal steroids on gender-related differences in transmural


159. Emori T, Antzelevitch C. Cellular basis for complex T waves and arrhythmic activity following combined I(Kr) and I(Ks) block. *J Cardiovasc Electrophysiol*. 2001;12:1369-1378.


221. Struyk AF, Cannon SC. Slow inactivation does not block the aqueous accessibility to the outer pore of voltage-gated Na channels. *J Gen Physiol.* 2002;120:509-516.


Chapter 2: A Brugada Syndrome mutation (S216L) and its modulation by H558R polymorphism: standard and dynamic characterization.

Stefano Marangoni, Chiara Di Resta, Lucio Barile, Marcella Rocchetti, Riccardo Rizzetto, Elena Sommariva, Carlo Pappone, Maurizio Ferrari, Sara Benedetti and Antonio Zaza.

*equally contributed to the work

Cardiovascular Research.

Submitted for revision.
Abstract

Aim: The Na\textsuperscript{+} channel mutation (p.S216L), previously associated to an LQT3 phenotype, and a common polymorphism (p.H558R) were detected in a patient with an intermittent Brugada Syndrome (BS) ECG pattern. The study aimed to assess p.S216L electrical phenotype, its modulation by p.H558R and to identify abnormalities compatible with a mixed BS-LQT3 phenotype. **Methods and results:** the mutation was expressed alone (S216L channels), or in combination with the polymorphism (S216L-H558R channels), in a mammalian cell line (TSA201). Functional analysis included standard voltage-clamp and dynamic clamp with endo- and epicardial action-potential waveforms. Expression of S216L channels was associated with a 60% reduction in maximum Na\textsuperscript{+} current (I\textsubscript{Na}) density, attributable to protein misfolding (rescued by mexiletine pretreatment), and moderate slowing of inactivation. The persistent component of I\textsubscript{Na} (I\textsubscript{Na,L}) was unchanged. Under dynamic conditions, mutant I\textsubscript{Na} displayed a significant "resurgent" component during late repolarization. I\textsubscript{Na} density partially recovered in S216L-H558R channels, but I\textsubscript{Na} inactivation and its recovery were further delayed. This was associated with increased I\textsubscript{Na} density during endocardial (but not epicardial) repolarization and abolition of the resurgent component. **Conclusions:** the BS pattern of p.S216L might result from a decrease in I\textsubscript{Na} density, which masked gating abnormalities that might otherwise result in a LQT phenotype. The p.H558R polymorphism decreased p.S216L expressivity, partly by lessening p.S216L effects and partly through the induction of further gating abnormalities suitable to blunt p.S216L effects during repolarization.
Introduction

Brugada syndrome (BS) is an inherited autosomal dominant cardiac channelopathy, firstly described in 1992 and characterized by an incomplete penetrance1. BS is characterized by cardiogenic syncope in otherwise healthy subjects and a typical electrocardiographic (ECG) pattern with ST-segment elevation in the right precordial leads (V1-V3) and right bundle branch block2. In 18-30 % of BS patients, the clinical phenotype is associated with mutations in the SCN5A gene, encoding the α subunit of the voltage dependent cardiac sodium channel (Na,1.5)3. Also mutations to many other genes have been related to BS4-9. In terms of arrhythmogenic mechanisms, BS was initially interpreted as a repolarization disorder10; later on, mechanisms based on an impulse propagation disorder were also proposed11:12. Moreover, changes in myocardial structure, which may provide a pathological substrate to functional abnormalities, are present in many BS patients13. Such a multiplicity of interpretations suggests that BS may be a complex disease, whose pathogenesis is still incompletely understood.

The p.S216L mutation is located in domain I of Na,1.5 channel on the extracellular loop connecting the S3-S4 transmembrane spans. This mutation, detected post mortem in a case of sudden infant death syndrome and expressed in TSA201 cells14, was found to enhanced the persistent component of INa (INaL). Accordingly, p.S216L was tentatively identified as a mutation prolonging repolarization by gain of function of Na+ channels (LQT3)14.
The SCN5A polymorphism p.H558R has been found to segregate differentially in patients subgroups, in relation to the phenotypic expressivity of several coexisting arrhythmogenic mutations\textsuperscript{15-19}, including those with a BS phenotype\textsuperscript{20,21}. Accordingly, this polymorphism is suspected to modulate the expressivity of arrhythmogenic genotypes.

The present work reports of a BS case carrying the p.S216L mutation and the p.H558R polymorphism. Mutant Na\textsuperscript{+} channel function, and its modulation by the p.H558R polymorphism, were evaluated by expression in TSA201 cells in the attempt to reconcile its BS phenotype with the LQT3 one previously reported for the same mutant\textsuperscript{14}. In keeping with the view that standard voltage-clamp protocols may overlook the functional consequences of subtle gating abnormalities\textsuperscript{22}, the analysis also included dynamic voltage-clamp experiments. In the following presentation, constructs containing the p.S216L mutation alone, or in combination with the p.H558R polymorphism, are referred to as "S216L channels" and "S216L-H558R channels", respectively.
Methods

Clinical and genetic characterization

The proband and its relatives underwent routine cardiological examination, including standard 12-leads ECG, 24 hours Holter monitoring and echocardiogram. Provocative flecainide test and programmed electrical stimulation were performed in SCN5A mutation carriers as detailed in Supplement.

Written informed consent for genetic analysis approved by our Institutional Health Department was signed from all patients. According to national guidelines, approval from the local Ethics Committee is not necessary for diagnostic testing. The investigation conformed with the principles outlined in the Declaration of Helsinki. Genomic DNA was extracted from peripheral blood and SCN5A coding sequence was analysed by DHPLC and direct sequencing as detailed in Supplement.

Site-directed mutagenesis and expression system

SCN5A constructs used in functional analysis were obtained by site-directed mutagenesis using the QuickChange Kit XL (Stratagene) on the full-length human hH1 cDNA (ref.seq. M77235)23, amplified from pSP64T-hH1 plasmid (kindly provided by A.L. George Jr., Vanderbilt University, Nashville, TN) and cloned into the expression vector pcDNA3.1 (Invitrogen). The mutation p.S216L (c.647C>T) was introduced alone and in combination with the p.H558R
polymorphism (c.1673A>G), to obtain p.S216L and p.S216L-p.H558R constructs respectively. All constructs were sequenced to verify the presence of the mutations and rule out spurious substitutions.

TSA201 cells were transfected with Lipofectamine 2000 (Invitrogen) according to manufacturer instructions. The following constructs were co-transfected in equal amounts (0.5 µg/ml): 1) a bicistronic plasmid encoding for green fluorescent protein and the human β1 subunit (pCGI-IRES-hβ1, kindly provided by J.R. Balser, Vanderbilt University, Nashville, TN); 2) wild-type (WT), or p.S216L or p.S216L-p.H558R plasmids. In order to increase I_{Na} density, in dynamic clamp experiments the amount of transfected plasmid was doubled (1 µg/ml) and incubation was maintained overnight.

**Functional characterization**

Whole-cell patch-clamp experiments were carried out 48 hours after transfection on green fluorescent cells exhibiting peak I_{Na} larger than 1.5 nA, to minimize potential contamination by endogenous currents^{24}. Pipettes solution contained (in mmol/L): 10 NaF, 110 CsF, 20 CsCl, 2 EGTA and 10 HEPES (pH 7.35 with CsOH); osmolarity was adjusted with sucrose. Pipette resistance was 0.8-1.4 MΩ. Bath solution contained (in mmol/L): 145 NaCl, 4 KCl, 1.8 CaCl_{2}, 1 MgCl_{2}, 10 HEPES and 10 glucose (pH 7.35 with NaOH). Cells were superfused by a manifold allowing fast solution switch. Temperature, measured at the manifold tip and maintained constant by a
thermostatic circuit, was 26°C in standard voltage-clamp experiments and 37 °C in dynamic ones. Cell membrane capacitance and series resistance were compensated by 85% to 95%; the estimated voltage error was <3 mV in all cases. In standard voltage-clamp experiments squared voltage pulses (steps) were applied at intervals of 5 sec according to protocols specific for the measured parameter, as shown in the relevant figures. $I_{\text{NaL}}$ was identified, by digital subtraction, as the current sensitive to tetrodotoxin (TTX, 30 µmol/L). In dynamic voltage-clamp experiments membrane potential was driven at a steady cycle length of 1 s by human endocardial or epicardial action-potential waveforms (EndoAP and EpiAP respectively), generated by a numerical model of human cardiac action potential$^{25}$. $I_{\text{Na}}$ was identified as the TTX-sensitive current. For normalization purposes, in each cell, dynamic voltage-clamp was preceded by evaluation of maximal $I_{\text{Na}}$ density ($I_{\text{max}}$) by a standard voltage protocol.

To assess whether the changes in $I_{\text{Na}}$ were due to protein trafficking/folding abnormalities, immediately after transfection cells were incubated with mexiletine (400 µmol/L), a Na$^+$ channel blocker previously shown to rescue the phenotype of trafficking-deficient Na$^+$ channels$^{26}$. Mexiletine was washed out 30 min before recordings.

**Data analysis**

Current density (pA/pF) was calculated by dividing current amplitude by membrane capacitance. Mean current during a given time-interval was calculated from current (I) recordings as
\[ \frac{\int t \cdot dt}{\Delta t} \]

where \( \Delta t \) is the integration interval.

Standard voltage-clamp recordings were analyzed as usual (see on-line supplement), by a dedicated software (Axon pCLAMP 8.0); \( I_{NaL} \) was measured as the TTX-sensitive current between 190 and 200 ms after pulse onset. In dynamic voltage-clamp experiments TTX-sensitive current was expressed in terms of absolute density \( (I_{Na}) \) and after normalization to \( I_{\text{max}} \) \( (I_{Na} = I_{Na} / I_{\text{max}}) \). Normalization aimed to evaluate the functional impact of changes in gating kinetics after removing the effect of changes in absolute current density. \( I_{Na} \) and \( I_{Na} \) were measured during 4 action potential (AP) phases: the AP upstroke \( (I_{NaP_0}) \), the AP notch \( (I_{NaP_1}) \), phase 2 (between AP dome and APD\(_{50}\), \( I_{NaP_2} \)), during phase 3 (between APD\(_{50}\) and APD\(_{90}\), \( I_{NaP_3} \)) (see Fig. 2.4 and 2.5). Whereas \( I_{NaP_0} \) was measured as its peak value, in the other phases \( I_{Na} \) was quantified by its mean value; in addition, time to peak (TTP) was measured for \( I_{NaP_0} \).

**Statistical analysis**

Differences between means were compared by the unpaired Student t test or ANOVA as appropriate. In text and figures data are presented as mean±SEM; statistical significance was defined as \( p<0.05 \) (NS, not significant).
Results

Case report: clinical and genetic profile

A Caucasian 10-years old male (proband) was referred to the arrhythmology unit for palpitations (at rest, more frequent after meals); his clinical history did not include syncope or other symptoms suggesting hemodynamically significant arrhythmias. ECG at admission showed sinus rhythm at 75 bpm, PR 160 ms, QRS 93ms, right bundle branch block with ST segment elevation of 2 mm in lead V1 and 4.5 mm in lead V2 with negative T-waves in leads V1 and V2, QTc 460 ms. Proband's ECG abnormalities are compatible with the Type 1 BS pattern (Fig. 2.1A). During hospitalization, the BS pattern proved to be intermittent, the ECG periodically reversing to normality without identifiable reasons. Echocardiography showed absence of structural cardiac disease. At the time of programmed electrical stimulation the patient was displaying Type 1 BS pattern. Ventricular fibrillation could not be induced with up to 3 extrastimuli delivered to the right ventricular apex and outflow tract. Proband's mother (age 37 yrs) was healthy and had an entirely normal ECG (sinus rate 62 bpm, PR 138 ms, QRS 93 ms, QTc 430 ms, Fig. 2.1A); she underwent a provocative test with flecainide, which was negative. Proband's father (age 39 yrs) was also healthy and had a normal ECG. Family history was negative for events that could be related to arrhythmias.

Analysis of the coding region of proband’s SCN5A gene, comprehensive of intron-exon boundaries, identified a heterozygous missense mutation in exon 6. This consisted of a c.647C>T nucleotide
variation (Fig. 2.1B), leading to the replacement of Serine (S) to Leucine (L) at protein residue 216 (p.S216L). Sequence analysis also revealed the presence of the common polymorphism p.H558R in SCN5A exon 12, involving a substitution of histidine (H) with arginine (R) at position 558 in the intracellular loop connecting domains I and II of the channel protein. The reported frequency of this variant in the general population is between 19% and 24%\textsuperscript{27}. Genetic screening of the family revealed that proband’s mother was also a carrier of both the p.S216L mutation and the p.H558R polymorphism.

Figure 2.1. ECG phenotype and genotype. A, Family pedigree and ECG tracings of the proband (arrow) and of his mother. B, Electropherograms of SCN5A gene sequence (WT at left); the arrow indicates the c.647C>T substitution leading to the p.S216L mutation.
Functional characterization

To evaluate the electrophysiological consequences of the p.S216L mutation alone, and associated with the p.H558R polymorphism, three TSA201 cells groups were transfected with WT, S216L and S216L-H558R constructs respectively. In the following description, the functional phenotype of mutant channels is expressed relative to that of WT ones.

Standard voltage-clamp analysis

The first set of experiments was devoted to traditional voltage-clamp analysis, whose results are summarized in Table 1. Peak current/voltage (I/V) relationships of S216L channels showed a decrease of I_{Na} density at all membrane potentials to approximately 40% of the WT value. The reduction of I_{Na} density was partially reversed (to approx 60% of WT) in S216L-H558R channels (Fig. 2.2A and B). Density of the persistent component (I_{NaL}) also differed between the three channel types. However, its changes largely mirrored the changes in total I_{Na}; therefore, the I_{NaL}/I_{Na} ratio was roughly similar for the three constructs (Fig. 2.2C); if anything, the I_{NaL}/I_{Na} ratio was slightly decrease in S216L channels. Therefore, the increase in I_{NaL} density previously described^{14}, was absent in both S216L and S216L-H558R channels.
Figure 2.2. Standard voltage-clamp analysis - Peak $I_{\text{Na}}$ I/V relations. A, Peak $I_{\text{Na}}$ I/V relations for WT, S216L and S216L-H558R channels. B, Representative $I_{\text{Na}}$ recordings for the three channels. C, Magnified recordings of TTX-sensitive current showing the persistent component ($I_{\text{NaL}}$) (statistical analysis is reported in Table 1). ($^*p<0.05$ vs WT)
The voltage-dependency of steady-state activation (Fig. 2.3A) was normal in S216L channels, but it was slightly shallower in S216L-H558R channels (larger slope factor); no significant changes were observed in mid-activation potential ($V_{1/2}$). The voltage-dependency of steady-state availability was identical in the three channel constructs (Fig. 2.3B). The overlap between activation and availability curves, suitable to support $I_{Na}$ "window" current, was unchanged in S216L channels and slightly diminished in S216L-H558R ones.

Fast inactivation was slightly slower in S216L channels and only at very negative potentials. On the other hand, both inactivation components were significantly delayed in S216L-H558R channels over a wider range of potentials (negative to 0 mV) (Fig. 2.3C). The same pattern was observed for the recovery from inactivation, which was slowest in S216L-H558R channels, with S216L channels displaying intermediate kinetics (Fig. 2.3D).
Figure 2.3. Standard Voltage-clamp analysis - $I_{Na}$ gating voltage-dependency. A, Steady-state activation. B, Steady-state inactivation (availability). In panels A and B data points were fitted with Boltzmann functions (solid lines). C, Voltage-dependency of inactivation time constants. Lower and upper curve groups represent fast and slow time constants respectively for the three channel constructs. D, Time course of recovery from inactivation. Voltage protocols are shown in the inset of each panel. Statistical analysis is reported in Table 1. (*$p<0.05$ vs WT)
<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>S216L</th>
<th>S216L-H558R</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Voltage Dependence of</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Activation</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( V_{1/2} ) (mV)</td>
<td>-44 ± 2</td>
<td>-43 ± 1</td>
<td>-41 ± 1</td>
</tr>
<tr>
<td>( s ) (mV)</td>
<td>6.5 ± 0.7</td>
<td>7.2 ± 0.4</td>
<td>8.5 ± 0.2*#</td>
</tr>
<tr>
<td><strong>Voltage Dependence of</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Inactivation</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( V_{1/2} ) (mV)</td>
<td>-92 ± 2</td>
<td>-91 ± 1</td>
<td>-92 ± 1</td>
</tr>
<tr>
<td>( s ) (mV)</td>
<td>7.6 ± 0.6</td>
<td>7.8 ± 0.4</td>
<td>7.8 ± 0.3</td>
</tr>
<tr>
<td><strong>Recovery From Inactivation</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( \tau_i ) (ms)</td>
<td>4.8 ± 0.8</td>
<td>5.3 ± 0.8</td>
<td>6.4 ± 0.4*</td>
</tr>
<tr>
<td>( \tau_s ) (ms)</td>
<td>26 ± 4</td>
<td>28 ± 4</td>
<td>40 ± 4*</td>
</tr>
<tr>
<td>( A_d/A_s ) (ms)</td>
<td>6 ± 1</td>
<td>2.5 ± 0.6*</td>
<td>3.5 ± 0.5*</td>
</tr>
<tr>
<td><strong>Persistent Na(^+) Current</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( I_{NaL}/I_{Na} (%))</td>
<td>0.39 ± 0.08</td>
<td>0.25 ± 0.04</td>
<td>0.42 ± 0.07</td>
</tr>
</tbody>
</table>

*\( p<0.05 \) vs WT; \#\( p<0.05 \) vs S216L
**Dynamic clamp analysis**

This set of experiments aimed to evaluate the impact of the mutation on I\textsubscript{Na} expressed during actual endocardial and epicardial action potentials. In this setting, recordings could be performed at physiological temperature, an important factor in evaluating the effect of changes in gating kinetics. The average of individual records obtained in each experimental group are shown in figure 2.4 for absolute current density (I\textsubscript{Na}) and figure 2.5 for normalized current (I\textsubscript{Na}).

In EpiAP, peak I\textsubscript{Na} during the upstroke was minimal in S216L and intermediate in S216L-H558R channels (Fig. 2.4A); this difference was abolished by normalization (Fig. 2.5A) indicating its consistency with changes in I\textsubscript{max}. On the other hand, in EndoAP, peak I\textsubscript{Na} was similar for WT and mutant constructs (Fig. 2.4B); thus, when the normalized current was considered (Fig. 2.5B) the amplitude rank was actually inverted. For both action potential waveforms, TTP was larger in S216L and S216L-H558R channels than in WT ones (Table 2). It should be stressed that changes in TTP measured from individual cells, are not well represented by the average records shown in figures 2.4 and 2.5, whose time-course was slightly altered by the averaging procedure.

In EpiAP, during early repolarization I\textsubscript{Na} was minimal in S216L and intermediate in S216L-H558R channels (Fig. 2.4A); this difference was abolished by normalization (Fig. 2.5A) as expected from the differences in I\textsubscript{max}. This was not true in EndoAP, where the
$I_{Na}$ reduction observed for S216L channels was almost entirely rescued in S216L-H558R ones. The impact of changes in gating kinetics during repolarization are highlighted by the analysis of normalized currents ($I_{Na}$, Fig. 2.5). In both action potential waveforms, S216L $I_{Na}$ was similar to WT during early repolarization but, particularly in the EpiAP, it displayed a "resurgent" $I_{Na}$ during phase 3 (Fig. 2.5, quantified in Table 2 as $I_{Na}P_3/I_{Na}P_2$ ratio). In S216L-H558R channels, $I_{Na}$ was markedly enhanced during early repolarization of EndoAP, but not EpiAP. Independently of the waveform type, the resurgent component observed in S216L channels was completely suppressed in S216L-H558R ones (Fig. 2.5). This qualitative description is substantiated by the quantitative differences in $I_{Na}P_1$, $I_{Na}P_2$ and $I_{Na}P_3$ average values, reported in Table 2.
Figure 2.4. Dynamic clamp analysis – Absolute $I_{\text{Na}}$ density. Action potential waveforms (upper panel) and average recordings of absolute $I_{\text{Na}}$ (TTX-sensitive current) during the action potential upstroke (left) and repolarization (right). A and B, epicardial action potential. C and D, endocardial action potential. Dashed lines denote the four action potential phases ($P_0$-$P_3$) during which $I_{\text{Na}}$ was measured to obtain peak or mean values reported in Table 2.
Figure 2.5. Dynamic clamp analysis – Normalized $I_{Na}$ density. $I_{Na}$ was normalized to maximal $I_{Na}$ ($I_{max}$) obtained within the same cell from the peak $I_{Na}$ I/V relation (not shown). Panels and symbols as in figure 2.4.
Table 2. Dynamic clamp analysis

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>S216L</th>
<th>S216L-H558R</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Epicardial properties</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTP (ms)</td>
<td>0.29 ± 0.02</td>
<td>0.32 ± 0.02</td>
<td>0.36 ± 0.02*</td>
</tr>
<tr>
<td>Current Density (pA/pF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{Na,P0}$</td>
<td>-46 ± 9</td>
<td>-20 ± 4*</td>
<td>-26 ± 9</td>
</tr>
<tr>
<td>$I_{Na,P1}$</td>
<td>-0.8 ± 0.2</td>
<td>-0.28 ± 0.07</td>
<td>-0.38 ± 0.08</td>
</tr>
<tr>
<td>$I_{Na,P2}$</td>
<td>-0.5 ± 0.1</td>
<td>-0.11 ± 0.05*</td>
<td>-0.15 ± 0.04*</td>
</tr>
<tr>
<td>$I_{Na,P3}$</td>
<td>-0.5 ± 0.2</td>
<td>-0.3 ± 0.1</td>
<td>-0.10 ± 0.03</td>
</tr>
<tr>
<td>$I_{Na,P3}/I_{Na,P2}$</td>
<td>1.3 ± 0.8</td>
<td>1.8 ± 0.5</td>
<td>0.9 ± 0.2</td>
</tr>
<tr>
<td>Normalization to $I_{max}$ (%)</td>
<td>5 ± 1</td>
<td>8 ± 1</td>
<td>6 ± 1</td>
</tr>
<tr>
<td>$I_{Na,P0}$</td>
<td>0.08 ± 0.01</td>
<td>0.14 ± 0.03</td>
<td>0.13 ± 0.03</td>
</tr>
<tr>
<td>$I_{Na,P1}$</td>
<td>0.06 ± 0.02</td>
<td>0.09 ± 0.04</td>
<td>0.07 ± 0.02</td>
</tr>
<tr>
<td>$I_{Na,P2}$</td>
<td>0.034 ± 0.008</td>
<td>0.10 ± 0.03</td>
<td>0.024 ± 0.007#</td>
</tr>
<tr>
<td>$I_{Na,P3}/I_{Na,P2}$</td>
<td>0.6 ± 0.1</td>
<td>1.9 ± 0.5*</td>
<td>0.6 ± 0.2#</td>
</tr>
<tr>
<td>$n$</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td><strong>Endocardial properties</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTP (ms)</td>
<td>0.29 ± 0.03</td>
<td>0.35 ± 0.03</td>
<td>0.34 ± 0.01</td>
</tr>
<tr>
<td>Current Density (pA/pF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$I_{Na,P0}$</td>
<td>-33 ± 8</td>
<td>-35 ± 9</td>
<td>-25 ± 5</td>
</tr>
<tr>
<td>$I_{Na,P1}$</td>
<td>-0.42 ± 0.08</td>
<td>-0.38 ± 0.09</td>
<td>-0.5 ± 0.1</td>
</tr>
<tr>
<td>$I_{Na,P2}$</td>
<td>-0.27 ± 0.09</td>
<td>-0.14 ± 0.06</td>
<td>-0.29 ± 0.07</td>
</tr>
<tr>
<td>$I_{Na,P3}$</td>
<td>-0.15 ± 0.06</td>
<td>-0.3 ± 0.1</td>
<td>-0.14 ± 0.04</td>
</tr>
<tr>
<td>$I_{Na,P3}/I_{Na,P2}$</td>
<td>0.6 ± 0.2</td>
<td>1.5 ± 0.6</td>
<td>0.5 ± 0.1#</td>
</tr>
<tr>
<td>Normalization to $I_{max}$ (%)</td>
<td>3.4 ± 0.7</td>
<td>9 ± 2*</td>
<td>7 ± 2*</td>
</tr>
<tr>
<td>$I_{Na,P0}$</td>
<td>0.06 ± 0.01</td>
<td>0.08 ± 0.01</td>
<td>0.21 ± 0.08*</td>
</tr>
<tr>
<td>$I_{Na,P1}$</td>
<td>0.038 ± 0.009</td>
<td>0.030 ± 0.009</td>
<td>0.13 ± 0.04#</td>
</tr>
<tr>
<td>$I_{Na,P2}$</td>
<td>0.02 ± 0.003</td>
<td>0.06 ± 0.03</td>
<td>0.052 ± 0.007*</td>
</tr>
<tr>
<td>$I_{Na,P3}/I_{Na,P2}$</td>
<td>1.0 ± 0.4</td>
<td>1.2 ± 0.4</td>
<td>0.7 ± 0.2#</td>
</tr>
<tr>
<td>$n$</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

*p<0.05 vs WT; #p<0.05 vs S216L
**Rescue of channel expression**

This set of experiments tested the hypothesis that protein trafficking or folding abnormalities contributed to the changes in $I_{\text{Na}}$ density between the three constructs. $I_{\text{Na}}$ density was evaluated by measuring peak $I_{\text{Na}}$ I/V relations by the standard voltage-clamp protocol. Incubation with mexiletine did not change maximal $I_{\text{Na}}$ density in cells transfected with WT channels, but significantly increased it in both S216L and S216L-H558R transfected cells (Fig. 2.6), thus leading to almost complete rescue of mutation effects.

![Figure 2.6. Phenotype rescue by mexiletine. Statistics of peak $I_{\text{Na}}$ density for the three channel constructs in control cells (white bars) and in cells incubated after transfection with mexiletine 400 µmol/L (grey bars). $I_{\text{Na}}$ measurements were performed after mexiletine wash-out ($^{*}p<0.05$ vs control; $#p<0.05$ vs WT; $n \geq 7$).](image-url)
Discussion

The main effects of the p.S216L mutation, as detected by the standard voltage-clamp approach, included: 1) a substantial decrease in I_{Na} density, a phenotype rescued by incubation with mexiletine; 2) a moderate slowing of I_{Na} inactivation at negative potentials, which did not affect the I_{Na}/I_{NaL} ratio. Coexpression of the p.H558R polymorphism partially reversed the mutation's effects on I_{Na} density, but it delayed inactivation and its recovery. The I_{Na} "window" was unmodified by the p.S216L mutation alone and tended to be reduced by the p.S216L-p.H558R genotype.

Decreased I_{Na} density might result from a change in channel gating properties, or from a decrease in the number of functional channels expressed in the membrane. It has been reported that binding of mexiletine to trafficking-deficient mutant Na^{+} channels restores their membrane expression^{26}, probably through thermodynamic stabilization of the properly folded structure. Thus, the rescue of mutant I_{Na} by incubation with mexiletine, suggests misfolding of the mutant channel as the cause of reduced current density.

Mutation-induced changes in absolute I_{Na} during the action potential (dynamic voltage-clamp experiments) were dominated by the overall decrease in I_{Na} density. The latter was partially compensated by p.H558R coexpression in endocardial action potentials (Fig. 2.4B), but not in epicardial ones (Fig. 2.4A), thus suggesting that gating properties sensitive to action potential contour contributed to the rescuing effect of p.H558R. Compensation of
differences in absolute $I_{Na}$ density by normalization revealed further changes of functional significance in current profile (Fig. 2.5). Notably, these changes might have been overlooked by the standard voltage-clamp approach, which detected gating abnormalities of small magnitude and uncertain functional significance. The relationship between gating features measured with the standard voltage-clamp approach and dynamic $I_{Na}$ profiles deserves to be analyzed.

TTP during the action potential upstroke varied according to inactivation slowing measured by standard voltage-clamp (S216L and S216L-H588R>WT). When the contribution of changes in channel density was eliminated by normalization, peak upstroke current was similarly related to inactivation slowing (S216L and S216L-H588R>WT). Slower inactivation is expected to increase peak current amplitude and prolong TTP; therefore, differences in TTP and peak $I_{Na}P_0$ among the three genotypes might be mechanistically related to those in inactivation rate.

Independently of the action potential type, S216L $I_{Na}$ displayed a distinctive "resurgent" component during terminal repolarization, which was completely suppressed by p.H558R coexpression. If of sufficient magnitude this component would facilitate early afterpotentials, thus supporting an arrhythmogenic mechanism more commonly associated with LQTS than with BS. A resurgent current behavior during fast repolarization is generally explained as recovery of inactivation of a small proportion of channels and their immediate reactivation\textsuperscript{28}. Whereas none of the kinetic features detected by
standard voltage-clamp is apparently suitable to explain why this component was increased in S216L channels, a slower recovery from inactivation might account for its suppression in S216L-H558R ones.

The main peculiarity of S216L-H558R channels was an increase of $I_{Na}$ during early endocardial repolarization (Fig. 2.5B). Analysis of absolute $I_{Na}$ tracings shows that this change compensated the reduction in $I_{Na}$ density caused by the p.S216L mutation, potentially contributing to reduce its expressivity at endocardial level (Fig. 2.4B). When cells were clamped with the epicardial action potential instead, the increase in $I_{Na}$ was not observed. The two action potential waveforms mainly differ by the time course of membrane potential during early repolarization, which may thus account for the differential response to p.H558R coexpression. This observation highlights the sensitivity of the functional expression of gating abnormalities to membrane potential course and underscores the importance of dynamic analysis in assessing the function of mutant channels.

**Relationship with the ECG phenotype**

In its classical description, the BS ECG pattern consisted of a repolarization abnormality, with substantially preserved impulse propagation. The $I_{Na}$ abnormality found to be associated with BS and best suited to account for this pattern, was an acceleration of fast inactivation, without major changes in peak $I_{Na}$ density.$^{10,29}$
Nevertheless, the BS ECG pattern has also been found in association with mutations affecting mainly peak $I_{Na}$ density and interpreted by numerical simulations as a large delay in transmural propagation$^{11}$.

The p.S216L mutant was characterized by a significant reduction of $I_{Na}$ density and its gating features do not predict selective $I_{Na}$ reduction during early repolarization; thus, the observed p.S216L phenotype is more likely to cause BS through conduction slowing than by altering repolarization. The absence of overt conduction disturbance in proband's ECG (normal PQ and QRS intervals) might result from 1) partial recovery of peak $I_{Na}$ amplitude because of inactivation slowing and/or 2) partial rescue of $I_{Na}$ density and the additional gating modifications afforded by the p.H558R polymorphism. Furthermore, inconsistency or absence of ECG signs of conduction slowing could be a manifestation of the large functional redundancy of $I_{Na}$ expression. When the decrease in $I_{Na}$ density was compensated by normalization, S216L channels revealed the tendency to generate a significant resurgent component. This property suggests that, if $I_{Na}$ density were restored by recovery of channel trafficking, the p.S216L mutation might be associated to perturbations of terminal repolarization, an abnormality typical of long QT (LQT) phenotypes. Mixed BS-LQT3 phenotypes have been described for several SCN5A mutations$^{30-32}$; however, these mutations invariably caused enhancement of the persistent $I_{Na}$ component ($I_{NaL}$). The present findings suggest that gating abnormalities related to BS might also affect late repolarization, independently of $I_{NaL}$ enhancement.
Proband’s genotype included the p.H558R polymorphism which, in principle, might have contributed to the ECG abnormality. Our observations indicate that p.H558R coexpression may partially compensate the effect of the p.S216L mutation by simultaneously increasing $I_{Na}$ density and causing subtle changes in gating, which tend to offset mutation-induced $I_{Na}$ abnormalities under dynamic conditions. Thus, p.H558R coexpression may limit p.S216L expressivity, which was indeed mild in the proband (intermittent BS pattern) and null in his mother. The observation that p.H588R coexpression further delayed recovery from inactivation (Fig. 2.3D and Table 1), an apparent phenotype aggravation, might look at odd with this interpretation. However, under dynamic conditions delayed recovery might be responsible for eliminating the $I_{Na}$ resurgent component, a potentially arrhythmogenic feature of p.S216L.

Comparison with previous studies

The electrophysiological profile of the p.S216L mutation, as detected by standard voltage-clamp measurements, sharply differs from that previously reported. Whereas in the previous report the observation of a marked $I_{NaL}$ enhancement led to postulate a LQT3 phenotype, in the present experiments the mutation proportionally reduced $I_{NaL}$ and peak $I_{Na}$ densities, as expected by defective channel expression. This discrepancy could not be attributed to differences in the expression system, vectors and recording conditions, which were
similar between the two studies. Consistent with a lack of significant $I_{\text{Na}}$ enhancement, proband's QTc was normal in the present case; the ECG was unfortunately unavailable in the previous report, which concerned a case of sudden death in a newborn\(^{14}\). In the attempt to resolve the discrepancy, we postulated that the present experimental conditions might be somehow inadequate to disclose $I_{\text{Na}}$ enhancement. However, when tested in the same experimental setting, the LQT3 prototype mutation pK1505_Q1507del ($\Delta$KPQ), produced the expected $I_{\text{Na}}$ enhancement (supplementary results).

Previous studies have postulated a role of the p.H558R polymorphism in the modulation of the phenotype of several SCN5A arrhythmogenic mutations. The common observation of a higher p.H558R prevalence in SCN5A mutation carriers has been variably interpreted. Whereas some authors interpreted p.H558R as a risk factor\(^{18;20;21}\), others viewed it as a protective factor, maintained by positive selection in a high risk population\(^{19}\). The present findings are consistent with previous ones in which p.H558R expression was found to rescue gating and trafficking abnormalities induced by various mutations\(^{15-17}\). This supports the view that p.H558R polymorphism has been evolutionarily selected for its protective effect.

The observation that a single genetic variant (p.H558R) may compensate diverse gating abnormalities, caused by different mutations, is puzzling and the underlying mechanism is unknown. In the present case, the p.S216L mutation and p.H558R polymorphism affected the same allele, as in previous instances of rescue of gating
abnormalities\textsuperscript{15}. Rescue of channel trafficking, also observed in the present study, has been previously reported to occur also when mutation and polymorphism affected different alleles\textsuperscript{17}. Therefore, both cis and trans modulation mechanisms may be involved in the protective effect of p.H558R.

\textbf{Study limitations}

Under physiological conditions membrane current and potential mutually interact in a closed feed-back loop. Under dynamic clamp conditions changes in current cannot feed-back to determine potential course, which is fixed (open loop). Therefore, prediction of action potential changes (i.e. the electrical phenotype) from the mutation-induced changes in $I_{\text{Na}}$ is somewhat arbitrary. Nevertheless, this technique allows to analyze the actual $I_{\text{Na}}$ behavior during dynamic changes in membrane potential at physiological temperature. As neither of these conditions apply to standard Voltage-clamp, dynamic-clamp can help in disclosing features of mutant currents of potential importance in cardiac electrical activity. Also, caution should be used when translating data obtained from \textit{in vitro} functional studies to the clinical phenotype, since these do not take into account all possible differences in the genetic background. Moreover only $\alpha$- and $\beta_1$-subunits were expressed in TSA201 cells, whereas additional factors which could modulate $I_{\text{Na}}$ may be present in native myocytes\textsuperscript{33}.
Conclusions

The association between the p.S216L mutation and the BS phenotype may be primarily accounted for by a decrease in I_{Na} density, which leads to postulate the "conduction abnormality"\textsuperscript{34} as the most likely interpretative model. The decrease in I_{Na} density masks gating abnormalities, other than I_{NaL} enhancement, that might otherwise result in a LQT phenotype.

Coexpression of the p.H558R polymorphism is likely to decrease p.S216L expressivity: this occurs partly through reversal of p.S216L effects and partly because of the induction of further abnormalities suitable to blunt p.S216L effects during repolarization (dynamic conditions).

The same gating abnormalities may differentially affect the I_{Na} profile during epicardial and endocardial action potentials.

Funding: This work was supported by PRIN 2007 [to Dr. A. Zaza], and grants from Medtronic Italy [to Dr. M. Ferrari] and the Italian Istituto Superiore di Sanità [ISS-526D/55 to Dr. C. Pappone].

Acknowledgements: We thank Dr. Pasquale Vergara for help with clinical data collection and interpretation. We are indebted to Dr. A.L. George and Dr. J.R. Balser for pSP64T and hb/pirGFP constructs.

Conflict of Interest: None.
Supplement Material

Methods

Clinical and Genetic characterization

The proband and its relatives underwent routine cardiological examination, including standard 12-leads ECG, 24 hours Holter monitoring and echocardiogram. Provocative flecainide test and programmed electrical stimulation were performed in SCN5A mutation carriers. Programmed electrical stimulation was performed to evaluate sinus- and atrio-ventricular node function and atrial and ventricular inducibility by premature electrical stimulation. The latter included one to three extrastimuli at right ventricular apex and outflow tract, applied during pacing at cycle lengths of 500 and 400 ms. Patients were considered as "inducible" when presenting one the following: i. nonsustained but syncopal ventricular tachycardia; ii. sustained ventricular tachycardia (≥ 30 s or requiring electric interruption for hemodynamic instability); iii. ventricular fibrillation.

Written informed consent for genetic analysis approved by our Institutional Health Department was signed from all patients. According to national guidelines, approval from the local Ethics Committee is not necessary for diagnostic testing. The investigation conformed with the principles outlined in the Declaration of Helsinki. Genomic DNA was extracted from peripheral blood and SCN5A
coding sequence was analysed by Denaturing High Performance Liquid Chromatography and direct sequencing. Genomic DNA was extracted with the Maxwell®16 System (Promega) and all SCN5A-coding exons were amplified with primers in the intronic flanking region by polymerase chain reaction (PCR). Primers and PCR conditions are available on request. Mutation analysis has been performed using DHPLC (Wave system 4500 HT [Transgenomic]) and direct automated DNA sequencing with the ABI 3730 automatic DNA Sequencer (Applied Biosystems).

**Site-Directed Mutagenesis and expression system**

SCN5A constructs to be used in functional analysis were obtained by site-directed mutagenesis. The latter was performed by the QuickChange XL (Stratagene) kit on the full-length human hH1 cDNA (ref.seq. M77235)²³, amplified from pSP64T-hH1 plasmid (kindly provided by A.L. George Jr. Vanderbilt University, Nashville, TN) and cloned into the expression vector pcDNA3.1 (Invitrogen). The mutation p.S216L (c.647 C>T) was introduced alone and in combination with the p.H558R polymorphism (c.1673A>G), to obtain p.S216L and p.S216L+p.H558R constructs respectively. All constructs were sequenced to verify the presence of the mutations and rule out spurious substitutions.

The mammalian cell line TSA201 was transfected by using Lipofectamine 2000 (Invitrogen) in accordance with producer guidelines and incubated with the transfection medium for 8 hours.
The following constructs were co-transfected in equal amounts (0.5 µg/ml): 1) a bicistronic plasmid encoding for green fluorescent protein and the human β1 subunit (pCGI-IRE-hβ1); 2) wild-type (WT) or S216L or S216L-H558R plasmids. I$_{\text{Na}}$ amplitude during repolarization (dynamic clamp) was expected to approach the limit of measurement resolution. Thus, in these experiments the amount of transfected plasmid was doubled (1 µg/ml) and incubation was maintained overnight to increase current density. I$_{\text{Na}}$ recordings were performed 48 hours after transfection in all cases.

**Functional characterization**

Whole-cell patch-clamp experiments were carried out on green fluorescent cells exhibiting peak I$_{\text{Na}}$ larger than 1.5 nA, in order to minimize potential contamination by endogenous TTX-sensitive currents$^{24}$. Pipettes were filled with a solution containing (in mmol/L): 10 NaF, 110 CsF, 20 CsCl, 2 EGTA and 10 HEPES (pH 7.35 with CsOH); osmolarity was adjusted with sucrose. Pipette resistance ranged from 0.8 to 1.4 MΩ in Tyrode solution. Bath solution contained (in mmol/L): 145 NaCl, 4 KCl, 1.8 CaCl$_2$, 1 MgCl$_2$, 10 HEPES and 10 glucose (pH 7.35 with NaOH). Superfusion was applied through an electrically switched manifold, allowing fast solution changes; temperature was measured at the manifold tip and maintained constant by a thermostatic circuit.

Cell membrane capacitance and series resistance were compensated by 85% to 95%; the estimated voltage error was <3 mV.
in all cases. Current signals were acquired by a MultiClamp 700A amplifier (Axon Instruments) at 50 kHz, filtered at 4 kHz (Axon Digidata 1200) and analyzed with a dedicated software (pCLAMP 8.0).

Experiments were performed by standard voltage-clamp (voltage steps) and dynamic voltage-clamp (action-potential waveforms). In standard voltage-clamp experiments voltage steps were applied at intervals of 5 s (protocols were shown in figures), to improve voltage control and resolution of current time-course, these experiments were performed at 26°C. In dynamic voltage-clamp experiments membrane potential was driven at a steady cycle length of 1 s by human endocardial or epicardial action-potential waveforms (EndoAP and EpiAP respectively), generated in-silico at the same cycle length by a numerical model25. In order to approximate physiological channel gating rates, dynamic clamp experiments were performed at 37°C. For normalization purposes, in each cell, dynamic voltage-clamp was preceded by evaluation of maximal $I_{Na}$ density ($I_{max}$) by a standard voltage protocol. $I_{Na}$ during dynamic voltage-clamp and the sustained component of $I_{Na}$ ($I_{Na}$) in standard voltage-clamp protocols were identified by digital subtraction, as current sensitive to tetrodotoxin (TTX, 30 µmol/L).

To assess whether the changes in $I_{Na}$ were due to protein trafficking/folding abnormalities, $I_{Na}$ recordings were performed after incubation of transfected cells with mexiletine (400 µmol/L), added to culture medium immediately after transfection and washed out 30
minutes before recordings. Mexiletine is a Na\(^+\) channel blocker previously shown to rescue the phenotype of trafficking-deficient Na\(^+\) channels\(^{26}\).

**Data analysis**

Current density (pA/pF) was calculated by dividing current amplitude by membrane capacitance. Mean current during a given time-interval was calculated from current (I) recordings as

\[
\frac{\int I \cdot dt}{\Delta t}
\]

where \(\Delta t\) is the integration interval.

Standard voltage-clamp analysis addressed the transient (I\(_{NaT}\)) and late (I\(_{NaL}\)) components of I\(_{Na}\) separately. I\(_{NaT}\) analysis included: 1) peak I\(_{Na}\) (I\(_{NaT}\)) current/voltage (I/V) relationship (holding potential -120 mV); maximal conductance (G\(_{max}\)) was estimated from its linear portion; 2) voltage dependency of activation and inactivation (availability); mid-potentials (V\(_{1/2}\)) and slope factor (s in mV) were estimated by Boltzmann fitting of normalized (I/I\(_{max}\)) curves; 3) kinetics of inactivation and recovery from inactivation, measured by bi-exponential fitting of current decay and restitution curves of peak I\(_{Na}\) respectively. In both cases kinetics were quantified by time constants (\(\tau_f\) and \(\tau_s\)) and their respective weights (A\(_f\) and A\(_s\)). I\(_{NaL}\) was measured as the mean TTX-sensitive current between 190 and 200 ms of a depolarization pulse to −10 mV (holding potential −120 mV).
In dynamic voltage-clamp experiments TTX-sensitive current was expressed in terms of absolute density ($I_{Na}$) and after normalization to $I_{max}$ ($I_{Na} = I_{Na} / I_{max}$). Normalization aimed to evaluate the functional impact of changes in gating kinetics after removing the effect of changes in absolute current density. $I_{Na}$ and $I_{Na}$ were measured during 4 AP phases: the AP upstroke ($I_{Na}P_0$), the AP notch ($I_{Na}P_1$), phase 2 (between AP dome and APD$_{50}$, $I_{Na}P_2$), during phase 3 (between APD$_{50}$ and APD$_{90}$, $I_{Na}P_3$) (see figures 2.4 and 2.5). Whereas $I_{Na}P_0$ was measured as its peak value, in the other phases $I_{Na}$ was quantified by its mean value; in addition, time to peak (TTP) was measured for $I_{Na}P_0$.

Statistical analysis

Differences between means were compared by the unpaired Student t test or ANOVA as appropriate. In text and figures data are presented as mean±SEM; statistical significance was defined as $p < 0.05$ (NS, not significant).
Supplementary figure 2.I

To assess the ability of the present experimental conditions to disclose persistent sodium current, control recordings were carried with a p.K1505_Q1507del (ΔKPQ) mutated channel. Such a mutation has been widely associated with an enhancement of persistent current\textsuperscript{35-37}. ΔKPQ construct has been kindly provided by A.L. George Jr. (Vanderbilt University, Nashville, TN).
A. Representative current traces of tetrodotoxin-sensitive persistent sodium current flowing through WT, S216L, S216L-H558R and the positive control ΔKPQ channels. Voltage protocol is depicted in the inset. B, Barr graph representing mean±SE values of persistent/transient sodium current ratio (*p < 0.05 vs WT; n≥7).

Results obtained demonstrated the ability of preset experimental conditions to detect, if present, an enhancement of persistent component of the sodium current.
Reference List of Chapter 2


18. Chen JZ, Xie XD, Wang XX, Tao M, Shang YP, Guo XG. Single nucleotide polymorphisms of the SCN5A gene in Han Chinese and


32. Grant AO, Carboni MP, Neplioueva V, Starmer CF, Memmi M, Napolitano C, Priori S. Long QT syndrome, Brugada syndrome, and


Chapter 3: Conclusion

Summary

Introduction

Brugada syndrome is an arrhythmogenic pathology, leading to sudden death, mainly associated with a loss-of-function of the cardiac sodium channel. Although some pharmacological treatments have been proposed\(^1\), a non-invasive, effective treatment of the syndrome, as well as a widely accepted risk stratification, is still lacking\(^2,3\). This occurs partially because of the large variability of mechanisms which potentially underlie the syndrome onset\(^4\). Thus, although it implies to spend many time and money, the only present way to establish the actual pathological mechanism of a proband is the \textit{in vitro} electrophysiological characterization. Moreover, this kind of analysis is useful to enrich the general insight, in order to provide new ideas and knowledge for the syndrome treatment.

S216L mutation has been previously described \textit{post mortem} in a case of sudden death, without clinical features available, and associated with a sodium channel gain-of-function (i.e. an abnormally large persistent sodium current, \(I_{NaL}\)) and consequently to the long-QT syndrome\(^5\). By contrast, the same mutation, in addition with the H558R polymorphism, has been observed in the case of a boy with clinically overt Brugada syndrome (spontaneously intermittent Type 1 pattern). To the aim of clarify this discrepancy and to elucidate the actual mechanism underling the syndrome in the proband, the present
study investigated the electrophysiologic effects of the S216L mutation and their modulation by the presence on the same allele (in cis) of the H558R polymorphism.

**Original results**

Standard voltage-clamp characterization of mammalian cells (TSA201) transfected with the S216L mutant sodium channel (S216L channel) revealed a huge reduction of sodium current (I_{Na}) as compared to wild-type one (WT channel). This reduction seems to be partially rescued by the presence of the polymorphism H558R (S216L-H558R channel). To explain the mechanism underling this conductance reduction, a comparison among gating properties of the three channels have been carried out, finding no differences in neither activation nor inactivation voltage-dependency (except for a slight reduction of the slope of the S216L-H558R channel activation curve). Even the persistent component of I_{Na} was unchanged among the three channel forms. The latter result strongly contrasted previous data\(^5\), nevertheless, positive control investigation confirmed its accuracy. By contrast with I_{Na} reduction, abnormalities in inactivation rate seem to account for a gain-of-function phenotype, as it is slower in S216L channel in comparison with WT one at negative membrane potentials and H558R presence exacerbates this feature.

Taken together, even considering the finding of a slight delay in recovery from inactivation in S216L and S216L-H558R channel, these results seem not to be suitable to account for the observed conductance reduction. Therefore, to explain the I_{Na} reduction, folding/trafficking defects have been hypothesized and demonstrated...
by pretreatment with mexiletine, proposed to thermodynamically stabilize the properly folded structure\textsuperscript{6}, and the consequent complete rescue of $I_{Na}$.

Although $I_{Na}$ reduction was likely the main cause of proband’s phenotype while gating differences (especially between S216L and S216L-H558R channels) were negligible under standard square-wave voltage-clamp conditions, their actual relevance under physiological conditions was extremely uncertain, due to a mix of loss- ($I_{Na}$ density, activation curve slope, recovery from inactivation) and gain-of-function one (inactivation rate). To clarify this issue, a quantitative action-potential clamp analysis has been carried out at 37 °C to fully account for physiological kinetic differences; furthermore, both epicardial and endocardial action-potential (AP) waveforms were applied to investigate specific transmural behavior. In addition to many qualitative observations, the major findings of this analysis have been 1) the delay in the time to peak of transient $I_{Na}$, in S216L and S216L-H558R channels, during AP phase 0; 2) the surprisingly presence of a large “resurgent” current, during AP phase 3, expressed by S216L channel, especially in the epicardium and 3) the unexpected complete rescue of $I_{Na}$ density by the presence of H558R polymorphism in endocardium.

**Discussion**

The channel misfolding is a known mechanism of current reduction\textsuperscript{6} which can explain a Brugada phenotype\textsuperscript{7}. The observed partial rescue of channel expression and the slight electrophysiological
positive modulation due to H558R presence agree with many previous works\textsuperscript{8-14}.

Some findings of action-potential clamp experiments are quite easy to relate with standard voltage-clamp results, such as the delayed time to peak is likely due to slower inactivation rate. By contrast, some others require a high level of speculation, including suitable differences in kinetics, persistent current component and voltage-dependency, such as the opposite behavior of S216L and S216L-H558R channels during AP plateau and late repolarization. Although hard to interpret, these observations highlight the sensitivity of gating abnormalities to membrane potential course and underscore the importance of dynamic analysis in assessing the function of mutant channels.
Conclusions

S216L mutation – Repolarization vs depolarization hypothesis

Repolarization hypothesis (RH) is based on a proposed outward imbalance of transmembrane current during AP early repolarization and plateau in the epicardium\textsuperscript{15} whereas depolarization hypothesis (DH) is focused on a conduction delay particularly regarding the right ventricular outflow tract (RVOT) and possibly some mild structural defects\textsuperscript{16} (see also Chapter 1). On one hand, dynamic clamp analysis of both S216L and S216L-H558R channel electrophysiological phenotype revealed a delayed time to peak which, in addition with strong reduction of $I_{Na}$ and negligible gating changes, supports the DH. Nevertheless, the absence of signs of conduction delay in the proband ECG argues against this hypothesis, suggesting that the delay in time to peak could be only an effect of inactivation slowing; however, a conduction delay localized in the RVOT can not be discarded. On the other hand, the small currents recorded during epicardial AP early repolarization and plateau and the concomitant presence of a current similar to WT one in endocardium could account for a transmural dispersion, in the proband’s heart, which would support RH. Moreover, the concave course of the S216L current, which is very small during plateau and then strongly “resurge” during late repolarization, could lead to the idea of a strong spike-and-dome AP shape which would determine the Type 1 ECG pattern from the RH point of view. Nevertheless, since the proband carries both S216L and H558R, the latter consideration is a mere speculation.
Neither DH nor RH can be demonstrated nor rejected, thus it seems likely that both events take part to the arrhythmogenic mechanism in the proband, which is indeed further complicated by its intermittence. This fact highlighted the trouble in finding an univocal suitable treatment for the syndrome.

**H558R polymorphism - Risk stratification**

It is hard to believe that a single amminoacidic change can, at list partially, rescue loss-of-function phenotype by a number of different ways, including both cis or trans chaperon-like effect and electrophysiological modulation. Nevertheless, these properties have been well documented\(^{12-14}\) and confirmed by the present study. Thus the presence of H558R seems to be considered as a protective factor to hold in regard for risk stratification of Brugada syndrome patients. Notably, its presence has also been reported as a risk factor for other arrhythmogenic disease\(^9\) including long-QT\(^10\) syndrome, characterized by a sodium channel gain-of-function. A speculative mechanism accounting for these features could be a excess in thermodynamic stabilization of the protein; from this point of view, the chaperon-like activity, at list in cis, is quite easy to explain. Furthermore this hypothesis can easily allow to the idea that thermodynamic changes could increase stability of the conductive state, thus resulting in a gain-of-function phenotype.
**Dynamic-clamp – Patient treatment**

Dynamic voltage-clamp analysis has been able to point out some behaviors of the channels under physiological conditions of great interest for patient treatment. When the decrease in $I_{Na}$ density was compensated by normalization, S216L channels revealed the tendency to generate a significant resurgent current. This property suggests that in a patient carrying only S216L mutation, a treatment aimed to restore $I_{Na}$ density by recovering channel trafficking, might be associated with perturbations of terminal repolarization, an abnormality which would lead to an acquired long-QT syndrome. Since the gating properties of S216L-H558R channel largely compensate $I_{Na}$ reduction in endocardium, the same therapeutic approach could determine similar side effects also in the proband.

These considerations demonstrate the importance of dynamic-clamp in assessing the actual electrophysiological phenotype of a patient. Since in the present case large and completely unexpected features have been revealed by this experimental technique, it is likely that similar surprisingly behaviors could be revealed in many other cases previously described only through standard voltage analysis.

Epicardial and endocardial waveforms used in the present study were very similar, nevertheless strong differences were observed in channel behaviors. This finding demonstrates that every perturbation of the AP course, even physiological or pathological or therapeutic, could greatly affect the expression of all ionic currents involved. Thus, even channel-selective drug treatments could indirectly modulate
other currents and produce potentially harmful side effects almost unpredictable by standard voltage analysis.

On the base of the possible role of “hidden” current features in establishing a therapeutic treatment and considering that it is the only experimental tool to predict side effects of a drug therapy caused by AP perturbation, dynamic-clamp (i.e. AP clamp) analysis deserves to acquire, from a translational point of view, a relevant position in the analysis of all arrhythmogenic diseases.
Future perspectives

The full comprehension of Brugada syndrome is far to be reached and it still requires a lot of work, from both a genetic- or population-based and a mechanistic point of view.

As demonstrated, dynamic-clamp would be very useful for mechanism comprehension and disease treatment, nevertheless its use as a standard technique is extremely unlikely. This is mostly because of its high cost in terms of time and because it is strictly mutation-specific. A solution to these problems is partially given by in silico modeling; a mathematical model would be extremely useful because, moving from standard voltage observations, it would be able to reproduce the actual current features during AP. Once this model would be perfected, it would be used to investigate the effects of the hundreds arrhythmia-inducing mutations previously described only from a standard point of view; moreover, it would easily predict the effects of AP waveform changes on every current.

In order to create this useful tool to assist clinicians in establishing patient therapy, some work has been already carried out and some preliminary data have been obtained. A mathematical model\textsuperscript{17} has been implemented with current density, voltage-dependence and kinetic features of WT and S216L-H558R currents, in order to reproduce empirical results in simulated experiments (Fig. 3.1).
Figure 3.1. Implementation of *in silico* model. A) activation and inactivation voltage-dependency; B) Current/voltage relation; C) Recovery from inactivation; D) persistent current component. In A, B and C, black dots and curves represent WT channel experimental points and their fitting by the implemented model, respectively; the same for S216L-H558R channel in red. In D, black bars represent experimental data of persistent current component (%) at 100 and 200 ms of depolarization, open bars represent model fitting.

The implemented model obtained has been run to simulate AP clamp experiments (Fig. 3.2 and 3.3). Many experimental behaviors are well reproduced by the model, whereas some others are not. Abbreviations and methods are the same of chapter 2. Accordingly with experimental findings time to peak is delayed in S216L-H558R.
current and the inversion of peak amplitude by considering normalized currents suggests that slower inactivation rate partially rescues an otherwise smaller current. Similarly, the *in silico* experiment partially reproduces the differences in “resurgent” current, by predicting a slightly smaller one in S216L-H558R channel. Nevertheless, some features underling current differences during plateau and epicardial or endocardial specific behavior are completely absent, such as sustained current during AP plateau.

![Figure 3.2](image)

**Figure 3.2.** Dynamic clamp analysis – Absolute $I_{Na}$ density. AP waveforms (upper panels) and simulated absolute $I_{Na}$ density during the action potential upstroke (left) and repolarization (right) (cell capacitance was arbitrarily assumed as 100 pF). **A** and **B**, epicardial AP. **C** and **D**, endocardial AP. Dashed lines denote the four AP phases ($P_0$-P$_3$) during which $I_{Na}$ was evaluated in chapter 2.
Figure 3.3. Dynamic clamp analysis – Normalized $I_{Na}$ density. Simulated $I_{Na}$ was normalized to maximal $I_{Na}$ ($I_{max}$) obtained with a simulated $I/V$ relation. Panels and symbols as in figure 3.2.

The deep analysis of the mechanism driving the model is still in progress. Since the mathematical algorithm used is based on the Hodgkin-Huxley model\textsuperscript{18} (see also Chapter 1), some discrepancy with experimental data are likely easily solvable by a little implementation of the model; nevertheless, others, as the absence of transmural specificity, seem to require a completely different approach and the use of a markovian model. Despite this, on the base of the potential benefits, the further work which is required to perfect this tool absolutely deserves to be completed.
Reference List of Chapter 3


Appendix: List of Academic Contributions

Peer-reviewed Articles


Proceedings


**Oral Communication**

Posters

