A Note on Multigrid Methods for (Multilevel) Structured-plus-banded Uniformly Bounded Hermitian Positive Definite Linear Systems

Stefano Serra-Capizzano, Cristina Tablino Possio

Quaderno n. 5/2008 (arxiv:math/0804.3016)
Stampato nel mese di aprile 2008
presso il Dipartimento di Matematica e Applicazioni,
Università degli Studi di Milano-Bicocca, via R. Cozzi 53, 20125 Milano, ITALIA.

Disponibile in formato elettronico sul sito www.matapp.unimib.it.
Segreteria di redazione: Ada Osmetti - Giuseppina Cogliandro
tel.: +39 02 6448 5755-5758 fax: +39 02 6448 5705

Esemplare fuori commercio per il deposito legale agli effetti della Legge 15 aprile 2004 n.106.
A Note on Multigrid Methods for (Multilevel) Structured-plus-banded Uniformly Bounded Hermitian Positive Definite Linear Systems

Stefano Serra-Capizzano∗ Cristina Tablino-Possio†

Abstract
In the past few years a lot of attention has been paid in the multigrid solution of multilevel structured (Toeplitz, circulants, Hartley, sine (τ class) and cosine algebras) linear systems, in which the coefficient matrix is banded in a multilevel sense and Hermitian positive definite. In the present paper we provide some theoretical results on the optimality of an existing multigrid procedure, when applied to a properly related algebraic problem. In particular, we propose a modification of previously devised multigrid procedures in order to handle Hermitian positive definite structured-plus-banded uniformly bounded linear systems, arising when an indefinite, and not necessarily structured, banded part is added to the original coefficient matrix. In this context we prove the Two-Grid method optimality.

In such a way, several linear systems arising from the approximation of integro-differential equations with various boundary conditions can be efficiently solved in linear time (with respect to the size of the algebraic problem). Some numerical experiments are presented and discussed, both with respect to Two-Grid and multigrid procedures.

1 Introduction
In the past twenty years, an extensive literature has treated the numerical solution of structured linear systems of large dimensions [11], by means of preconditioned iterative solvers. However, as well known in the multilevel setting, the most popular matrix algebra preconditioners cannot work in general (see [28, 31, 24] and references therein), while the multilevel structures often are the most relevant in practical applications. Therefore, quite recently, more attention has been focused (see [1, 2, 10, 12, 13, 16, 19, 27, 30]) on the multigrid solution of multilevel structured (Toeplitz, circulants, Hartley, sine (τ class) and cosine algebras) linear systems, in which the coefficient matrix is banded in a multilevel sense and Hermitian positive definite. The reason is due to the fact that these techniques are very efficient, the total cost for reaching the solution within a preassigned accuracy being linear as the dimensions of the involved
linear systems.

In the present note we propose a slight modification of these numerical multigrid procedures in order to handle structured-plus-banded uniformly bounded Hermitian positive definite linear systems, where the banded part which is added to the structured coefficient matrix is indefinite and not necessarily structured. A theoretical analysis of the related Two-Grid Method (TGM) is given in terms of the algebraic multigrid theory considered by Ruge and Stüben [25]. More precisely, we prove that the proposed TGM is optimally convergent with a convergence rate independent of the dimension for a given sequence of linear systems \(\{B_n y_n = c_n\}_n \) with uniformly bounded Hermitian positive definite matrix sequence \(\{B_n\}_n \), under the assumption that such TGM is optimal for \(\{A_n x_n = b_n\}_n \) with a given Hermitian positive definite matrix sequence \(\{A_n\}_n \) related to \(\{B_n\}_n \) by means of a simple order relation. More precisely, we require \(A_n \leq \vartheta B_n \), with \(\|B_n\|_2 \leq M \), for some \(\vartheta, M > 0 \) independent of \(n \) and for every \(n \) large enough.

As a case study, we may consider the case where \(B_n = A_n + \Theta_n \) where \(A_n \) is structured, positive definite, ill-conditioned, and for which an optimal multigrid algorithm is already available, and where \(\Theta_n \) is an indefinite band correction not necessarily structured; moreover, we require that \(\{A_n\}_n \) and \(\{B_n\}_n \) are uniformly bounded and that \(A_n + \Theta_n \) is still positive definite and larger than \(A_n/\vartheta \) for some \(\vartheta > 0 \) independent of \(n \).

For instance such a situation is encountered when dealing with standard Finite Difference (FD) discretizations of the problem

\[
\mathcal{L}u = -\nabla^2 u(x) + \mu(x) u(x) = h(x), \quad x \in \Omega,
\]

where \(\mu(x) \) and \(h(x) \) are given bounded functions, \(\Omega = (0,1)^d \), \(d \geq 1 \), and with Dirichlet, periodic or reflective boundary conditions (for a discussion on various boundary conditions see [22, 29]). For specific contexts where structured-plus-diagonal problems arise refer to [14, 18] and [5], when considering also a convection term in the above equation. However, the latter is just an example chosen for the relevance in applications, but the effective range of applicability of our proposal is indeed much wider.

The numerical experimentation suggests that an optimal convergence rate should hold for the MGM as well. Here, for MGM algorithm, we mean the simplest (and less expensive) version of the large family of multigrid methods, i.e., the V-cycle procedure: for a brief description of the TGM and of the V-cycle algorithms we refer to Section 2, while an extensive treatment can be found in [17] and especially in [34]. Indeed, we remark that in all the considered examples the MGM is optimal in the sense that (see [4]):

- **a.** the observed number of iterations is constant with respect to the size of the algebraic problem;
- **b.** the cost per iteration (in terms of arithmetic operations) is just linear as the size of the algebraic problem.

Nevertheless, it is worth stressing that the theoretical extension of the optimality result to the MGM is still an open question.

The paper is organized as follows. In Section 2 we report the standard TGM and MGM algorithms and we write explicitly the related iteration matrices. In Section 3 we first recall some classical results related to the algebraic
TGM convergence analysis and then we prove the optimal rate of convergence of the proposed TGM, under some general and weak assumptions; the MGM case is briefly discussed at the end of the section. In Section 4 we analyze in detail the case of the discrete Laplacian-plus-diagonal systems and in Section 5 we report several numerical experiments. Lastly, Section 6 deals with further considerations concerning future work and perspectives.

2 Two-grid and Multigrid Method

Let \(n_0 \) be a positive \(d \)-index, \(d \geq 1 \), and let \(N(.) \) be an increasing function with respect to \(n_0 \). In devising a TGM and a MGM for the linear system

\[
A_{n_0}x_{n_0} = b_{n_0},
\]

where \(A_{n_0} \in \mathbb{C}^{N(n_0) \times N(n_0)} \) and \(x_{n_0}, b_{n_0} \in \mathbb{C}^{N(n_0)} \), the ingredients below must be considered.

Let \(n_1 < n_0 \) (componentwise) and let \(p_{n_0}^{n_1} \in \mathbb{C}^{N(n_0) \times N(n_1)} \) be a given full-rank matrix. In order to simplify the notation, in the following we will refer to any multi-index \(n_s \) by means of its subscript \(s \), so that, e.g. \(A_s := A_{n_s}, b_s := b_{n_s}, p_s^{s+1} := p_{n_s}, \) etc. With these notations, a class of stationary iterative methods of the form

\[
x^{(j+1)}_s = V_s x^{(j)}_s + b_s
\]

is also considered in such a way that \(\text{Smooth}(x^{(j)}_s, b_s, V_s, \nu_s) \) denotes the application of this rule \(\nu_s \) times, with \(\nu_s \) positive integer number, at the dimension corresponding to the index \(s \).

Thus, the solution of the linear system (2.1) is obtained by applying repeatedly the TGM iteration, where the \(j \)th iteration

\[
x^{(j+1)}_0 = TGM(x^{(j)}_0, b_0, A_0, V_0, \nu_0, \nu_0, \nu_0, \nu_0, \nu_0)
\]

is defined by the following algorithm [17]:

\[
y_0 := TGM(x_0, b_0, A_0, V_0, \nu_0, \nu_0, \nu_0, \nu_0, \nu_0)
\]

Steps 1. and 6. concern the application of \(\nu_0 \) steps of the \(\text{pre-smoothing} \) (or \(\text{intermediate} \)) iteration and of \(\nu_0 \) steps of the \(\text{post-smoothing} \) iteration, respectively. Moreover, steps 2. \(\rightarrow \) 5. define the so called \(\text{coarse grid correction} \), that depends on the projection operator \((p_0^1)^H \). In such a way, the TGM iteration represents a classical stationary iterative method whose iteration matrix is given by

\[
TGM_0 = V_0^{\nu_0} CGC_0 V_0^{\nu_0}, \quad (2.2)
\]

where

\[
CGC_0 = I_0 - p_0^1 (p_0^1)^H A_0 p_0^1\]

\[

\text{(2.2)} \quad (p_0^1)^H A_0
\]

\[

3
\]
denotes the coarse grid correction iteration matrix.

The names intermediate and smoothing iteration used above refer to the multiresolution terminology [26]: we say that a method is multi-iterative if it is composed by at least two distinct iterations. The idea is that these basic components should have complementary spectral behaviors so that the whole procedure is quickly convergent. In our case the target of the smoothing iteration is to reduce the error in the subspace where \(A_0 \) is well-conditioned, but such an iteration will be slowly convergent in the complementary space. The coarse grid correction iteration matrix is a (non-Hermitian) projector (see e.g. [27]) and therefore shows spectral radius equal to 1. As a consequence, the corresponding iterative procedure does not converge at all, but it is very quickly convergent in the subspace where \(A_0 \) is ill-conditioned, if \(p^0_1 \) is chosen in such a way that its columns span a subspace “close enough” to the ill-conditioned one. Finally, the intermediate iteration is strongly convergent in that subspace where the combined effect of the other two iterations resulted to be less effective. Notice that in our setting of Hermitian positive definite and uniformly bounded sequences, the subspace where \(A_0 \) is ill-conditioned corresponds to the subspace in which \(A_0 \) has small eigenvalues.

Starting from the TGM, we introduce the MGM. Indeed, the main difference with respect to the TGM is as follows: instead of solving directly the linear system with coefficient matrix \(A_1 \), we can apply recursively the projection strategy so obtaining a multigrid method.

Let us use the Galerkin formulation and let \(n_0 > n_1 > \ldots > n_l > 0 \), with \(l \) being the maximal number of recursive calls and with \(N(n_s) \) being the corresponding matrix sizes.

The corresponding multigrid method generates the approximate solution

\[
x^{(j+1)}_0 = MGM(0, x^{(j)}_0, b_0, A_0, V_0, \nu_0, V_0, \nu_0, V_0, \nu_0) \]

according to the following algorithm:

\[
y_s := MGM(s, x_s, b_s, A_s, V_s, \nu_s, V_s, \nu_s, \nu_s) \]

If \(s = l \) then Solve\((A_s y_s = b_s)\)

else \(1. \quad \bar{x}_s := \text{Smooth}(x_s, b_s, V_s, \nu_s, \nu_s) \)

\(2. \quad r_s := b_s - A_s \bar{x}_s \)

\(3. \quad r_{s+1} := (p^{s+1}_s)^H r_s \)

\(4. \quad y_{s+1} := MGM(s + 1, 0, b_{s+1}, A_{s+1}, V_{s+1}, \nu_{s+1}, V_{s+1}, \nu_{s+1}, \nu_{s+1}) \)

\(5. \quad \tilde{y}_s := \bar{x}_s + p^{s+1}_s y_{s+1} \)

\(6. \quad y_s := \text{Smooth}(\tilde{y}_s, b_s, V_s, \nu_s, \nu_s) \)

where the matrix \(A_{s+1} := (p^{s+1}_s)^H A_s p^{s+1}_s \) is more profitably computed in the so called pre-computing phase.

Since the multigrid is again a linear fixed-point method, we can express \(x^{(j+1)}_0 \) as \(MGM_{0}^{(j)} + (I - MGM_{0}) A_{0}^{-1} b_0 \), where the iteration matrix \(MGM_{0} \) is recursively defined according to the following rule (see [34]):

\[
\begin{align*}
MGM_l &= O, \\
MGM_s &= V_{s, \nu_s} \left[I_s - p^{s+1}_s (I_{s+1} - MGM_{s+1}) A_{s+1}^{-1} (p^{s+1}_s)^H A_s \right] V_{s, \nu_s} \quad (2.3) \\
s &= 0, \ldots, l - 1.
\end{align*}
\]
and with MGM_s and MGM_{s+1} denoting the iteration matrices of the multigrid procedures at two subsequent levels, $s = 0, \ldots, l - 1$. At the last recursion level l, the linear system is solved by a direct method and hence it can be interpreted as an iterative method converging in a single step: this motivates the chosen initial condition $MGM_l = O$.

By comparing the TGM and MGM, we observe that the coarse grid correction operator CGC_s is replaced by an approximation, since the matrix A_{s+1}^{-1} is approximated by $(I_{s+1} - MGM_{s+1}) A_{s+1}^{-1}$ as implicitly described in (2.3) for $s = 0, \ldots, l - 1$. In this way step 4., at the highest level $s = 0$, represents an approximation of the exact solution of step 4. displayed in the TGM algorithm (for the matrix analog compare (2.3) and (2.2)). Finally, for $l = 1$ the MGM reduces to the TGM if $\text{Solve}(A_1 y_1 = b_1)$ is $y_1 = A_1^{-1} b_1$.

3 Discussion and extension of known convergence results

Hereafter, by $\| \cdot \|_2$ we denote the Euclidean norm on \mathbb{C}^m and the associated induced matrix norm over $\mathbb{C}^{m \times m}$. If X is Hermitian positive definite, then its square root obtained via the Schur decomposition is well defined and positive definite. As a consequence we can set $\| \cdot \|_X = \| X^{1/2} \cdot \|_2$ the Euclidean norm weighted by X on \mathbb{C}^m, and the associated induced matrix norm.

In the algebraic multigrid theory some relevant convergence results are due to Ruge and Stüben [25]. In fact, they provide the main theoretical tools to which we refer in order to prove our subsequent convergence results. More precisely, by referring to the work of Ruge and Stüben [25], we will consider Theorem 5.2 therein in its original form and in the case where both pre-smoothing and post-smoothing iterations are performed. In the following all the constants α, α_{pre}, α_{post}, and β are required to be independent of the actual dimension in order to ensure a TGM convergence rate independent of the size of the algebraic problem.

Theorem 3.1 Let A_0 be a Hermitian positive definite matrix of size $N(n_0)$, let $p_0^1 \in \mathbb{C}^{N(n_0) \times N(n_1)}$, $n_0 > n_1$, be a given full-rank matrix and let $V_{0, \text{post}}$ be the post-smoothing iteration matrix.

Suppose that there exists $\alpha_{\text{post}} > 0$, independent of n_0, such that for all $x \in \mathbb{C}^{N(n_0)}$

\[\| V_{0, \text{post}} x \|_{A_0}^2 \leq \| x \|_{A_0}^2 - \alpha_{\text{post}} \| x \|_{A_0 D_0^{-1} A_0}^2, \]

(3.1)

where D_0 is the diagonal matrix formed by the diagonal entries of A_0.

Assume, also, that there exists $\beta > 0$, independent of n_0, such that for all $x \in \mathbb{C}^{N(n_0)}$

\[\min_{y \in \mathbb{C}^{N(n_1)}} \| x - p_{0, \text{pre}} y \|_{D_0}^2 \leq \beta \| x \|_{A_0}^2. \]

(3.2)

Then, $\beta \geq \alpha_{\text{post}}$ and

\[\| \text{TGM}_0 \|_{A_0} \leq \sqrt{1 - \alpha_{\text{post}} / \beta} < 1. \]

(3.3)
Theorem 3.2 Let \(A_0 \) be a Hermitian positive definite matrix of size \(N(n_0) \), let \(p_0^N \in \mathbb{C}^{N(n_0) \times N(n_1)} \), \(n_0 > n_1 \), be a given full-rank matrix and let \(V_{0,\text{pre}}, V_{0,\text{post}} \) be the pre-smoothing and post-smoothing iteration matrices, respectively.

Suppose that there exist \(\alpha_{\text{pre}}, \alpha_{\text{post}} > 0 \), independent of \(n_0 \), such that for all \(x \in \mathbb{C}^{N(n_0)} \)

\[
\begin{align*}
\|V_{0,\text{pre}}x\|^2_{A_0} &\leq \|x\|^2_{A_0} - \alpha_{\text{pre}} \|V_{0,\text{pre}}x\|^2_{A_0 D_0^{-1} A_0}, \\
\|V_{0,\text{post}}x\|^2_{A_0} &\leq \|x\|^2_{A_0} - \alpha_{\text{post}} \|x\|^2_{A_0 D_0^{-1} A_0},
\end{align*}
\]

(3.4)

where \(D_0 \) is the diagonal matrix formed by the diagonal entries of \(A_0 \).

Assume, also, that there exists \(\beta > 0 \), independent of \(n_0 \), such that for all \(x \in \mathbb{C}^{N(n_0)} \)

\[
\|CGC_0x\|^2_{A_0} \leq \beta \|x\|^2_{A_0 D_0^{-1} A_0}.
\]

(3.5)

Then, \(\beta \geq \alpha_{\text{post}} \) and

\[
\|TGM_0\|_{A_0} \leq \sqrt{\frac{1 - \alpha_{\text{post}}/\beta}{1 + \alpha_{\text{pre}}/\beta}} < 1.
\]

(3.6)

Remark 3.3 Theorems 3.1 and 3.2 still hold if the diagonal matrix \(D_0 \) is replaced by any Hermitian positive matrix \(X_0 \) (see e.g. [2]). More precisely, \(X_0 = I \) could be a proper choice for its simplicity, since any contribution due to the use of a different matrix will be subject to a formal simplification in the quotients \(\alpha_{\text{pre}}/\beta \) and \(\alpha_{\text{post}}/\beta \).

Remark 3.4 For reader convenience, the essential steps of the proof of Theorems 3.1 and 3.2 are reported in Appendix A, where relations (3.1) and (3.4) are called post-smoothing and pre-smoothing property, respectively, and the relation (3.6) is called approximation property. In this respect, we notice that the approximation property deduced by using (3.2) holds only for vectors belonging to the range of \(CGC_0 \), see (A.1); conversely the approximation property described in (3.6) is unconditional, i.e., it is satisfied for all \(x \in \mathbb{C}^{N(n_0)} \).

In this paper we are interested in the multigrid solution of special linear systems of the form

\[
B_n x = b, \quad B_n \in \mathbb{C}^{N(n) \times N(n)}, \quad x, b \in \mathbb{C}^{N(n)}
\]

(3.8)

with \(\{B_n\} \) a Hermitian positive definite uniformly bounded matrix sequence, \(n \) being a positive \(d \)-index, \(d \geq 1 \) and \(N(\cdot) \) an increasing function with respect to it. More precisely, we assume that there exists \(\{A_n\} \) a Hermitian positive definite matrix sequence such that some order relation is linking \(\{A_n\} \) and \(\{B_n\} \), for \(n \) large enough and we suppose that an optimal algebraic multigrid method is available for the solution of the systems

\[
A_n x = b, \quad A_n \in \mathbb{C}^{N(n) \times N(n)}, \quad x, b \in \mathbb{C}^{N(n)}.
\]

(3.9)

We ask whether the algebraic TGM and MGM considered for the systems (3.9) are effective also for the systems (3.8), i.e., when considering the very same projectors. Since it is well-known that a very crucial role in MGM is played by the choice of projector operator, the quoted choice will give rise to a relevant simplification. The results pertain to the convergence analysis of the TGM and MGM: we provide a positive answer for the TGM case and we only discuss the MGM case, which is substantially more involved.
3.1 TGM convergence and optimality: theoretical results

In this section we give a theoretical analysis of the TGM in terms of the algebraic multigrid theory due to Ruge and Stüben [25] according to Theorem 3.1. Hereafter, the notation $X \leq Y$, with X and Y Hermitian matrices, means that $Y - X$ is nonnegative definite. In addition, $\{X_n\}_n$, with X_n Hermitian positive definite matrices, is a uniformly bounded matrix sequence if there exists $M > 0$ independent of n such that $\|X_n\|_2 \leq M$, for n large enough.

Proposition 3.5 Let $\{A_n\}_n$ be a matrix sequence with A_n Hermitian positive definite matrices and let $p_0^1 \in C^{N(n_0) \times N(n_1)}$ be a given full-rank matrix for any $n_0 > 0$ such that there exists $\beta_A > 0$ independent of n_0 so that for all $x \in C^{N(n_0)}$

$$\min_{y \in C^{N(n_1)}} \|x - p_0^1 y\|_2^2 \leq \beta_A \|x\|_{A_0}^2.$$

(3.10)

Let $\{B_n\}_n$ be another matrix sequence, with B_n Hermitian positive definite matrices, such that $A_n \leq \vartheta B_n$, for n large enough, with $\vartheta > 0$ absolute constant. Then, for all $x \in C^{N(n_0)}$ and n_0 large enough, it also holds $\beta_B = \beta_A \vartheta$ and

$$\min_{y \in C^{N(n_1)}} \|x - p_0^1 y\|_2^2 \leq \beta_B \|x\|_{B_0}^2.$$

(3.11)

Proof. From (3.10) and from the assumptions on the order relation, we deduce that for all $x \in C^{N(n)}$

$$\min_{y \in C^{N(n_1)}} \|x - p_0^1 y\|_2^2 \leq \beta_A \|x\|_{A_0}^2 \leq \vartheta \beta_A \|x\|_{B_0}^2,$$

i.e., taking into account Remark 3.3, the hypothesis (3.2) of Theorem 3.1 is fulfilled for $\{B_n\}_n$ too, with constant $\beta_B = \beta_A \vartheta$, by considering the very same projector p_0^1 considered for $\{A_n\}_n$.

Thus, the convergence result in Theorem 3.1 holds true also for the matrix sequence $\{B_n\}_n$, if we are able to guarantee also the validity of condition (3.1). It is worth stressing that in the case of Richardson smoothers such topic is not related to any partial ordering relation connecting the Hermitian matrix sequences $\{A_n\}_n$ and $\{B_n\}_n$. In other words, given a partial ordering between $\{A_n\}_n$ and $\{B_n\}_n$, inequalities (3.1), (3.4), and (3.5) with $\{B_n\}_n$ instead of $\{A_n\}_n$ do not follow from (3.1), (3.4), and (3.5) with $\{A_n\}_n$, but they have to be proved independently. See Proposition 3 in [1] for the analogous claim in the case of $\nu_{\text{pre}}, \nu_{\text{post}} > 0$.

Proposition 3.6 Let $\{B_n\}_n$ be an uniformly bounded matrix sequence, with B_n Hermitian positive definite matrices. For any $n_0 > 0$, let $V_{n,\text{pre}} = I_n - \omega_{\text{pre}} B_n$, $V_{n,\text{post}} = I_n - \omega_{\text{post}} B_n$ be the pre-smoothing and post-smoothing iteration matrices, respectively considered in the TGM algorithm. Then, there exist $\alpha_{B,\text{pre}}, \alpha_{B,\text{post}} > 0$ independent of n_0 such that for all $x \in C^{N(n_0)}$

$$\|V_{0,\text{pre}} x\|_{B_0}^2 \leq \|x\|_{B_0}^2 - \alpha_{B,\text{pre}} \|V_{0,\text{pre}} x\|_{B_0}^2,$$

(3.12)

$$\|V_{0,\text{post}} x\|_{B_0}^2 \leq \|x\|_{B_0}^2 - \alpha_{B,\text{post}} \|x\|_{B_0}^2,$$

(3.13)
Proof. Relation (3.13) is equivalent to the existence of an absolute positive constant $\alpha_{B,\text{post}}$ such that

$$(I_0 - \omega_{\text{post}} B_0)^2 B_0 \leq B_0 - \alpha_{B,\text{post}} B_0^2,$$

i.e.,

$$\omega_{\text{post}}^2 B_0 - 2 \omega_{\text{post}} I_0 \leq - \alpha_{B,\text{post}} I_0.$$

The latter is equivalent to require that the inequality $\alpha_{B,\text{post}} \leq \omega_{\text{post}} (2 - \omega_{\text{post}} \lambda)$ is satisfied for any eigenvalue λ of the Hermitian matrix B_0 with $\alpha_{B,\text{post}} > 0$ independent of n_0. Now, let $[m, M]$ be any interval containing the topological closure of the union over all n of all the eigenvalues of B_n. Then it is enough to consider

$$\alpha_{B,\text{post}} \leq \omega_{\text{post}} \min_{\lambda \in [m, M]} (2 - \omega_{\text{post}} \lambda) = \omega_{\text{post}} (2 - \omega_{\text{post}} M),$$

where the condition $\omega_{\text{post}} < 2/M$ ensures $\alpha_{B,\text{post}} > 0$.

By exploiting an analogous technique, in the case of relation (3.12), it is sufficient to consider

$$\alpha_{B,\text{post}} \leq \omega_{\text{post}} \min_{\lambda \in [0, M]} (2 - \omega_{\text{post}} \lambda) = \omega_{\text{post}} (2 - \omega_{\text{post}} M),$$

where we consider the only interesting case $m = 0$, since $m > 0$ is related to the case of well-conditioned systems.

In this way, according to the Ruge and Stüben algebraic theory, we have proved the TGM optimality, that is its convergence rate independent of the size $N(n)$ of the involved algebraic problem.

Theorem 3.7 Let $\{B_n\}_n$ be an uniformly bounded matrix sequence, with B_n Hermitian positive definite matrices. Under the same assumptions of Propositions 3.5 and 3.6 the TGM with only one step of post-smoothing converges to the solution of $B_n x = b$ and its convergence rate is independent of $N(n)$.

Proof. By referring to Propositions 3.5 and 3.6 the claim follows according to Theorem 3.1.

Few remarks are useful in order to understand what happens when also a pre-smoothing phase is applied.

A) The first observation is that the convergence analysis can be reduced somehow to the case of only post-smoothing. Indeed, looking at relation (2.2) and recalling that the spectra of AB and BA are the same for any pair (A, B) of square matrices (see [7]), it is evident that

$$TGM_0 = V_{0,\text{post}}^{\nu_0} CGC_0 V_{0,\text{pre}}^{\nu_0}$$

has the same spectrum, and hence the same spectral radius $\rho(\cdot)$, as

$$V_{0,\text{pre}}^{\nu_0} V_{0,\text{post}}^{\nu_0} CGC_0.$$

8
where the latter represents a TGM iteration with only post-smoothing. Therefore
\[\rho(TGM_0) = \rho(v_{0,\text{pre}} v_{0,\text{post}} CGC_0) \]
\[\leq \|v_{0,\text{pre}} v_{0,\text{post}} CGC_0\|_{A_0} \]
\[\leq \sqrt{1 - \tilde{\alpha}_{\text{post}} / \beta} \]

where \(\tilde{\alpha}_{\text{post}}\) is the post-smoothing constant of the cumulative stationary method described by the iteration matrix \(v_{0,\text{pre}} v_{0,\text{post}}\).

B) Setting \(\nu_{0,\text{pre}} = \nu_{0,\text{post}} = 1\) and with reference to Item A), we easily deduce that \(\tilde{\alpha}_{\text{post}} \geq \alpha_{\text{post}}\) where the latter is the post-smoothing constant related to the sole post-smoothing method with iteration matrix \(v_{0,\text{post}}\). Furthermore, if the two iteration matrices \(v_{0,\text{pre}}\) and \(v_{0,\text{post}}\) are chosen carefully, i.e., by taking into account the spectral complementarity principle, then we can expect that \(\tilde{\alpha}_{\text{post}}\) is sensibly larger than \(\alpha_{\text{post}}\), so that the TGM with both pre-smoothing and post-smoothing is sensibly faster than that with only post-smoothing.

C) Items A) and B) show that the TGM iteration with both pre-smoothing and post-smoothing is never worse than the TGM iteration with only post-smoothing. Therefore Theorem 3.7 implies that the TGM with both post-smoothing and pre-smoothing is optimal for systems with matrices \(B_n\) under the same assumptions as in Theorem 3.7.

D) At this point the natural question arises: is it possible to handle directly assumption (3.6), instead of assumption (3.2)? As observed in Remark 3.4 these two assumptions are tied up and indeed they represent the approximation property on the range of \(CGC_0\) and unconditional, respectively. However, from a technical viewpoint, they are very different and in fact we are unable to state a formal analog of Proposition 3.5 by using (3.6).

More precisely, for concluding that
\[\|CGC_0x\|_{A_0}^2 \leq \beta_A \|x\|_{A_0}^2 \]
implies
\[\|CGC_0x\|_{B_0}^2 \leq \beta_B \|x\|_{B_0}^2 \]
with \(X_0 = I\) as in Remark 3.3 and with \(\theta, \beta_A, \beta_B\) absolute constants, and \(A_n \leq \theta B_n\), we would need \(X \leq Y\), \(X, Y \geq 0\) implies \(X^2 \leq \gamma Y^2\) with some \(\gamma\) positive and independent of \(n\). The latter with \(\gamma = 1\) is the operator monotonicity of the map \(z \mapsto z^2\) which is known to be false in general [7]. We should acknowledge that there exist important subclasses of matrices for which \(X \leq Y\), \(X, Y \geq 0\) implies \(X^2 \leq \gamma Y^2\). However, this matrix theoretic analysis of intrinsic interest goes a bit far beyond the scope of the present paper and will be the subject of future investigations.

E) Remark 3.4 furnishes an interesting degree of freedom that could be exploited. For instance if we choose \(X_0 = A_0\), by assuming suitable order relations between \(\{A_n\}_n\) and \(\{B_n\}_n\), then proving that
\[\|CGC_0x\|_{A_n}^2 \leq \beta_A \|x\|_{A_n}^2 \]
implies
\[\|CGC_0 x\|_{\mathcal{B}_0}^2 \leq \beta_B \|x\|_{\mathcal{B}_0}^2 \]
with \(\vartheta, \beta_A, \beta_B\) absolute constants, becomes easier, but, conversely, the study of the pre-smoothing and post-smoothing properties becomes more involved.

3.2 MGM convergence and optimality: a discussion

In this section we briefly discuss the same question as before, but in connection with the MGM. First of all, we expect that a more severe assumption between \(\{A_n\}_n\) and \(\{B_n\}_n\) has to be fulfilled in order to infer the MGM optimality for \(\{B_n\}_n\) starting from the MGM optimality for \(\{A_n\}_n\). The reason is that the TGM is just a special instance of the MGM when setting \(l = 1\).

In the TGM setting we have assumed a one side ordering relation: here the most natural step is to consider a two side ordering relation, that is to assume that there exist positive constants \(\vartheta_1, \vartheta_2\) independent of \(n\) such that
\[\vartheta_1 B_n \leq A_n \leq \vartheta_2 B_n, \]
for every \(n\) large enough. The above relationships simply represent the spectral equivalence condition for sequences of Hermitian positive definite matrices. In the context of the preconditioned conjugate gradient method (see [3]), it is well known that if \(\{P_n\}_n\) is a given sequence of optimal (i.e., spectrally equivalent) preconditioners for \(\{A_n\}_n\), then \(\{P_n\}_n\) is also a sequence of optimal preconditioners for \(\{B_n\}_n\) (see e.g. [24]). The latter fact just follows from the observation that the spectral equivalence is an equivalence relation and hence is transitive.

In summary, we have enough heuristic motivations in order to conjecture that the spectral equivalence is the correct and needed assumption and, in reality, the numerical experiments reported in Section 5 give a support to the latter statement.

From a theoretical point of view, as done for the TGM, we start from the Ruge-Stüben tools [25] in the slightly modified version contained in Theorem 2.3 in [2], that is taking into account Remark 3.3 and, for the sake of simplicity, we assume no pre-smoothing i.e., \(\nu_{\text{pre}} = 0\). The matrix inequalities coming from the assumption (2.9) in [2] are very intricate since they involve simultaneously projector operators and smoothers: whence, it is customary to split it into the smoothing property (relation (2.11a) in [2]) and the approximation property (relation (2.11b) in [2]). As usual the smoothing property does not pose any problem. However, we encounter a serious technical difficulty in the second inequality, i.e., when dealing with the approximation property. More precisely, we arrive to compare two Hermitian projectors, depending on the same \(p_{s+1}^n\) with the first involving \(A_n\) and the second involving \(B_n\). Unfortunately, they can be compared only in very special and too restricted cases: the needed assumption would not involve ordering, but only the fact that the columns of \(A_{\frac{1}{2}}^n p_{s+1}^n\) and those of \(B_{\frac{1}{2}}^n p_{s+1}^n\) span the same space.

However, as already mentioned, the numerical tests tell us that the latter difficulty is only a technicality and that the right assumption should involve spectral equivalence. Therefore, in future investigations, other directions and proof techniques have to be explored.
4 A case study: discrete Laplacian-plus-diagonal systems

In the present section, we analyze a specific application of the results in Section 3. More precisely, we consider a multigrid strategy for solving Laplacian-plus-diagonal linear systems arising from standard Finite Differences (FD) discretizations of the problem

\[\mathcal{L}u = -\nabla^2 u(x) + \mu(x) u(x) = h(x), \quad x \in \Omega, \quad (4.1) \]

where \(\mu(x) \) and \(h(x) \) are given bounded functions, \(\Omega = (0, 1)^d \), \(d \geq 1 \), and with Dirichlet, periodic or reflective boundary conditions. Thus, we are facing with a matrix sequence

\[\{B_n\}_n = \{A_n + D_n\}_n, \quad (4.2) \]

where the structure of the matrix sequence \(\{A_n\}_n \) is related both to the FD discretization and to the type of the boundary conditions and where \(\{D_n\}_n \) is a sequence of uniformly bounded diagonal matrices, due to the hypothesis that \(\mu(x) \) is bounded.

Since a fast TGM and MGM working for the Toeplitz (or \(\tau \) - the \(\tau \) class is the algebra associated to the most known sine transform \[8\]) part is well-known \[15, 16, 9, 27\], we are in position to apply the tools in the preceding section in order to show that the same technique works, and with a cost linear as the dimension, in the context (4.2) too. In the same way, the extension of suitable MGM procedures proposed in the case of the circulant \[30\], DCT-III cosine \[12, 32\], or \(\tau \) \[15, 16\] algebra, can be considered according to the corresponding boundary conditions. Clearly, this case study is just an example relevant in applications, while the results in Section 3 are of much wider generality.

Once more, we want to remark that, unfortunately, there is a gap in the theory with regard to the MGM, even if the numerical tests reported in Section 5 suggest that the MGM applied to matrices in \(\{B_n = A_n + D_n\}_n \) is optimal under the assumptions that the same MGM is optimal for \(\{A_n\}_n \), \(A_n \) symmetric positive definite matrix, and \(\{D_n\}_n \) uniformly bounded matrix sequence, with \(A_n \leq \vartheta B_n \) uniformly with respect to \(n \) and with some fixed \(\vartheta > 0 \) independent of \(n \). Clearly if the matrices \(D_n \) are also nonnegative definite then the constant \(\vartheta \) can be set to 1. This result can be plainly extended to the case in which \(D_n \) is a (multilevel) banded correction.

4.1 One-Dimensional case

According to the FD approximation of (4.1) with Dirichlet boundary conditions, we obtain the matrix sequence

\[\{B_n\}_n = \{A_n + D_n\}_n \]

where \(\{A_n\}_n = \{\text{tridiag}_{n} [-1, 2, -1]\}_n \) and \(\{D_n\}_n \) is a sequence of diagonal matrices whose diagonal entries \(d^{(n)}_i \), \(i = 1, \ldots, n \), are uniformly bounded in modulus by a constant \(M \) independent of \(n \). Since

\[\lambda_{\min}(A_n) = 4 \sin^2 \left(\frac{\pi}{2(n + 1)} \right) = \frac{\pi^2}{n^2} + O(n^{-3}), \]

we have

\[\lambda_{\min}(A_n) = 4 \sin^2 \left(\frac{\pi}{2(n + 1)} \right) = \frac{\pi^2}{n^2} + O(n^{-3}). \]
we impose the condition
\[n^2 \min_{1 \leq i \leq n} d_i^{(n)} + \pi^2 \geq c \]
for some \(c > 0 \) independent of \(n \) (we consider only the case \(\min_{1 \leq i \leq n} d_i^{(n)} < 0 \), since the other is trivial). Thus, also \(\{B_n\}_n \) is an uniformly bounded positive definite matrix sequence and
\[B_n \geq A_n + \frac{c - \pi^2}{n^2} I \geq \frac{c}{\pi^2} A_n \]
so satisfying the crucial assumption \(A_n \leq \vartheta B_n \) in Proposition 3.5 with \(\vartheta = \pi^2/c \).

Let us consider \(B_0 = \begin{bmatrix} 1 \\ \end{bmatrix} \in \mathbb{R}^{n_0 \times n_0} \), with 1-index \(n_0 > 0 \). Following [15, 27], we denote by \(T_0 \in \mathbb{R}^{n_0 \times n_1} \), \(n_0 = 2n_1 + 1 \), the operator such that
\[(T_0^1)_{i,j} = \begin{cases} 1 & \text{for } i = 2j, \quad j = 1, \ldots, n_1, \\ 0 & \text{otherwise}, \end{cases} \]
and we define a projector \((p_0^1)^H, p_0^1 \in \mathbb{R}^{n_0 \times n_1} \) as
\[p_0^1 = \frac{1}{\sqrt{2}}P_0T_0^1, \quad P_0 = \text{tridiag}_0 [1, 2, 1]. \]

Thus, the basic step in order to prove the TGM optimality result is reported in the proposition below. It is worth stressing that the claim refers to a tridiagonal matrix correction, since, under the quoted assumption, each diagonal correction is projected at the first coarse level into a tridiagonal correction, while the tridiagonal structure is kept unaltered in all the subsequent levels.

Proposition 4.1 Let \(B_0 = \text{tridiag}_0 [-1, 2, -1] + T_0 \in \mathbb{R}^{n_0 \times n_0} \), with \(n_0 > 0 \) and \(T_0 \) being a symmetric uniformly bounded tridiagonal matrix such that \(A_0 \leq \vartheta B_0 \), with \(A_0 = \text{tridiag}_0 [-1, 2, -1] \) and some \(\vartheta > 0 \). Let \(p_0^1 = (1/\sqrt{2})\text{tridiag}_0 [1, 2, 1]T_0^1 \), with \(n_0 = 2n_1 + 1 \). Then,
\[(p_0^1)^H B_0 p_0^1 = \text{tridiag}_1 [-1, 2, -1] + T_1 \]
where \(T_1 \in \mathbb{R}^{n_1 \times n_1} \) is a symmetric uniformly bounded tridiagonal matrix with \(A_1 \leq \vartheta B_1 \), \(B_1 = (p_0^1)^H B_0 p_0^1 \), \(A_1 = \text{tridiag}_1 [-1, 2, -1] \).

Proof. For the Toeplitz part refer to [27]. For the tridiagonal part we just need a simple check. In fact, the product \(P_0T_0P_0 \) is a 7-diagonal matrix (\(P_0 \) and \(T_0 \) are tridiagonal) and the action of \(T_0^1 \), on the left and on the right, selects the even rows and columns so that the resulting matrix is still tridiagonal. Since \(A_0 \leq \vartheta B_0 \), \(A_0 = \text{tridiag}_0 [-1, 2, -1] \), \(B_1 = (p_0^1)^H B_0 p_0^1 \), and \(A_1 = \text{tridiag}_1 [-1, 2, -1] = (p_0^1)^H A_0 p_0^1 \), it is evident that \(A_1 \leq \vartheta B_1 \). Finally, the uniform boundedness is guaranteed by the uniform boundedness of all the involved matrices.

Corollary 4.2 Let \(B_0 = \text{tridiag}_0 [-1, 2, -1] + T_0 \in \mathbb{R}^{n_0 \times n_0} \), with \(n_0 > 0 \) and \(T_0 \) symmetric tridiagonal matrix such that \(A_0 \leq \vartheta B_0 \), with \(A_0 = \text{tridiag}_0 [-1, 2, -1] \) and some \(\vartheta > 0 \). Let \(p_0^1 = (1/\sqrt{2})\text{tridiag}_0 [1, 2, 1]T_0^1 \), with \(n_0 = 2n_1 + 1 \). Then, there exists \(\beta_B > 0 \) independent of \(n_0 \) so that inequality (3.2) holds true.
Proof. Let \(A_0 = \text{tridiag}_0 [-1, 2, -1] \in \mathbb{R}^{n_0 \times n_0} \). Then relation (3.2) is fulfilled with the operator \(p^*_0 \) defined in (4.4) and with a certain \(\beta_A \) independent of \(n_0 \), as proved in [27]. Moreover, from the assumption we have \(A_0 \leq \vartheta B_0 \) so that Proposition 3.5 implies that (3.2) holds true for \(B_0 \) with a constant \(\beta_B = \vartheta \beta_A \).

Corollary 4.3 Let \(\{B_n\}_n \) be the sequence such that \(B_n = \text{tridiag}_n [-1, 2, -1] + T_n \in \mathbb{R}^{n \times n} \) with \(T_n \) symmetric uniformly bounded tridiagonal matrices. Then, there exist \(\alpha_{B, \text{pre}} > 0 \) independent of \(n \), so that inequalities (3.12) and (3.13) hold true.

Proof. It is evident that \(\{B_n\}_n \) is a sequence of symmetric positive definite matrices uniformly bounded by \(4 + M \), with \(\|T_n\|_2 \leq M \) independent of \(n \), so that the thesis follows by the direct application of Proposition 3.6.

4.2 Two-Dimensional case

Hereafter, we want to consider the TGM and MGM extension to the case \(d > 1 \). Due to the discretization process, it is natural, and easier, to work with \(d \)-indices \(n = (n^{(1)}, \ldots, n^{(d)}) \), with \(n^{(r)} \) integer positive number, \(r = 1, \ldots, d \).

In this case the matrix dimension is \(N(n_0) = \prod_{r=1}^d n^{(r)}_0 \) and when considering the projected matrices of size \(N(n_1) \) we have that \(n_1 \) is again a \(d \)-index and we assume not only \(N(n_1) < N(n_0) \), but also \(n_1 < n_0 \) componentwise.

We discuss in detail the two-level case, since the \(d \)-level one is a simple generalization. Thus, in the two-level case, we are dealing with the matrix sequence

\[
\{B_n\}_n = \{A_n + D_n\}_n
\]

where \(\{A_n\}_n = \{\text{tridiag}_{n^{(1)}} [-1, 2, -1] \otimes I_n^{(2)} + I_n^{(1)} \otimes \text{tridiag}_{n^{(2)}} [-1, 2, -1]\}_n \) and \(\{D_n\}_n \) is a sequence of diagonal matrices whose diagonal entries \(d_i^{(n)} \), \(i = 1, \ldots, N(n) \), are uniformly bounded in modulus by a constant \(M \) independent of \(n \). Since

\[
\lambda_{\min}(A_n) = 4 \sin^2 \left(\frac{\pi}{2(n^{(1)} + 1)} \right) + 4 \sin^2 \left(\frac{\pi}{2(n^{(2)} + 1)} \right)
\]

\[
= \frac{\pi^2}{[n^{(1)}]_2} + \frac{\pi^2}{[n^{(1)}]_2} + O(\psi^{-3}),
\]

we impose the condition

\[
\psi^2 \min_{1 \leq i \leq N(n)} \frac{\pi}{n^{(i)}_2} + \pi^2 \geq c
\]

for some \(c > 0 \) independent of \(n \), with \(\psi = \min_{i} \{n^{(i)}\} \). Thus, also \(\{B_n\}_n \) is an uniformly bounded positive definite matrix sequence and

\[
B_n \geq A_n + \frac{c - \pi^2}{\psi^2} I \geq \frac{c}{\pi^2} A_n
\]

so satisfying the crucial assumption \(A_n \leq \vartheta B_n \) in Proposition 3.5 with \(\vartheta = \pi^2/c \). The projector definition can be handled in a natural manner by using tensorial
arguments: \((p_0^1)^H\) is constructed in such a way that
\[
\begin{align*}
p_0^1 &= P_0 U_0^1 \\
P_0 &= \text{tridiag}_{n_0}(1, 2, 1) \otimes \text{tridiag}_{n_0}(1, 2, 1), \\
U_0^1 &= T_0^1(n_0^{(1)}) \otimes T_0^2(n_0^{(2)})
\end{align*}
\]
with \(n_0^{(r)} = 2n_1^{(r)} + 1\) and where \(T_0^1(n_0^{(r)}) \in \mathbb{R}^{n_0^{(r)} \times n_0^{(r)}}\) is the unilevel matrix given in (4.3). Notice that this is the most trivial extension of the unilevel projector to the two-level setting and such a choice is also the less expensive from a computational point of view: in fact, \(p_0^1 = \tau_0((2 + 2 \cos(t_1))(2 + 2 \cos(t_2)))U_0^1\) equals \([T_{n_0}^{(r)}(p(2 + 2 \cos(t_1)))T_0^1(n_0^{(1)}) \otimes [T_{n_0}^{(r)}(p(2 + 2 \cos(t_2)))T_0^2(n_0^{(2)})]\].

The proposition below refers to a two-level tridiagonal correction for the same reasons as the unilevel case.

Proposition 4.4 Let
\[
B_0 = \text{tridiag}_{n_0}(1, 2, -1) \otimes I_{n_0}(1) \otimes \text{tridiag}_{n_0}(1, 2, -1) + T_0 \in \mathbb{R}^{N(n_0) \times N(n_0)},
\]
with \(n_0 > 0\) and \(T_0\) being a symmetric uniformly bounded tridiagonal block matrix with tridiagonal blocks such that \(A_0 \leq \vartheta B_0\), with \(A_0 = \text{tridiag}_{n_0}(1, 2, -1) \otimes I_{n_0}(1) \otimes \text{tridiag}_{n_0}(1, 2, -1) + T_0\) and some \(\vartheta > 0\). Let
\[
p^1_0 = (\text{tridiag}_{n_0}(1, 2, 1) \otimes \text{tridiag}_{n_0}(1, 2, 1))(T_0^1(n_0^{(1)}) \otimes T_0^2(n_0^{(2)})),
\]
with \(n_0^{(r)} = 2n_1^{(r)} + 1\), \(r = 1, 2\). Then, \(B_1 := (p^1_0)^H B_0 p^1_0\) coincides with \(A_1 + T_1\), where \(T_1 \in \mathbb{R}^{N(n_1) \times N(n_1)}\) is a symmetric uniformly bounded tridiagonal block matrix with tridiagonal blocks and where \(A_1\) is a two-level \(\tau\) tridiagonal block matrix with tridiagonal blocks asymptotic to
\[
\text{tridiag}_{n_1}(1, 2, -1) \otimes I_{n_1}(1) \otimes \text{tridiag}_{n_1}(1, 2, -1),
\]
so that \(A_1 \leq \vartheta B_1\).

Proof. For the \(\tau\) part refer to [27]. For the two-level banded part it is a simple check. In fact, the product \(P_0 T_0 P_0\) is a 7-diagonal block matrix with 7-diagonal blocks (\(P_0\) is a tridiagonal block matrix with tridiagonal blocks) and the action of \(U_0^1\), on the left and on the right, selects even rows and columns in even blocks with respect to the rows and columns, so that the resulting matrix has a tridiagonal block pattern with tridiagonal blocks. The order relation follows as a direct consequence of the assumption \(A_0 \leq \vartheta B_0\) and the uniform boundedness is implied by the uniform boundedness of all the involved matrices.

Corollary 4.5 Let \(B_0 = A_0 + T_0 \in \mathbb{R}^{N(n_0) \times N(n_0)}\) with \(n_0 > 0\),
\[
A_0 = \text{tridiag}_{n_0}(1, 2, -1) \otimes I_{n_0}(1) \otimes \text{tridiag}_{n_0}(1, 2, -1),
\]
and \(T_0\) symmetric tridiagonal block matrix with tridiagonal blocks such that \(A_0 \leq \vartheta B_0\) for some \(\vartheta > 0\). Let
\[
p^1_0 = (\text{tridiag}_{n_0}(1, 2, 1) \otimes \text{tridiag}_{n_0}(1, 2, 1))(T_0^1(n_0^{(1)}) \otimes T_0^2(n_0^{(2)})),
\]
with \(n_0^{(r)} = 2n_1^{(r)} + 1\), \(r = 1, 2\). Then, there exists \(\beta > 0\) independent of \(n_0\) so that inequality (3.2) holds true.
Proof. The proof can be done following the same steps as in Corollary 4.2. •

Corollary 4.6 Let \(\{ B_n \} \) be the sequence such that \(B_n = A_n + T_n \) with

\[
A_n = \text{tridiag}_{n(1)} [-1, 2, -1] \otimes I_{n(2)} + I_{n(1)} \otimes \text{tridiag}_{n(2)} [-1, 2, -1],
\]

and with \(T_n \) symmetric uniformly bounded tridiagonal block matrix with tridiagonal blocks. Then, there exist \(\alpha_{B, \text{pre}}, \alpha_{B, \text{pre}} > 0 \) independent of \(n \), so that inequalities (3.12) and (3.13) hold true.

Proof. The proof can be worked out as in Corollary 4.3 since the sequence \(\{ B_n \} \) is uniformly bounded by \(8 + M \), with \(\| T_n \|_2 \leq M \) independent of \(n \) by assumption. •

5 Numerical Examples

We test our TGM and MGM (standard V-cycle according to Section 2) for several examples of matrix corrections \(\{ D_n \} \), \(D_n \in \mathbb{C}^{N(n) \times N(n)} \), \(N(n) = \prod_{d=1}^{2} n^{(d)} \), \(d = 1, 2 \).

We will consider nonnegative definite band corrections and indefinite band corrections. By referring to Section 4, the case of nonnegative definite corrections implies trivially that \(A_n \leq B_n \) so that the desired constant is \(\vartheta = 1 \). However, as observed in real-world applications (see [14]), the most challenging situation is the one of indefinite corrections.

Concerning nonnegative definite corrections, the reference set is defined according to the following notation, in the unilevel and in the two-level setting, respectively:

\[
\begin{array}{cccccc}
\hline
d_s^{(n)} & d0 & d1 & d2 & d3 & d4 \\
\hline
1D & s = 1, \ldots, N(n) & 0 & \frac{s}{s+1} & |\sin(s)| & |\sin(s)|\frac{s^2-1}{s^2+1} & \frac{s}{N(n)} \\
2D & i = 1, \ldots, n_1 & 0 & \frac{i}{i+1} & |\sin(i)| & |\sin(i)|\frac{i^2-1}{i^2+1} & \frac{s}{N(n)} \\
& j = 1, \ldots, n_2 & + \frac{j}{j+1} & +|\sin(j)| & +|\sin(j)|\frac{j^2-1}{j^2+1} & & \\
\hline
\end{array}
\]

The case of indefinite corrections is considered in connection with Laplacian systems with Dirichlet boundary conditions: in that setting the diagonal entries \(d_s^{(n)} \) of \(D_n \) are generated randomly. Finally higher order differential operators and linear systems arising from integral equations in image restoration are considered at the end of the section.

The aim is to give numerical evidences of the theoretical optimality results of TGM convergence and also to their extension in the case of the MGM application.
The projectors are properly chosen according to the nature of structured part, while we will use, in general, the Richardson smoothing/intermediate iteration step twice in each iteration, before and after the coarse grid correction, with different values of the parameter ω.

According to the definition, when considering the TGM, the exact solution of the system is obtained by using a direct solver in the immediately subsequent coarse grid dimension, while, when considering the MGM, the exact solution of the system is computed by the same direct solver, when the coarse grid dimension equals 16^d (where $d = 1$ for the unilevel case and $d = 2$ for the two-level case).

In all tables we report the numbers of iterations required for the TGM or MGM convergence, assumed to be reached when the Euclidean norm of the relative residual becomes less than 10^{-7}. We point out that the CPU times are consistent with the iteration counts.

Finally, we stress that the matrices A_n at every level (except for the coarsest) are never formed since we need only to store the nonzero Fourier coefficients of the generating function at every level for matrix-vector multiplications. Thus, besides the $O(N(n))$ operations complexity of the proposed MGM both with respect to the structured part and clearly with respect to the non-structured one, the memory requirements of the structured part are also very low since there are only $O(1)$ nonzero Fourier coefficients of the generating function at every level. On the other hand, the projections of the initial diagonal correction are stored at each level according to standard sparse matrix techniques during the pre-computing phase.

5.1 Discrete Laplacian-plus-diagonal systems

The numerical tests below refer to convergence results in the case of matrix sequences arising from the Laplacian discretization, in the unilevel and in the two-level settings, respectively.

5.1.1 Dirichlet boundary conditions

Firstly, we consider the case of Dirichlet boundary conditions so that the obtained matrix sequence is the Toeplitz/τ matrix sequence $\{\tau_n(f)\}_n$ generated by the function $f(t) = 2 - 2\cos(t)$, $t \in (0, 2\pi]$. The projector is defined as in (4.3) and (4.4), while the parameters ω for the smoothing/intermediate iterations are chosen as

$$\omega_{\text{pre}} = \frac{1}{2\left(\|f\|_{\infty} + \|D_n\|_{\infty}\right)} \quad \text{and} \quad \omega_{\text{post}} = \frac{1}{\|f\|_{\infty} + \|D_n\|_{\infty}},$$

with $\nu_{\text{pre}} = \nu_{\text{post}} = 1$.

The results in Table 1 confirm the optimality of the proposed TGM in the sense that the number of iterations is uniformly bounded by a constant not depending on the size $N(n)$ indicated in the first column. Moreover, it seems that this claim can be extended to the MGM convergence. Notice, also, that the number of iterations is frequently the best possible since it equals the number of TGM iterations.

The case of the diagonal correction d_4 deserves special attention: as shown in the first column, just one pre-smoothing/intermediate and post-smoothing
Table 1: Number of iterations required by TGM and MGM - unilevel cases (refer to (5.1) for the definition of the constant ρ).

| $B_n = \text{tridiag}_n[-1, 2, -1] + \text{Diagonal}$ |
|---|---|---|---|---|---|---|---|---|
| $N(n)$ | d_0 | d_1 | d_2 | d_3 | d_4 | $N(n)$ | d_0 | d_1 | d_2 | d_3 | d_4 |
| 31 | 2 | 7 | 7 | 7 | 7 | 31 | 2 | 7 | 7 | 7 | 7 |
| 63 | 2 | 7 | 8 | 8 | 7 | 63 | 7 | 7 | 7 | 7 | 7 |
| 127 | 2 | 7 | 8 | 8 | 7 | 127 | 8 | 7 | 8 | 8 | 7 |
| 255 | 2 | 7 | 8 | 8 | 7 | 255 | 7 | 8 | 8 | 9 | 7 |
| 511 | 2 | 6 | 8 | 8 | 7 | 511 | 8 | 7 | 8 | 16 | 7 |

Table 2: Number of iterations required by TGM and MGM - two-level cases (refer to (5.1) for the definition of the constant ρ).

| $B_n = \text{tridiag}_{n(1)}[-1, 2, -1] \odot I_{n(2)} + I_{n(1)} \odot \text{tridiag}_{n(2)}[-1, 2, -1] + \text{Diagonal}$ |
|---|---|---|---|---|---|---|---|---|
| $N(n)$ | d_0 | d_1 | d_2 | d_3 | d_4 | $N(n)$ | d_0 | d_1 | d_2 | d_3 | d_4 |
| 312 | 16 | 10 | 13 | 13 | 16 | 312 | 16 | 10 | 13 | 13 | 16 |
| 632 | 16 | 10 | 13 | 13 | 16 | 632 | 16 | 10 | 13 | 13 | 16 |
| 1272 | 16 | 10 | 13 | 13 | 16 | 1272 | 16 | 10 | 12 | 12 | 16 |
| 2552 | 16 | 10 | 13 | 13 | 16 | 2552 | 16 | 10 | 12 | 12 | 16 |
| 5112 | 16 | 10 | 13 | 13 | 16 | 5112 | 16 | 9 | 12 | 12 | 16 |

The optimality result in the second column relative to MGM in the $d4$ case is obtained just by considering $\rho = 1$. This phenomenon is probably due to some inefficiency in considering $\|D_n\|_{\infty}$ in the tuning of the parameter ω_{pre} and ω_{post}. In fact, it is enough to substitute, for instance, the post-smoother with the Gauss-Seidel method in order to preserve the optimality also for $\rho = 0$.

Other examples of Toeplitz/τ linear systems plus diagonal correction can be found in [23], corresponding to Sinc-Galerkin discretization of differential problems according to [20].

By using tensor arguments, our results plainly extend to the two-level setting and the comments concerning Table 2 are substantially equivalent as in the unilevel case.

Before dealing with other type of boundary conditions, we want to give a comparison of the performances of the proposed method with respect to those achieved by considering, for instance, the conjugate gradient (cg) method. Table 3 reports, for increasing dimension, the Euclidean matrix condition number $k_2(A_n + D_n)$, together with the number of iterations required by the cg. As
Table 3: Euclidean condition number $k_2(A_n + D_n)$ and number of iterations required by cg - unilevel and two-level cases.

<table>
<thead>
<tr>
<th>$N(n)$</th>
<th>k_2</th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>4.14e+2</td>
<td>82</td>
<td>6.52e+0</td>
<td>18</td>
<td>7.98e+0</td>
<td>22</td>
</tr>
<tr>
<td>63</td>
<td>1.65e+3</td>
<td>163</td>
<td>5.67e+0</td>
<td>17</td>
<td>8.02e+0</td>
<td>21</td>
</tr>
<tr>
<td>127</td>
<td>6.66e+3</td>
<td>255</td>
<td>5.68e+0</td>
<td>17</td>
<td>8.02e+0</td>
<td>21</td>
</tr>
<tr>
<td>255</td>
<td>2.66e+4</td>
<td>511</td>
<td>5.69e+0</td>
<td>17</td>
<td>8.02e+0</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$N(n)$</th>
<th>k_2</th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>4.14e+2</td>
<td>82</td>
<td>6.52e+0</td>
<td>18</td>
<td>7.98e+0</td>
<td>22</td>
</tr>
<tr>
<td>63</td>
<td>1.65e+3</td>
<td>163</td>
<td>5.67e+0</td>
<td>17</td>
<td>8.02e+0</td>
<td>21</td>
</tr>
<tr>
<td>127</td>
<td>6.66e+3</td>
<td>255</td>
<td>5.68e+0</td>
<td>17</td>
<td>8.02e+0</td>
<td>21</td>
</tr>
<tr>
<td>255</td>
<td>2.66e+4</td>
<td>511</td>
<td>5.69e+0</td>
<td>17</td>
<td>8.02e+0</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 4 reports the Euclidean condition number and the mean of the number of iterations required by the MGM in the unilevel and two-level setting by considering, for each case, ten examples of random matrix corrections.

All these results confirm the effectiveness of our proposal. Though the Euclidean condition numbers are fully comparable with those of the d_0 case, the number of required iterations does not worsen. Conversely, the cg method requires for instance in the d_5 case $N(n)$ iterations in the unilevel setting, and 23, 0, 22, 21, 21, 21, 21, 21, 21, 21 in the two-level one.

It is worth stressing that the pentadiagonal corrections are reduced at the first
In the case of periodic boundary conditions the obtained matrix sequence is driven by the projector pattern (see [15, 1, 2]).

\[B_n = \text{tridiag}_n[-1, 2, -1] + \text{random correction} \]

<table>
<thead>
<tr>
<th>(N(n))</th>
<th>(n)</th>
<th>(d5)</th>
<th>(d6)</th>
<th>(d7)</th>
<th>(d8)</th>
<th>(d9)</th>
<th>(d10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>3.89e+2</td>
<td>3</td>
<td>4.09e+2</td>
<td>3.5</td>
<td>3.83e+2</td>
<td>3</td>
<td>4.16e+2</td>
</tr>
<tr>
<td>63</td>
<td>1.57e+3</td>
<td>7</td>
<td>1.64e+3</td>
<td>7</td>
<td>1.53e+3</td>
<td>7</td>
<td>1.66e+3</td>
</tr>
<tr>
<td>12</td>
<td>6.29e+3</td>
<td>8</td>
<td>6.8e+4</td>
<td>8</td>
<td>6.54e+3</td>
<td>8</td>
<td>6.11e+3</td>
</tr>
<tr>
<td>255</td>
<td>2.52e+4</td>
<td>8</td>
<td>2.65e+4</td>
<td>8</td>
<td>2.46e+4</td>
<td>8</td>
<td>2.63e+4</td>
</tr>
<tr>
<td>511</td>
<td>1.01e+5</td>
<td>8</td>
<td>1.05e+5</td>
<td>8</td>
<td>9.86e+4</td>
<td>8</td>
<td>1.06e+5</td>
</tr>
</tbody>
</table>

Table 4: Euclidean condition number \(k_2(A_n + D_n) \) and mean number of iterations required by MGM - unilevel and two-level cases.

In the case of periodic boundary conditions the obtained matrix sequence is the circulant matrix sequence \(\{S_n(f)\}_n \) generated by the function \(f(t) = 2 - 2\cos(t) \), \(t \in (0, 2\pi) \). Following [30], we consider the operator \(T_0^1 \in \mathbb{R}^{n_0 \times n_1} \), \(n_0 = 2n_1 \), such that

\[
(T_0^1)_{i,j} = \begin{cases}
1 & \text{for } i = 2j - 1, \ j = 1, \ldots, n_1, \\
0 & \text{otherwise,}
\end{cases}
\]

and we define a projector \((p_0^1)^H = P_0^1 \), \(p_0^1 \in \mathbb{R}^{n_0 \times n_1} \), as

\[
p_0^1 = P_0 T_0^1, \quad P_0 = S_0(p), \quad p(t) = 2 + 2\cos(t).
\]

It must be outlined that in the d0 case the arising matrices are singular, so that we consider the classical Strang correction [33]

\[
S_n(f) = S_{n_0}(f) + f \left(\frac{2\pi}{N(n_0)} \right) \frac{e e^t}{N(n_0)}
\]

where \(e \) is the vector of all ones. The results in the top part of Table 5 confirm the optimality of the proposed TGM and its extension to MGM (the case d4 requires to set \(\rho = 4 \)).

When dealing with reflective boundary conditions, the obtained matrix sequence is the DCT III matrix sequence \(C_n(f) \), generated by the function \(f(t) = 2 - 2\cos(t) \), \(t \in (0, 2\pi) \). Following [12], we consider the operator \(T_0^1 \in \mathbb{R}^{n_0 \times n_1} \), \(n_0 = 2n_1 \), such that

\[
(T_0^1)_{i,j} = \begin{cases}
1 & \text{for } i \in \{2j - 1, 2j\}, \ j = 1, \ldots, n_1, \\
0 & \text{otherwise,}
\end{cases}
\]
\[B_n = \text{unilevel circulant } S_n(f) + \text{Diagonal}, \quad f(t) = 2 - 2 \cos(t) \]

Table 5: Number of iterations required by TGM and MGM - unilevel cases (refer to (5.1) for the definition of the constant \(\rho \)).

<table>
<thead>
<tr>
<th>(N(n))</th>
<th>(d_0)</th>
<th>(d_1)</th>
<th>(d_2)</th>
<th>(d_3)</th>
<th>(d_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>128</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>512</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(N(n))</th>
<th>(d_0)</th>
<th>(d_1)</th>
<th>(d_2)</th>
<th>(d_3)</th>
<th>(d_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>128</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>512</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

\[B_n = \text{unilevel DCT III } C_n(f) + \text{Diagonal}, \quad f(t) = 2 - 2 \cos(t) \]

and we define a projector \((p_0)^H, p_0 \in \mathbb{R}^{n_0 \times n_1}\), as

\[
p_0^1 = P_0 T_0^1, \quad P_0 = C_0(p), \quad p(t) = 2 + 2 \cos(t).
\]

Again, the results in bottom part of Table 5 confirm the optimality of the proposed TGM and its extension to MGM. It is worth stressing that in the \(d0 \) case we are considering the matrix

\[
\tilde{C}_{n_0}(f) = C_{n_0}(f) + f \left(\frac{\pi}{N(n_0)} \right) \mathbf{ee}^t.
\]

Furthermore, the case \(d4 \) requires to set \(\rho = 2 \) in order to observe optimality. By using tensor arguments, our results plainly extend to the two-level setting and the comments concerning Table 6 are substantially equivalent as in the corresponding unilevel case.

5.2 Other examples

In this section we give numerical evidences of the optimality of TGM and MGM results in a more general setting.

5.2.1 Higher order \(\tau \) discretizations plus diagonal systems

We consider \(\tau \) matrix sequences arising from the discretization of higher order differential problems with proper homogeneous boundary conditions on \(\partial \Omega \):

\[
(-1)^q \sum_{i=1}^d \frac{\partial^{2q}}{\partial x_i^{2q}} u(x) + \mu(x) u(x) = h(x) \text{ on } \Omega = (0, 1)^d,
\]

i.e., \(\{B_n = A_n + D_n\}_n \), where \(A_n = \tau_n(f) \) with \(f(t) = \sum_{i=1}^d (2 - 2 \cos(t_i))^q \).

More specifically, in the unilevel case we define \(p(t) = [2 + 2 \cos(t)]^w \) where \(w \) is
\[B_n = \text{two-level circulant } S_n(f) + \text{ Diagonal}, \quad f(t_1, t_2) = 4 - 2 \cos(t_1) - 2 \cos(t_2) \]

<table>
<thead>
<tr>
<th>(N(n))</th>
<th>(d_0)</th>
<th>(d_1)</th>
<th>(d_2)</th>
<th>(d_3)</th>
<th>(d_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(32^2)</td>
<td>15</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>(64^2)</td>
<td>15</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>(128^2)</td>
<td>15</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>(256^2)</td>
<td>15</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>(512^2)</td>
<td>15</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(N(n))</th>
<th>(d_0)</th>
<th>(d_1)</th>
<th>(d_2)</th>
<th>(d_3)</th>
<th>(d_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(32^2)</td>
<td>16</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>(64^2)</td>
<td>16</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>(128^2)</td>
<td>16</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>(256^2)</td>
<td>16</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>(512^2)</td>
<td>16</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 6: Number of iterations required by TGM and MGM - two-level cases (refer to (5.1) for the definition of the constant \(\rho\)).

chosen according to conditions in [15, 9, 27]: in order to have a MGM optimality we must take \(w\) at least equal to 1 if \(q = 1\) and at least equal to 2 if \(q = 2, 3\). Clearly, the lower is the value of \(w\), the greater will be the advantage from a computational viewpoint. Indeed, Table 7 confirms the need of these constraints with respect to the case \(q = 2\), this being the only \(d_0\) case where we observe a growth in the number of iterations with respect to \(N(n)\). Nevertheless, it should be noticed that in the same case the contribution of the non-structured part improves the numerical behavior since the minimal eigenvalue is increased. The remaining results in Table 7 confirm the optimality of the corresponding MGM (the \(d_4\) case requires to set \(\rho\) in a proper way as just observed in the Laplacian case).

Notice that the bandwidth of the non-structured diagonal correction is increased by subsequent projections until a maximal value corresponding to \(4w - 1\) is reached (for a discussion on the evolution of the bandwidth when a generic (multilevel) band system is encountered see [15, 1, 2]).

With respect to the two-level problem, we consider again the most trivial extension (and less expensive from a computational point of view) of the unilevel projector to the two-level setting, given by \(P_n = \tau_n(p)\) with \(p(t_1, t_2) = [(2 + 2 \cos(t_1))(2 + 2 \cos(t_2))]^w\), \(w = 1, 2, 3\). The comments concerning the two-level setting in Table 7 are of the same type as in the unilevel one.

5.2.2 Higher order circulant discretizations plus diagonal systems

We consider circulant matrix sequences arising from the approximation of higher order differential problems with proper homogeneous/periodic boundary conditions on \(\partial\Omega\) as in (5.2), i.e., \(\{B_n = A_n + D_n\}_n\), where \(A_n = S_n(f)\) with \(f(t) = \sum_{i=1}^d (2 - 2 \cos(t_i))^q\). The choice of the generating function for the projector is the same as in the previous section (see [30]). Indeed, Table 8 shows...
The importance of these constraints with respect to the case d_0 with $q = 2$. It is worth mentioning that the optimality of the corresponding MGM is again confirmed (for the case d_4 the parameter ρ has to be set in a proper way). The comments concerning the two-level setting in Table 8 are of the same type as in the unilevel one.

5.2.3 Reflective BCs discretizations plus diagonal systems

We consider an example of DCT-III matrix sequences arising from the discretization of integral problems with reflective boundary conditions (see [22]), i.e., $B_n = A_n + D_n$, where $A_n = C_n(f)$ with f having nonnegative Fourier coefficients as it is required for the point spread function in the modeling of

<table>
<thead>
<tr>
<th>$B_n=$unilevel τ+ Diagonal, $f(t) = (2 - 2\cos(t))^q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w = 1$</td>
</tr>
<tr>
<td>$N(n)$</td>
</tr>
<tr>
<td>$\rho = 0$</td>
</tr>
<tr>
<td>$\rho = 2$</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>127</td>
</tr>
<tr>
<td>255</td>
</tr>
<tr>
<td>511</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$B_n=$two-level τ+ Diagonal, $f(t_1, t_2) = (2 - 2\cos(t_1))^q + (2 - 2\cos(t_2))^q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w = 1$</td>
</tr>
<tr>
<td>$N(n)$</td>
</tr>
<tr>
<td>$\rho = 0$</td>
</tr>
<tr>
<td>$\rho = 2$</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>127</td>
</tr>
<tr>
<td>255</td>
</tr>
<tr>
<td>511</td>
</tr>
</tbody>
</table>

Table 7: Number of required MGM iterations - unilevel and two-level cases (refer to (5.1) for the definition of the constant ρ).
\[B_n = \text{unilevel circulant} + \text{Diagonal}, \quad f(t) = (2 - 2 \cos(t))^q\]

<table>
<thead>
<tr>
<th>(q = 2)</th>
<th>(w = 1)</th>
<th>(w = 2)</th>
<th>(q = 3)</th>
<th>(w = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N(n))</td>
<td>(d_0)</td>
<td>(d_1)</td>
<td>(d_2)</td>
<td>(d_3)</td>
</tr>
<tr>
<td>32</td>
<td>19</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>64</td>
<td>41</td>
<td>12</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>128</td>
<td>77</td>
<td>12</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>256</td>
<td>137</td>
<td>12</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>512</td>
<td>224</td>
<td>12</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

\[B_n = \text{two-level circulant} + \text{Diagonal}, \quad f(t_1, t_2) = (2 - 2 \cos(t_1))^q + (2 - 2 \cos(t_2))^q\]

<table>
<thead>
<tr>
<th>(q = 2)</th>
<th>(w = 1)</th>
<th>(w = 2)</th>
<th>(q = 3)</th>
<th>(w = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N(n))</td>
<td>(d_0)</td>
<td>(d_1)</td>
<td>(d_2)</td>
<td>(d_3)</td>
</tr>
<tr>
<td>32(^2)</td>
<td>34</td>
<td>23</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>64 (^2)</td>
<td>76</td>
<td>22</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>256 (^2)</td>
<td>130</td>
<td>21</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>512 (^2)</td>
<td>213</td>
<td>21</td>
<td>25</td>
<td>225</td>
</tr>
</tbody>
</table>

Table 8: Number of required MGM iterations - unilevel and two-level cases (refer to (5.1) for the definition of the constant \(\rho\)).

image blurring, see [6]. A simple model is represented by \(f(t) = f_d(t) := \sum_{i=1}^{d} (2 + 2 \cos(t_i))\) where, by the way, the product \(f_1(t_1)f_1(t_2)\) is encountered when treating super-resolution or high resolution problems, see e.g. [21]. The choice of the generating function for the projector is the same as in [12]. The results in Table 9 confirm again the optimality of the corresponding MGM (the case \(d_4\) requires to set \(\rho\) in a proper way). The observations regarding the two-level setting are in the same spirit as those of the unilevel one.
$$B_n = \text{unilevel DCT III } C_n(f) + \text{Diagonal}, \quad f(t) = 2 + 2 \cos(t).$$

<table>
<thead>
<tr>
<th>$N(n)$</th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>14</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>64</td>
<td>12</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>128</td>
<td>11</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>256</td>
<td>10</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>512</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

$$\rho = 0$$

<table>
<thead>
<tr>
<th>$N(n)$</th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>14</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>64</td>
<td>13</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>128</td>
<td>13</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>256</td>
<td>12</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>512</td>
<td>10</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

$$\rho = 3$$

<table>
<thead>
<tr>
<th>$N(n)$</th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>14</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>64</td>
<td>13</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>128</td>
<td>13</td>
<td>5</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>256</td>
<td>12</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>512</td>
<td>10</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

$$B_n = \text{two-level DCT III } C_n(f) + \text{Diagonal}, \quad f(t_1, t_2) = (2 + 2 \cos(t_1)) + (2 - 2 \cos(t_2)).$$

<table>
<thead>
<tr>
<th>$N(n)$</th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>32^2</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>64^2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>128^2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>256^2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>512^2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

$\rho = 0$

<table>
<thead>
<tr>
<th>$N(n)$</th>
<th>d_0</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>32^2</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>64^2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>128^2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>256^2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>512^2</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

$\rho = 3$

Table 9: Number of iterations required by TGM and MGM - unilevel and two level cases (refer to (5.1) for the definition of the constant ρ).

6 Concluding Remarks

The algebraic tools given in Section 3 and Section 4 revealed that, if a suitable TGM for a Hermitian positive definite matrix sequence $\{A_n\}_n$ is available and another Hermitian positive definite uniformly bounded sequence $\{B_n\}_n$ is given such that $A_n \leq \vartheta B_n$, for n large enough, then the same strategy works almost unchanged for $\{B_n\}_n$ too. As an example, this means that if the method is optimal for the first sequence then it is optimal for the second as well. The same results should hold for the MGM procedures, but here only a wide set of numerical evidences has been provided for supporting the claim: the related theory will be a subject of future investigations taking into account the final remarks in Section 3.1 and the discussion in Section 3.2.

We point out that the latter goal is quite important. Indeed, it is not difficult to prove relations of the form $\vartheta_1 A_n \leq B_n \leq \vartheta_2 A_n$ with B_n being discretization of an elliptic variable coefficient problem, A_n being the same discretization in the constant coefficient case, and where ϑ_1, ϑ_2 are positive constants independent of n and mainly depending on the ellipticity parameters of the problem. Therefore, the above mentioned results would represent a link for inferring MGM optimality on a general (possibly high order) variable coefficient elliptic problem, starting from the MGM optimality for the structured part, i.e., the one related to the constant coefficient discretization.

Finally, we point out that the latter idea has been used essentially for the structured plus diagonal systems coming from approximated elliptic partial differential equations with different boundary conditions. However, the same approach is applicable to a wide variety of cases, as sketched for instance in Section 5.2.3.
A Appendix

For reader convenience, we report the essential steps of the proof of Theorems
3.1 and 3.2.

Let us start by proving Theorem 3.1. As demonstrated in Theorem 5.2 in [25],
the existence of $\beta > 0$ such that

$$\min_{y \in \mathbb{C}^N} \| x - p_0^1 y \|_{D_0} \leq \beta \| x \|_{A_0}^2 \quad \forall x \in \mathbb{C}^N$$

implies the validity of the so called approximation property only in the range of
CGC_0, i.e., the existence of $\beta > 0$ such that

$$\| CGC_0 x \|_{A_0}^2 \leq \beta \| CGC_0 x \|_{A_0 D_0^{-1} A_0}^2 \quad \forall x \in \mathbb{C}^N$$

(A.1)

where $CGC_0 = I_0 - p_0^1 A_1^{-1} (p_0^1)^H A_0$.

Thus, by virtue of the post-smoothing property (3.1) and of (A.1), for all $x \in \mathbb{C}^N$
we find

$$\| V_0 \text{post} CGC_0 x \|_{A_0}^2 \leq \| CGC_0 x \|_{A_0}^2 - \alpha_{\text{post}} \| CGC_0 x \|_{A_0 D_0^{-1} A_0}^2 \leq \| CGC_0 x \|_{A_0}^2 - \alpha_{\text{post}} \| CGC_0 x \|_{A_0}^2 = \left(1 - \frac{\alpha_{\text{post}}}{\beta} \right) \| CGC_0 x \|_{A_0}^2 \leq \left(1 - \frac{\alpha_{\text{post}}}{\beta} \right) \| x \|_{A_0}^2.$$ (A.2)

being $\| CGC_0 \|_{A_0} = 1$.

Since $TGM_0 = V_0 \text{post} CGC_0$ in the case where no pre-smoothing is considered,
the latter is the same as $\| TGM_0 \|_{A_0} \leq \sqrt{1 - \frac{\alpha_{\text{post}}}{\beta}}$ and hence Theorem 3.1 is
proved.

Now let us prove Theorem 3.2. Since the approximation property (3.6) implies clearly (A.1), by repeating the very same steps as before and exploiting
the post-smoothing property (3.5), for all $x \in \mathbb{C}^N$ we find

$$\| V_0 \text{post} CGC_0 V_0 \text{pre} x \|_{A_0}^2 \leq \| CGC_0 V_0 \text{pre} x \|_{A_0}^2 - \alpha_{\text{post}} \| CGC_0 V_0 \text{pre} x \|_{A_0 D_0^{-1} A_0}^2 \leq \| CGC_0 V_0 \text{pre} x \|_{A_0}^2 - \alpha_{\text{post}} \| CGC_0 V_0 \text{pre} x \|_{A_0}^2 = \left(1 - \frac{\alpha_{\text{post}}}{\beta} \right) \| CGC_0 V_0 \text{pre} x \|_{A_0}^2.$$ (A.3)

In addition, by using (3.6) and the pre-smoothing property (3.4), respectively,
for all $x \in \mathbb{C}^N$ we obtain

$$\| CGC_0 V_0 \text{pre} x \|_{A_0}^2 \leq \beta \| V_0 \text{pre} x \|_{A_0 D_0^{-1} A_0}^2 \leq \alpha_{\text{pre}} (\| x \|_{A_0}^2 - \| V_0 \text{pre} x \|_{A_0}^2).$$

Hence

$$\frac{\alpha_{\text{pre}}}{\beta} \| CGC_0 V_0 \text{pre} x \|_{A_0}^2 \leq \| x \|_{A_0}^2 - \| V_0 \text{pre} x \|_{A_0}^2 \leq \| x \|_{A_0}^2 - \| CGC_0 V_0 \text{pre} x \|_{A_0}^2,$$ (3.7)
since
\[\|CGC_0 V_{0, \text{pre}} x\|_{A_0}^2 \leq \|CGC_0\|_{A_0}^2 \|V_{0, \text{pre}} x\|_{A_0}^2 = \|V_{0, \text{pre}} x\|_{A_0}^2, \]
being \(\|CGC_0\|_{A_0} = 1 \). Therefore, for all \(x \in \mathbb{C}^{N(n_0)} \), it holds
\[\|CGC_0 V_{0, \text{pre}} x\|_{A_0}^2 \leq \left(1 + \frac{\alpha_{\text{pre}}}{\beta} \right)^{-1} \|x\|_{A_0}^2, \] (A.4)

By using inequality (A.4) in (A.3), we have
\[\|V_{0, \text{post}} CGC_0 V_{0, \text{pre}} x\|_{A_0}^2 \leq 1 - \frac{\alpha_{\text{post}}}{\beta} \left(1 + \frac{\alpha_{\text{pre}}}{\beta} \right) \|x\|_{A_0}^2, \]
and the proof of Theorem 3.2 is concluded.

References

