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We study the entire coupled evolution of the inflaton �ðtÞ and the scale factor aðtÞ for general initial
conditions �ðt0Þ and d�ðt0Þ=dt at a given initial time t0. The generic early Universe evolution has three

stages: decelerated fast roll followed by inflationary fast roll and then inflationary slow roll (an attractor

always reached for generic initial conditions). This evolution is valid for all regular inflaton potentials

vð�Þ. In addition, we find a special (extreme) slow-roll solution starting at t ¼ �1 in which the fast-roll

stages are absent. At some time t ¼ t�, the evolution backwards in time from t0 reaches generically a

mathematical singularity where aðtÞ vanishes and the Hubble parameter becomes singular. We determine

the general behavior near the singularity. The classical homogeneous inflaton description turns to be valid

for t� t� > 10tPlanck well before the beginning of inflation, quantum loop effects are negligible there. The

singularity is never reached in the validity region of the classical treatment and therefore it is not a real

physical phenomenon here. Fast-roll and slow-roll regimes are analyzed in detail including the equation of

state evolution, both analytically and numerically. The characteristic time scale of the fast-roll era turns to

be t1 ¼ ð1=mÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð0Þ=½3M4�p � 104tPlanck, where V is the double-well inflaton potential, m is the inflaton

mass, and M the energy scale of inflation. The whole evolution of the fluctuations along the decelerated

and inflationary fast-roll and slow-roll eras is computed. The Bunch-Davies initial conditions are

generalized for the present case in which the potential felt by the fluctuations can never be neglected.

The fluctuations feel a singular attractive potential near the t ¼ t� singularity (as in the case of a particle

in a central singular potential) with exactly the critical strength (� 1=4) allowing the fall to the center.

Precisely, the fluctuations exhibit logarithmic behavior describing the fall to t ¼ t�. The power spectrum
gets dynamically modified by the effect of the fast-roll eras and the choice of Bunch-Davies initial

conditions at a finite time through the transfer function DðkÞ of initial conditions. The power spectrum

vanishes at k ¼ 0:DðkÞ presents a first peak for k� 2=�0 (�0 being the conformal initial time), then

oscillates with decreasing amplitude and vanishes asymptotically for k ! 1. The transfer function DðkÞ
affects the low cosmic microwave background multipoles C‘: the change �C‘=C‘ for 1 � ‘ � 5 is

computed as a function of the starting instant of the fluctuations t0. Cosmic microwave background

quadrupole observations indicate large suppressions, which are well reproduced for the range t0 � t� *
0:05=m ’ 10 100tPlanck.
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I. INTRODUCTION AND SUMMARY OF RESULTS

Since the Universe expands exponentially fast during
inflation, gradients are exponentially erased and can be
neglected. At the same time, the exponential stretching of
spatial lengths classicalizes the physics and allows a clas-
sical treatment. One can therefore consider a homogeneous
and classical inflaton field which thus determines self-
consistently a homogenous and isotropic Friedmann-
Robertson Walker metric sourced by this inflaton.

This treatment is valid for early times well after the
Planck time t ¼ 10�44 sec , at which the quantum fluctua-

tions are expected to be large and thus a full quantum
gravity treatment is required.
In this paper we study the entire coupled evolution of the

inflaton field�ðtÞ and the scale factor aðtÞ of the metric for
generic initial conditions, fixed by the values of �ðt0Þ and
d�ðt0Þ=dt at a given initial time t0.
We show that the generic early Universe evolution has

three stages: a decelerated fast-roll stage followed by an
inflationary fast-roll stage and then by a slow-roll infla-
tionary regime, which is an attractor always reached for
generic initial conditions. This evolution is valid for all
regular inflaton potentials. In addition, we find a particular
(extreme) slow-roll solution starting from t ¼ �1 in
which the fast-roll stages are absent.
The evolution backwards in time from t0 reachs generi-

cally a mathematical singularity at some time t ¼ t�, where
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the scale factor aðtÞ vanishes, and the Hubble parameter
becomes singular.

We find the general behavior of the inflaton and the scale
factor near the singularity as given by Eqs. (2.14), (2.15),
(2.16), and (2.17) and determine the validity of the classical
approximation, namely, ðH=MPlÞ2 � 1. It must be stressed
that such mathematical singularity is attained extrapolating
the classical treatment where it is no more valid. The
singularity is never reached in the validity region of the
classical treatment and therefore such mathematical singu-
larity is not a real physical phenomenon here.

Quantum loops effects turns to be less than 1% for t�
t� > 10�42 sec and therefore the classical treatment of the
inflaton and the space-time can be trusted well before the
beginning of inflation.

The fast-roll (both decelerated and inflationary) and
slow-roll regimes are analyzed in detail, with both the
exact numerical evolution and an analytic approximation,
and the whole equation of state evolution in the three
regimes. We consider here the double-well (broken sym-
metric) fourth order inflaton potential since it gives the best
description of the CMB + large scale structure (LSS) data
[1,2] within the Ginsburg-Landau effective theory ap-
proach we follow.

The characteristic time scale of the fast-roll era turns to

be t1 ¼ ð1=mÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vð0Þ=½3M4�p � 104tPlanck, where Vð0Þ is the

double-well inflaton potential at zero inflaton field,m is the
inflaton mass andM the energy scale of inflation. The time
scale of the inflaton in the extreme slow-roll solution goes
as the inverse of t1, namely, 1=½m2t1�.

We study thewhole evolution of the curvature and tensor
fluctuations along the three successive regimes: deceler-
ated fast roll followed by inflationary fast roll and then
inflationary slow roll, and compute the power spectrum by
the end of inflation. The fluctuations feel a singular attrac-
tive potential near the t ¼ t� singularity (as in the case of a
particle in a central singular potential) with exactly the
critical strength (� 1=4) for which the fall to the center
becomes possible. Precisely, the logarithmic behavior of
the fluctuations for t ! t� Eq. (4.3) describes the fall to t ¼
t� for the critical strength of the potential WR felt by the
fluctuations.

We generalize the Bunch-Davies initial conditions
(BDic) to the present case in which the potential felt by
the fluctuations can never be neglected.

In general, the mode functions for large k behave as free
modes since the potential WR becomes negligible in this
limit except at the singularity t ¼ t�. One can then impose
Bunch-Davies (BD) conditions for large k, which corre-
sponds to assume an initial quantum vacuum Fock state,
empty of curvature excitations

SRðk;�Þ ¼k!1 e�ik�ffiffiffiffiffi
2k

p (1.1)

and therefore

dSR
d�

ðk;�0Þ ¼k!1�ikSRðk;�0Þ:

Here, � stands for the conformal time d� ¼ dt=aðtÞ.
Equation (1.1) fulfills the Wronskian normalization (that
ensures the canonical commutation relations)

W½SR; S�R� ¼ SR
dS�R
d�

� dSR
d�

S�R ¼ i: (1.2)

In asymptotically flat (or conformally flat) regions of the
space-time the potential felt by the fluctuations WRð�Þ
vanishes, and the fluctuations exhibit a plane wave behav-
ior for all k (not necessarily large). This is not the case in
strong gravity fields or near curvature singularities as in the
present cosmological space-time where WRð�Þ can never
be neglected at fixed k. However, we can choose BDic at
� ¼ �0 (or equivalently, t ¼ t0) by imposing

dSR
d�

ðk;�0Þ ¼ �ikSRðk;�0Þ for all k: (1.3)

That is, we consider the initial value problem for the mode
functions giving the values of SRðk;�Þ and dSR=d� at
� ¼ �0. This condition combined with the Wronskian
condition Eq. (1.2) implies that

jSRðk;�0Þj ¼ 1ffiffiffiffiffi
2k

p ;

��������dSR
d�

ðk;�0Þ
��������¼

ffiffiffi
k

2

s
; (1.4)

which is equivalent to Eq. (1.1) for large k.
The power spectrum at the end of slow-roll inflation

PRðkÞ gets dynamically modified by the effect of the
preceding fast-roll eras through the transfer function of
initial conditions DðkÞ:

PRðkÞ ¼ PBD
R ðkÞ½1þDðkÞ�: (1.5)

DðkÞ accounts for the effect of both the initial conditions
and the fluctuations evolution during fast roll (before slow
roll). DðkÞ depends on the time t0 at which BDic are
imposed.
The power spectrum PBD

R ðkÞ corresponds to start the

evolution with pure slow roll from t0 ! �1 and with
BDic Eqs. (1.3) and (1.4) imposed there at t0 ! �1,
that is, �0 ¼ �1. PBD

R ðkÞ is given by its customary pure

slow-roll expression

logPBD
R ðkÞ ¼ logAsðk0Þ þ ðns � 1Þ log k

k0

þ 1

2
nrunlog

2 k

k0
þO

�
1

N3

�
; (1.6)

where N is the number of inflation e-folds since the pivot
cosmic microwave background (CMB) scale k0 exits the
horizon. We take here N ¼ 60.
Actually, BDic can be imposed at � ¼ �0 ¼ �1 if and

only if the inflaton evolution also starts at � ¼ �0 ¼ �1.
This only happens for a particular inflaton solution: the
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extreme slow-roll solution that we explicitly present and
analyze in Sec. III A. In the extreme slow-roll case the fast-
roll eras are absent, BDic are imposed at t0 ! �1 (that is,
�0 ¼ �1), then DðkÞ ¼ 0 and PRðkÞ ¼ PBD

R ðkÞ. Only in

this case the fluctuation power spectrum at the end of
inflation is the usual power spectrum PBD

R ðkÞ Eq. (4.24).
When BDic are imposed at finite times t0, the spectrum

is not the usual PBD
R ðkÞ but it gets modified by a nonzero

transfer function DðkÞ Eq. (4.21). The power spectrum
PRðkÞ vanishes at k ¼ 0 and exhibits oscillations which
vanish at large k (see Figs. 6 and 7)

Generically, the power spectrum vanishes at k ¼ 0, and
we thus have

1þDðkÞ ¼k!0
Oðknsþ1Þ (1.7)

as shown in Sec. VA. DðkÞ presents a first peak for k�
2=�0 and then oscillates asymptotically with decreasing
amplitude such that

DðkÞ ¼k!1
O
�
1

k2

�
: (1.8)

We solved numerically the fluctuations equation with
the BDic Eq. (4.7) covering both the fast-roll and slow-roll
regimes, namely, for different initial times t0 ranging from
the singularity � ¼ �� until the transition time �trans from
fast roll to slow roll. That is to say, we solved the fluctua-
tions evolution for BDic imposed at different times in the
three eras, and we compare the resulting power spectra
among them. We computed the corresponding transfer
function, DðkÞ for the BDic imposed at the different eras.
We depict 1þDðkÞ vs k for the different values of the time
t0 where BDic are imposed in Figs. 6.

When the BDic are imposed during the fast-roll stage
well before it ends, DðkÞ changes much more significantly
than along the extreme slow-roll solution. This is due to
two main effects: the potential felt by the fluctuations is
attractive during fast roll, and �0, (far from being almost
proportional to 1=að�Þ), tends to the constant value �� as
� ! �þ� and að�Þ ! 0. The numerical transfer functions
1þDðkÞ obtained from Eqs. (4.12) and (4.21) are plotted
in Fig. 6.

We have also computed DðkÞ analytically, within the
slow-roll approximation, with BDic at finite times �0, and
a simple form is obtained in the scale-invariant case, which
is the leading term in the 1=N expansion:

DðkÞ ¼ cos2x

x2
� sin2x

x3
þ sin2x

x4
; x � k�0: (1.9)

Different initial times t0 lead essentially to a rescaling of
k in DðkÞ by a factor �0 since the conformal time � is
almost proportional to 1=að�Þ during slow roll [see Fig. 6
and below Eq. (5.7)]. By virtue of the dynamical attractor
character of slow roll, the power spectrum when the BDic
are imposed at a finite time t0 cannot really distinguish

between the extreme slow-roll solution or any other solu-
tion which is attracted to slow roll well before the time t0.
Using the transfer function DðkÞ we obtained, we com-

puted the change on the CMB multipoles �C‘=C‘ for ‘ ¼
1, 2 and 3 as functions of the starting instant of the
fluctuations t0. We plot �C‘=C‘ for 1 � ‘ � 5 vs t0 � t�
in Fig. 9. We see that �C‘=C‘ is positive for small t0 � t�
and decreases with t0 becoming then negative. The CMB
quadrupole observations indicate a large suppression thus
indicating that t0 � t� * 0:05=m ’ 10 100tPlanck.
The fact that choosing BDic leads to a primordial power

and its respective CMB multipoles which correctly repro-
duce the observed spectrum justifies the use of BDic.
Besides finding a CMB quadrupole suppression in

agreement with observations [1,3–6], we provide here
predictions for the dipole and ‘ � 5-multipole suppres-
sions. Forthcoming CMB observations can provide better
data to confront our CMB multipole suppression predic-
tions. It will be extremely interesting to measure the pri-
mordial dipole and compare with our predicted value.

II. THE PRE-INFLATIONARYAND
INFLATIONARY FAST-ROLL ERAS

The current WMAP data are validating the single field
slow-roll scenario [7]. Single field slow-roll models pro-
vide an appealing, simple and fairly generic description of
inflation. This inflationary scenario can be implemented
using a scalar field, the inflaton with a Lagrangian density
(see, for example, Ref. [1])

L ¼ a3ðtÞ
�
_’2

2
� ðr’Þ2

2a2ðtÞ � Vð’Þ
�
; (2.1)

where Vð’Þ is the inflaton potential. Since the Universe
expands exponentially fast during inflation, gradient terms
are exponentially suppressed and can be neglected. At the
same time, the exponential stretching of spatial lengths
classicalize the physics and permits a classical treatment.
One can therefore consider an homogeneous and classical
inflaton field ’ðtÞ, which obeys the evolution equation

€’þ 3HðtÞ _’þ V 0ð’Þ ¼ 0 (2.2)

in the isotropic and homogeneous Friedmann-Robertson-
Walker metric which is sourced by the inflaton

ds2 ¼ dt2 � a2ðtÞd~x2: (2.3)

HðtÞ � _aðtÞ=aðtÞ stands for the Hubble parameter. The
energy density and the pressure for a spatially homoge-
neous inflaton are given by

� ¼ _’2

2
þ Vð’Þ; p ¼ _’2

2
� Vð’Þ: (2.4)

Therefore, the scale factor aðtÞ obeys the Friedmann equa-
tion
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H2ðtÞ ¼ 1

3M2
Pl

�
1

2
_’2 þ Vð’Þ

�
: (2.5)

In order to have a finite number of inflation e-folds, the
inflaton potential Vð’Þ must vanish at its absolute mini-
mum

V0ð’minÞ ¼ Vð’minÞ ¼ 0: (2.6)

Otherwise, inflation continues forever.
We formulate inflation as an effective field theory within

the Ginsburg-Landau spirit [1,8,9]. The theory of the sec-
ond order phase transitions, the Ginsburg-Landau theory of
superconductivity, the current-current Fermi theory of
weak interactions, the sigma model of pions, nucleons
(as skyrmions), and photons are all successful effective
field theories. Our work shows how powerful is the effec-
tive theory of inflation to predict observable quantities that
can be or will be soon contrasted with experiments.

The effective theory of inflation should be the low
energy limit of a microscopic fundamental theory not yet
precisely known. The energy scale of inflationM should be
at the grand unified theory (GUT) energy scale in order to
reproduce the amplitude of the CMB anisotropies [1].
Therefore, the microscopic theory of inflation is expected
to be a GUT in a cosmological space-time. Such a theory of
inflation would contain many fields of various spins.
However, in order to have a homogeneous and isotropic
Universe the expectation value of the energy-momentum
tensor of the fields must be homogeneous and isotropic.
The inflaton field in the effective theory may be a coarse-
grained average of fundamental scalar fields, or a compos-
ite (bound state) of fundamental fields of higher spin, just
as in superconductivity. The inflaton does not need to be a
fundamental field, for example, it may emerge as a con-

densate of fermion-antifermion pairs h ���i in a GUT in the
cosmological background. In order to describe the cosmo-
logical evolution is enough to consider the effective dy-
namics of such condensates. The relation between the
effective field theory of inflation and the microscopic
fundamental GUT is akin to the relation between the
effective Ginzburg-Landau theory of superconductivity
and the microscopic BCS theory, or like the relation of
the Oð4Þ sigma model, an effective low energy theory of
pions, photons and chiral condensates with QCD [10].

Vector fields have been considered to describe inflation
in Ref. [11]. The results for the inflaton should not be very
different from the effective inflaton description since the
energy-momentum tensor of the vector field is to be taken
homogeneous and isotropic. Namely, we are always in the
presence of a scalar condensate.

Since the mass of the inflaton is given by M2=MPl �
1013 GeV [1], massless fields alone cannot describe infla-
tion which leads to the observed amplitude of the CMB
anisotropies.

The classical inflaton potential Vð’Þ gets modified by
quantum loop corrections. We computed relevant quantum

loop corrections to inflationary dynamics in Refs. [1,12]. A
thorough study of the effect of quantum fluctuations re-
veals that these loop corrections are suppressed by powers
of ðH=MPlÞ2 � 10�9, where H is the Hubble parameter
during inflation [1,12]. Therefore, quantum loop correc-
tions are very small, a conclusion that validates the relia-
bility of the classical approximation and of the effective
field theory approach to inflationary dynamics. In particu-
lar, the (small) one-loop corrections to the potential in an
inflationary Universe are very different from the Coleman-
Weinberg form [1,12].
We choose the inflaton field initially homogeneous

which ensures it is always homogeneous. The fluctuations
around are small and give small corrections to the homo-
geneity of the Universe. The rapid expansion of the
Universe, in the inflationary regimes, takes care of the
classical fluctuations, quickly flattening an eventually non-
homogeneous condensate.

A. The complete inflaton evolution through the
different eras

It is convenient to use the dimensionless variables to
analyze the inflaton evolution equations, Eqs. (2.2), (2.3),
(2.4), and (2.5), [1]:

� ¼ mt; h � H

m
; � ¼ ’

MPl

: (2.7)

The inflaton potential has then the universal form

Vð’Þ ¼ M4v

�
’

MPl

�
; (2.8)

where M is the energy scale of inflation and vð�Þ is a
dimensionless function. Without loss of generality we can
set v0ð0Þ ¼ 0 [1]. Moreover, provided V 00ð0Þ � 0 we can
set without loss of generality jv00ð0Þj ¼ 1=2. Namely, we
have for small fields,

vð�Þ ¼�!0
vð0Þ � 1

2�
2 þOð�3Þ; (2.9)

where the minus sign in the quadratic term corresponds to
new inflation and the plus sign to chaotic inflation.
In these dimensionless variables, the energy density and

the pressure for a spatially homogeneous inflaton are given
from Eq. (2.4) by

�

M4 ¼ 1

2

�
d�

d�

�
2 þ vð�Þ; p

M4
¼ 1

2

�
d�

d�

�
2 � vð�Þ;

(2.10)

and the coupled inflaton evolution Eq. (2.2) and the
Friedmann Eq. (2.5) take the form [1],

d2�

d�2
þ 3h

d�

d�
þ v0ð�Þ ¼ 0;

h2ð�Þ ¼ 1

3

�
1

2

�
d�

d�

�
2 þ vð�Þ

�
: (2.11)
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These coupled nonlinear differential equations completely
define the time evolution of the inflaton field and the scale
factor once the initial conditions are given at the initial
time �0. Namely, the initial conditions are fixed by giving
two real numbers, the values of �ð�0Þ and d�ð�0Þ=d�.

It follows from Eqs. (2.11) that

d2a

d�2
¼ 1

3

�
vð�Þ �

�
d�

d�

�
2
�
¼ � 1

2

�
pþ 1

3
�

�
: (2.12)

When d2a=d�2 > 0 the expansion of the Universe accel-
erates and it is then called inflationary.

The derivative of the Hubble parameter is always nega-
tive:

dh

d�
¼ � 1

2

�
d�

d�

�
2
: (2.13)

Therefore, hð�Þ decreases monotonically with increasing �.
Conversely, if we evolve the solution backwards in time
from �0, hð�Þ will generically increase without bounds.
Namely, at some time � ¼ ��, hð�Þ can exhibit a singular-
ity where simultaneously að��Þ vanishes.

In fact, the Eqs. (2.11) admit the singular solution for
� ! ��,

�ð�Þ ¼�!��

ffiffiffi
2

3

s
log

�� ��
b

! �1;

hð�Þ � d

d�
logað�Þ ¼�!�� 1

3ð�� ��Þ ! þ1;

(2.14)

where b is an integration constant. The energy density �ð�Þ
and equation of state take the limiting form,

�ð�Þ ¼�!�� 1

3ð�� ��Þ2
! þ1;

pð�Þ
�ð�Þ ¼�!��

1: (2.15)

Namely, the limiting equation of state is p¼�!�� þ�.
We have in this regime

að�Þ ¼�!��
Cð�� ��Þ1=3 ! 0; (2.16)

where C is some constant. That is, the geometry becomes
singular for � ! ��. The behavior near �� is noninflation-
ary, namely, decelerated, since

d2a

d�2
¼�!�� � 2

9
ð�� ��Þ�ð5=3Þ ! �1: (2.17)

For � ! ��, near the singularity, the potential vð�Þ be-
comes negligible in Eqs. (2.11). Therefore, Eqs. (2.14),
(2.15), (2.16), and (2.17) are valid for all regular potentials
vð�Þ.

The evolution starts thus by this decelerated fast-roll
regime followed by an inflationary fast-roll regime and
then by a slow-roll inflationary regime [1]. Recall that
the slow-roll regime is an attractor [4], and therefore the
inflaton always reaches a slow-roll inflationary regime for
generic initial conditions. We display in Fig. 1 the inflaton

flow in phase space, namely, d�=d� vs � for different
initial conditions.
The number of e-folds of slow-roll inflation Nsr is de-

termined by the time when the inflaton trajectory reaches
the quasihorizontal line of slow-roll regime (see Fig. 1).
We see that d�=d� decreases steeply with �. This implies
that Nsr is mainly determined by the initial value of� with
a mild (logarithmic) dependence on the initial value of
d�=d�
The inflaton flow described by Eq. (2.14) results in

_�ð�Þ ¼�!��

ffiffiffi
2

3

s
e�

ffiffiffiffiffiffi
3=2

p
�ð�Þ

b
; (2.18)

which well reproduce the almost vertical lines in Fig. 1.
The inflationary regimes are characterized by the slow-

roll parameters �v and �v [1]

�v ¼ 1

2h2

�
d�

d�

�
2
; �v ¼ v00ð�Þ

vð�Þ : (2.19)

The slow-roll behavior is defined by the condition �v <
1=N. Typically, �v & 1=N during slow roll. More gener-
ally accelerated expansion (inflation) happens for �v < 1
while we have decelerated expansion for �v > 1 as follows
from Eqs. (2.10), (2.11), (2.12), and (2.19).
The parameter �v is also of the order 1=N during slow

roll, and it is generically of order 1=N during fast roll
except when the potential vð�Þ vanishes.

0 5 10 15 20
−10

−8

−6

−4

−2

0

2

4

6

8

10

φ

dφ
/d

τ

FIG. 1 (color online). The complete inflaton flow in phase
space. d�=d� vs � for different initial conditions. We see that
the inflaton always reaches a slow-roll regime for generic initial
conditions represented by a quasihorizontal line. Hence, the
slow-roll line is an attractor. Ultimately the inflaton reaches

asymptotically the absolute minima d�=d� ¼ 0, � ¼ �min ¼ffiffiffiffiffiffiffiffiffiffiffiffi
8N=y

p ¼ 19:52 . . . . The number of e-folds of slow-roll inflation
Nsr increases for decreasing initial �> 0 when d�=d� > 0
initially. The third to seventh trajectories in the upper left part
�> 0, d�=d� > 0 correspond to Nsr > 63.
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Equation (2.13) implies a monotonic decreasing of the
expansion rate of the Universe. There are four stages in the
Universe evolution described by Eqs. (2.11):

(i) The noninflationary fast-roll stage starting at the
singularity � ¼ �� and ending when d2a=d�2 be-
comes positive [see Eq. (2.12)].

(ii) The inflationary fast-roll stage starts when d2a=d�2

becomes positive and ends at � ¼ �trans when �v
becomes smaller than 1=N [see Eq. (2.19)].

(iii) The inflationary slow-roll stage follows, and it
continues as long as �v < 1=N and d2a=d�2 > 0.
It ends when d2a=d�2 becomes negative at � ¼
�end.

(iv) A matter-dominated stage follows the inflationary
era.

The four stages described above correspond to the evo-
lution for generic initial conditions or, equivalently, start-
ing from the singular behavior Eqs. (2.14). In addition,
there exists a special (extreme) slow-roll solution starting
at � ¼ �1 where the fast-roll stages are absent. We derive
this extreme slow-roll solution in Sec. III A.

As shown in Refs. [1,2] the double-well (broken sym-
metric) fourth order potential

Vð’Þ ¼ 1

4
�

�
’2 �m2

�

�
2 ¼ � 1

2
m2’2 þ 1

4
�’4 þm4

4�

(2.20)

provides a very good fit for the CMB + LSS data, while at
the same time being particularly simple, natural, and stable
in the Ginsburg-Landau sense. This is a new inflation
model with the inflaton rolling from the vicinity of the
local maxima of Vð’Þ at ’ ¼ 0 toward the absolute mini-

mum ’ ¼ m=
ffiffiffiffi
�

p
.

The inflaton mass m and coupling � are naturally ex-
pressed in terms of the two relevant energy scales in this
problem: the energy scale of inflation M and the Planck
mass MPl ¼ 2:4 353 4	 1018 GeV,

m ¼ M2

MPl

; � ¼ y

8N

�
M

MPl

�
4
: (2.21)

Here, N � 60 is the number of e-folds since the cosmo-
logically relevant modes exit the horizon until the end of
inflation and y� 1 is the quartic coupling.

The MCMC analysis of the CMB + LSS data combined
with the theoretical input above yields the value y ’ 1:26
for the coupling [1,2]. y turns to be order one consistent
with the Ginsburg-Landau formulation of the theory of
inflation [1].

This model of new inflation yields as most probable
values: ns ’ 0:964, r ’ 0:051 [1,2]. This value for r is
within reach of forthcoming CMB observations. For y >
0:431 946 . . . and, in particular, for the best fit value y ’
1:26, the inflaton field exits the horizon in the negative
concavity region V00ð’Þ< 0 intrinsic to new inflation [1].
We find for the best fit [1,2],

M ¼ 0:543	 1016 GeV for the scale of inflation and m

¼ 1:21	 1013 GeV for the inflaton mass: (2.22)

We consider from now on the quartic broken symmetric
potential Eq. (2.20), which becomes using Eq. (2.8)

vð�Þ ¼ g

4

�
�2 � 1

g

�
2 ¼ � 1

2
�2 þ g

4
�4 þ 1

4g

where g ¼ y

8N
: (2.23)

We have two arbitrary real coefficients characterizing the
initial conditions. We can choose them as b and �� [see
Eq. (2.14)]. A total number of slow-roll inflation e-folds
Nsr ’ 63 permits to explain the CMB quadrupole suppres-
sion [1,5,6]. Such requirement fixes the value of b for a
given coupling y.
We integrated numerically Eqs. (2.11) with Eq. (2.14) as

initial conditions. We find that b ¼ 4:745272 . . . 10�5

yields 63 e-folds of inflation during the slow-roll era for
y ¼ 1:26, the best fit to the CMB and LSS data. We find
that b is a monotonically increasing function of the cou-
pling y for fixed number of slow-roll e-folds. At fixed
coupling, b increases with the number of slow-roll e-folds.
We display in Fig. 2 b as a function of y and the number

of slow-roll inflation e-folds Nsr.
For this value of y and 63 e-folds of inflation during the

slow roll, fast roll ends by � ¼ �trans ¼ 0:2 487 963 . . . . In
Figs. 3, we depict logað�Þ and pð�Þ=�ð�Þ, loghð�Þ, �ð�Þ,
logj _�ð�Þj, log½N�vð�Þ� vs � until a short time after the end
of inflation. We define the time �end when inflation ends by
the condition €að�endÞ¼0, which gives ð�end � ��Þ ¼
18:2 547 816 . . . .
Furthermore, we study in this paper the curvature and

tensor fluctuations during the whole inflaton evolution in
its three successive regimes: noninflationary fast roll, infla-
tionary fast roll, and inflationary slow roll.
The equation for the scalar curvature fluctuations take in

conformal time � and dimensionless variables the form [1]

�
d2

d�2
þ k2 �WRð�Þ

�
SRðk;�Þ ¼ 0; (2.24)

where d� ¼ d�=að�Þ,

WRð�Þ � 1

z

d2z

d�2
and zð�Þ � að�Þ

hð�Þ
d�

d�
: (2.25)

In cosmic time �, Eq. (2.24) takes the form

�
d2

d�2
þ hð�Þ d

d�
þ k2

a2ð�Þ � VRð�Þ
�
SRðk; �Þ ¼ 0; (2.26)

where
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FIG. 2 (color online). Left panel: the coefficient b characterizing the initial conditions vs the quartic coupling y for Nsr ¼ 63 e-folds
of slow-roll inflation. Right panel: b vs Nsr for y ¼ 1:26. The preferred values y ¼ 1:26 and Nsr are highlighted in both panels.
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FIG. 3 (color online). Time evolution during the three eras: noninflationary fast roll, inflationary fast roll and slow roll, and beyond
the end of inflation (matter-dominated era). logað�Þ, loghð�Þ, �ð�Þ, logj _�ð�Þj, log½N�vð�Þ� and pð�Þ=�ð�Þ vs �. að�Þ grows
monotonically reaching 63 e-folds by the end of inflation. hð�Þ diverges for � ! �� ¼ �0:8 499 574 . . . according to Eq. (2.14)
and decreases fast during fast roll (� � �trans ¼ 0:2 487 963 . . . ). Then, hð�Þ decreases slowly during slow roll as discussed in
Sec. III B. We depict hð�Þ for short times (0< �� �� < 0:3) in Fig. 5. _�ð�Þ diverges for � ! �� according to Eq. (2.14) and decreases
fast during fast roll becoming very small during slow roll. After the fast-roll stage where the inflaton field grows according to Eq. (2.14)

, �ð�Þ slowly rolls toward its absolute minimum at �end ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
8N=y

p ¼ 19:52 . . . . log½N�vð�Þ� vs �� ��. We have that �vð��Þ ¼ 3
according to Eqs. (2.14) and (2.19). �vð�Þ decreases fast during fast roll becoming of the order 1=N. We define the end of fast roll (and
beginning of slow roll) by the condition N�vð�Þ � 1, which gives �trans � �� ¼ 0:2 487 963 . . . . The equation of state pð�Þ=�ð�Þ
quickly decreases during fast roll from the value p=� ¼ þ1 for � ! �� [see Eq. (2.15)] passing through p=� ¼ �1=3 at the beginning
of fast-roll inflation [see Eq. (2.12)], � ¼ �s ¼ �� þ 0:0573, and reaching p=� ¼ �1 by the beginning of slow roll. p=� vanishes
again near the end of slow-roll inflation by �end ¼ �� þ 18:698 . . . .
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VRð�Þ � WRð�Þ
a2ð�Þ

¼ h2ð�Þ
�
2� 7�v þ 2�2v �

ffiffiffiffiffiffiffiffi
8�v

p v0ð�Þ
h2ð�Þ

� �vð3� �vÞ
�

¼ h2ð�Þ½2� 7�v þ 2�2v� � 2
d�

d�

v0ð�Þ
hð�Þ

� v00ð�Þ; (2.27)

and �v and �v are given by Eq. (2.19).
We display VRð�Þ vs � in Fig. 4 for the best fit value of

the coupling y ¼ 1:26 and 63 e-folds of slow-roll inflation.
The equation for the tensor fluctuations take in confor-

mal time � and dimensionless variables the form [1]

S00Tðk;�Þ þ
�
k2 � a00ð�Þ

að�Þ
�
STðk;�Þ ¼ 0: (2.28)

B. Inflaton and scale factor behavior near the initial
mathematical singularity

In order to find the behavior of �ð�Þ and að�Þ near the
initial singularity, we write

�ð�Þ ¼
ffiffiffi
2

3

s
log

�� ��
b

þ�1ð�Þ;

hð�Þ ¼ 1

3ð�� ��Þ þ h1ð�Þ:
(2.29)

Inserting now Eqs. (2.29) into Eqs. (2.14) yields for �1ð�Þ
and h1ð�Þ the nonautonomous differential equations

€�1 þ
�

1

�� ��
þ 3h1

�
_�1 þ

ffiffiffi
6

p
�� ��

h1 ��1 �
ffiffiffi
2

3

s
log

�� ��
b

þ g

� ffiffiffi
2

3

s
log

�� ��
b

þ�1

�
3 ¼ 0

h21 þ
2

3ð�� ��Þh1 �
_�1

6

� ffiffiffi
2

3

s
2

�� ��
þ _�1

�
þ 1

6

� ffiffiffi
2

3

s
log

�� ��
b

þ�1

�
2 � g

12

� ffiffiffi
2

3

s
log

�� ��
b

þ�1

�
4 � 1

12g
¼ 0; (2.30)

where _� stands for d�=d�.
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FIG. 4 (color online). The potential VRð�Þ felt by the fluctuations. Upper plot: VRð�Þ vs (�� ��) in the stage where VRð�Þ is
repulsive (VRð�Þ> 0), which happens for ð�� ��Þ> 0:114. Notice that VRð�Þ slowly decreases during the slow-roll stage as VRð�Þ ’
2h2ð�Þ þ 1þOð1=NÞ according to Eq. (2.27) and Fig. 3. Lower plots: Comparison of the exact (numerical) evolution and the analytic
approximations Eq. (2.43) during fast roll and slow roll. Left lower plot: ð�� ��Þ2VRð�Þ vs �� �� in the stage where VRð�Þ is
attractive (VRð�Þ< 0) from the exact (numerical) calculation and from the analytic approximation Eq. (2.43). This happens for 0 �
ð�� ��Þ< 0:114. Notice that lim�!�� ð�� ��Þ2VRð�Þ ¼ �1=9 according to Eq. (4.1). Lower right plot: VRð�Þ vs �� �� when

VRð�Þ> 0 from the exact (numerical) calculation and from the analytic approximation Eq. (2.43).
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The asymptotic solution of Eqs. (2.30) for � ! �� turns to have the dominant form

�1ð�Þ ¼�!��ð�� ��Þ2P�
4

�
log

�� ��
b

�
; h1ð�Þ ¼�!��ð�� ��ÞPh

4

�
log

�� ��
b

�
; (2.31)

where P�
4 ðzÞ and Ph

4ðzÞ are fourth degree polynomials in their arguments. The polynomials turn to be of fourth degree
because the inflaton potential is of fourth degree. Their explicit expressions follow after calculation

�1ð�Þ ¼�!�� � ð�� ��Þ2ffiffiffi
6

p
�
g

18

�
log4

�� ��
b

þ 2

3
log3

�� ��
b

� 11

3
log2

�� ��
b

þ 49

9
log

�� ��
b

� 439

54

�

� 1

6

�
log2

�� ��
b

þ 1

3
log

�� ��
b

� 7

8

�
þ 1

8g

�
;

h1ð�Þ ¼�!�� �� ��
9

�
g

18

�
6log4

�� ��
b

� 8log3
�� ��

b
þ 8log2

�� ��
b

� 11

3
log

�� ��
b

þ 146

9

�

� log2
�� ��

b
þ 2

3
log

�� ��
b

� 1

9
þ 3

4g

�
: (2.32)

As a consequence, the scale factor near the singularity
takes the form

að�Þ ¼�!��
Cð�� ��Þ1=3

�
1þ ð�� ��Þ2Pa

4

�
log

�� ��
b

��
;

(2.33)

where the coefficients of the fourth order polynomial Pa
4

can be obtained from Eqs. (2.14) and (2.32).

C. Quantum loop effects and the validity of the classical
inflaton picture

When � ! �� quantum loop corrections are expected to
become very large spoiling the classical description. More
precisely, quantum loop corrections are of the order
ðH=MPlÞ2 [1]. From Eqs. (2.7) and (2.14) the quantum
loop corrections are of the order�

H

MPl

�
2 ¼�!��

�
m

3ð�� ��ÞMPl

�
2 ¼

�
1:66	 10�6

�� ��

�
2

¼ 1

9

�
�Planck
�� ��

�
2
;

where we used m ¼ 1:21	 1013 GeV [1].
The characteristic time is here the Planck time

�Planck ¼ mtPlanck ¼ m

MPl

¼ 2:703	 10�43 sec	m

¼ 4:97	 10�6:

Namely, the quantum loop corrections are less than 1% for
times

ð�� ��Þ> 10

3
�Planck ¼ 1:66	 10�5: (2.34)

Therefore, for times ð�� ��Þ> 10�5 the classical treat-
ment of the inflaton and the space-time presented in Sec. II
and II B can be trusted, and we see that the classical
description has a wide domain of validity.

The use of a classical and homogeneous inflaton field is
justified in the out of equilibrium field theory context as the
quantum formation of a condensate during inflation. This
condensate turns to obey the classical evolution equations
of an homogeneous inflaton [13].
We see from Eq. (2.16) that the inflaton field becomes

negative for � ! ��. But since a condensate field should be
always positive, the classical and homogeneous inflaton
picture requires

�� �� > b:

For the best fit coupling y ¼ 1:26 and 63 e-folds of in-
flation we have b ¼ 4:745 272 . . . 10�5 ¼ 9:55�Planck,
which is consistent with Eq. (2.34). By comparing this
value of b with Eq. (2.34) we see that the quantum loop
corrections are negligible in the stage where the condensate
is already formed.
We can obtain a lower bound on b since b increases with

the number of inflation e-folds Nsr at fixed inflaton poten-
tial and since Nsr cannot be smaller than the lower bound
provided by flatness and entropy [1].
Although all inflationary solutions obtained evolving

backwards in time from the slow-roll stage do reach a
zero of the scale factor, such mathematical singularity is
attained extrapolating the classical treatment where it is no
longer valid. In fact, one never reaches the singularity in
the validity region of the classical treatment. In summary,
the classical singularity at � ¼ �� is not a real physical
phenomenon here.
The classical description with the homogeneous inflaton

is very good for �� �� > 10�Planck well before the begin-
ning of inflation.

D. The fast-roll regime: analytic approach

As we see from Fig. 3 the inflaton field �ð�Þ is much
smaller than d�=d� during fast roll. We can therefore
approximate the coupled inflaton evolution equation and
Friedmann equation Eqs. (2.11) as
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d2�

d�2
þ 3h

d�

d�
¼ 0; h2ð�Þ ¼ 1

3

�
1

2

�
d�

d�

�
2 þ 1

4g

�
:

(2.35)

Or, in a compact form,

d2�

d�2
þ

ffiffiffi
3

2

s
d�

d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
d�

d�

�
2 þ 1

2g

s
¼ 0; (2.36)

which has the exact solution

d�

d�
¼

ffiffiffi
2

3

s
1

�1 sinhð����
�1

Þ ;

�ð�Þ ¼
ffiffiffi
2

3

s
log

�
2�1
b

tanh

�
�� ��
2�1

��
;

(2.37)

where �1 turns out to be the characteristic time scale

�1 ¼ 2

ffiffiffi
g

3

r
¼

ffiffiffiffiffiffiffi
y

6N

r
: (2.38)

We find for the best fit to CMB + LSS data, y ¼ 1:26 and
N ¼ 60,

�1 ¼ 0:0592 ¼ 11 910�Planck; (2.39)

well after the Planck scale �Planck ¼ 4:9710�6.
The integration constant in Eq. (2.37) matches with the

small �� �� behavior Eq. (2.14). The Hubble parameter
and the scale factor are here

hð�Þ ¼ 1

3�1
cothu; að�Þ ¼ C½�1 sinhu�1=3;

u � �� ��
�1

;

(2.40)

where the integration constant was chosen to fulfill
Eq. (2.16). The scale factor Eq. (2.40) interpolates between
the noninflationary power law behavior Eq. (2.16) for ��
�� ! 0 and the eternal inflationary de Sitter behavior for
�� �� 
 �1. Since we have set vð�Þ equal to constant,
slow-roll de Sitter inflation never stops in this approxima-
tion. Namely, neither matter-dominated nor radiation-
dominated eras are reached in this approximation.

We can eliminate the variable u between � and d�=d�
in Eq. (2.37) with the result

d�

d�
¼

ffiffiffi
2

3

s �
e�

ffiffiffiffiffiffi
3=2

p
�ð�Þ

b
� b

4�21
e

ffiffiffiffiffiffi
3=2

p
�ð�Þ

�
: (2.41)

This equation generalizes Eq. (2.20) which corresponds to
the first term here and describes the behavior for �� ��.
Notice that

�1<�ð�Þ<
ffiffiffi
2

3

s
log

�
2�1
b

�
; 0<

d�

d�
<þ1

and that b=½2�1� ¼ 4:010 510�4.

The evolution described by Eqs. (2.37), (2.38), (2.39),
and (2.40) starts from the mathematical singularity at � ¼
�� with monotonically decreasing d�=d� and hð�Þ and a
monotonically increasing �ð�Þ from its initial value
�ð��Þ ¼ �1.
Slow roll is reached asymptotically for large � since

d�=d� vanishes for �� �� ! 1.
We find for the parameter �v [Eq. (2.19)] and for the

equation of state,

�vð�Þ ¼ 3

1þ sinh2u
;

pð�Þ
�ð�Þ ¼

2

cosh2u
� 1: (2.42)

We see that �vð�Þ monotonically decreases with � and
vanishes for �� �� ! 1. The equation of state p=�
smoothly interpolates between þ1 at � ¼ �� (extreme
noninflationary fast roll) and �1 (slow-roll inflation) for
�� �� ! 1, passing by p=� ¼ �1=3 (the beginning of
fast-roll inflation) at �� �� ¼ 0:0573.
The potential VRð�Þ Eq. (2.24) felt by the fluctuations

takes here the form

VRð�Þ ¼ 1

6g

�
1� 1

2sinh2u
� 9

cosh2u

�
; u ¼ �� ��

�1
:

(2.43)

The limiting values of hð�Þ, �ð�Þ and VRð�Þ for � ! 1
give a reasonable approximation to the numerical results.
We have

hð1Þ ¼ 1

3�1
¼

ffiffiffiffiffiffiffi
2N

3y

s
; �ð1Þ ¼

ffiffiffi
2

3

s
log

�
2�1
b

�
;

d�

d�
ð1Þ ¼ 0; VRð1Þ ¼ 4N

3y
:

(2.44)

The characteristic time scale �1 is generically a small

number since according to Eq. (2.38) �1 � 1=
ffiffiffiffi
N

p
. The

value of �1 for the best fit value for y is given in
Eq. (2.39).
The end of fast roll �trans can be estimated in this

approximation by using Eq. (2.42) for �vð�Þ setting
�vð�transÞ ¼ 1=N. This gives,

�vð�Þ ’ 12e�ð2�trans=�1Þ ¼ 1

N
;

�trans ’ 1

2
�1 lnð12NÞ ¼ 0:195:

This approximated value for �trans should be compared
with the exact numerical result �trans ¼ 0:2 487 963 . . . .
hð�transÞ and VRð�transÞ differ in less than 1% from their
values at � ¼ 1 given by Eq. (2.44).

In Figs. 5 we plot lnað�Þ, lnhð�Þ, �ð�Þ, lnj _�ð�Þj, �vð�Þ
and pð�Þ=�ð�Þ computed numerically and computed using
the analytic expressions Eqs. (2.37), (2.38), (2.39), (2.40),
(2.41), and (2.42). We compare in Figs. 4 the exact poten-
tial VRð�Þ with the analytic approximation Eq. (2.43).
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We see that the simple analytic formulas Eqs. (2.37),
(2.38), (2.39), (2.40), (2.41), (2.42), and (2.43) provide a
very good approximation during the fast-roll regime � �
ttrans ¼ 0:2 487 963 . . . . In particular, Eq. (2.37) provides
an excellent approximation to �ð�Þ as shown in Fig. 5. In
particular, the analytic formulas Eqs. (2.37), (2.38), (2.39),
(2.40), (2.41), (2.42), and (2.43) become exact near the
singularity at � ¼ ��.

E. The fast-roll regime: numerical solution

To construct a singular solution we can integrate
Eqs. (2.11) backwards in time starting from initial condi-
tions of strong noninflationary fast-roll type, namely,

K �
_�2

2vð�Þ 
 1;

producing a given total numberNsr of slow-roll inflationary

e-folds. For instance, we start from some� and _� such that
K ¼ 104. The time extent backwards from this moment
has to be limited so that, integrating back and forth, the
required relative accuracy of 10�12 is preserved. We fur-
thermore impose that Nsr ¼ 63.

We adopt the convention that conformal time � vanishes
from below when inflation ends and that að� ¼ 0Þ ¼ 1
when there are still N ¼ 60 e-folds until the end of infla-
tion. This choice of the scale factor normalization seems
the most natural. Then, � has a finite nonzero limit �� as �
approaches the time �� of the singularity, since að�Þ ’
Cð�� ��Þ1=3 as � ! �� according to Eq. (2.16). That is,

� ¼
Z �

�end

d�0

að�0Þ ¼ �� þ
Z �

��

d�0

að�0Þ :

The numerics of a fast-roll solution of this type are in
Table I where a relative accuracy of 10�12 is preserved.
Using the asymptotic behavior Eq. (2.14) as � ! �þ� we

obtain from Table I

�� ¼ �0:8 499 574 . . . ;

b ¼ 4:745 272 . . . 10�5 and

�� ¼ �15:605 614 . . . :

Slow roll begins at �trans ¼ �� þ 0:2 487 963 . . . ¼
�0:6 011 611 . . . .
The initial value of the ratio

d’=dt

’
¼ m

_�

�

has the dimension of mass. The natural mass scale in the
problem is here the energy scale of inflationM. Therefore,
assuming this ratio of the order M yields

_�

�
<

M

m
� 103:

Hence, it is natural to start the fast-roll evolution with
_�=�< 103.
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FIG. 5 (color online). Comparison of the exact (numerical) evolution (continuous line) and the analytic approximations (dashed line)
Eq. (2.40) during fast roll and slow roll for logað�Þ, loghð�Þ, �ð�Þ, logj _�ð�Þj, �vð�Þ and pð�Þ=�ð�Þ vs �� ��. The exact lnað�Þ and
lnhð�Þ are close to the approximation Eq. (2.40). The scale factor is normalized to unit at � ¼ 0, 60 e-folds before the end of inflation.
The exact (numerical) equation of state pð�Þ=�ð�Þ is quite close to the analytic approximation Eq. (2.42) both during fast roll and slow
roll. The same happens for the exact (numerical) inflaton field �ð�Þ, _�ð�Þ and the analytic approximation Eq. (2.37).
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III. THE SLOW-ROLL INFLATIONARY ERA

A. The extreme slow-roll solution

There always exist a special solution of Eqs. (2.11) that
starts at � ¼ �1 with vanishing inflaton, vanishing scale
factor but nonzero Hubble parameter. More precisely,

Eqs. (2.11) can be approximated for small � and _� as

d2�

d�2
þ 3h

d�

d�
�� ¼ 0; h2ð�Þ ¼ 1

3
vð0Þ; (3.1)

where we used Eqs. (2.9) and (2.11).
Equations (3.1) admit the asymptotic solution for � !

�1

�ð�Þ ¼�!�1
C0e

�� ! 0; hð�Þ ¼�!�1
ffiffiffiffiffiffiffiffiffi
vð0Þ
3

s
;

að�Þ ¼�!�1
e

ffiffiffiffiffiffiffiffiffiffi
vð0Þ=3

p
� ! 0;

(3.2)

where C0 is an integration constant, vð0Þ ¼ 2N=y for the
double-well potential Eq. (2.23) and

� � 1

2
½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3vð0Þ þ 4

p � ffiffiffiffiffiffiffiffiffiffiffiffi
3vð0Þp �> 0:

Notice that � can be expressed in terms of the fast-roll
characteristic time scale �1 [Eq. (2.38)],

� ¼ 1

2�1
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�21

q
� 1� ’ �1

since �1 ’ 0:0592 � 1 [see Eq. (2.39)].
It must be noticed that the characteristic time scale of the

inflaton evolution in the extreme slow-roll solution for
early times [see Eq. (3.2)]

1

�
’ 1

�1

 1;

turns to be the inverse of the characteristic time scale �1 of
the fast-roll solution and to be very large.
On the contrary, the characteristic time scale of the scale

factor evolution in the same regime is very short

ffiffiffiffiffiffiffiffiffi
3

vð0Þ

s
¼ 3�1 � 1:

The fast-roll stages both noninflationary and inflationary
are absent in this solution. The extreme slow-roll solution
only possesses the slow-roll inflationary stage followed by
the matter-dominated era.
For the value of the coupling y ¼ 1:2 592 226 . . . , we get

for the extreme slow-roll solution

� ¼ 0:058 937 108 . . . ; �end ¼ 18:5 586 530 . . . ;

_�end ¼ 0:9 415 055 . . . (3.3)

In Table II we display the values of the relevant magnitudes
for this extreme slow-roll solution.
Except for the extreme slow-roll solution, all solutions

are of fast-roll type and come from singular values of �
and h according to Eq. (2.14) as � ! �þ� for some finite ��
characteristic of each particular solution. The slow-roll
stage (which starts when �v ¼ 1=N from above, and ends
when again �v ¼ 1=N from below) of all distinct solutions
turns to be almost identical to that of the extreme slow-roll
case as one could expect for an attractor.

TABLE I. Fast-roll solution with Nsr ¼ 63 e-folds of slow-roll inflation. Recall that � ¼ 4:9710�6ðt=tPlanckÞ.
K ¼ 5:3458 . . . 107 K ¼ 104 Inflation start: €a ¼ 0� Fast roll ! slow roll a ¼ 1 Inflation end: €a ¼ 0þ

� �0:8 499 493 . . . �0:8 493 593 . . . �0:7 746 494 . . . �0:6 011 611 . . . 0 17.4 048 242. . .
� �1:4 401 237 . . . 2.0 690 604. . . 5.9 342 489. . . 6.4 783 577. . . 6.7 484 076. . . 18.5 586 530. . .
_� 100 391.035. . . 1 365.05 241. . . 8.8 601 670. . . 0.9 182 661. . . 0.3 974 015. . . 0.94 150 557. . .
loga �7:0 325 621 . . . �5:5 999 353 . . . �3:9 142 151 . . . �2:9 999 999 . . . 0 60

h 40 984.4 689. . . 557.30 817. . . 6.2 650 841. . . 5.0 295 509. . . 4.9 653 990. . . 0.6 657 449. . .
� �15:6 050 091 . . . �15:376 218 . . . �15:3 549 996 . . . �4:0 169 827 . . . �0:2 020 609 . . . 0

TABLE II. Relevant quantities of the extreme slow-roll inflaton solution for the coupling y ¼
1:2 592 226 . . . . We adopt the convention that að� ¼ 0Þ ¼ 1 when there are still N ¼ 60 e-folds
until the end of inflation. Recall that � ¼ 4:9710�6ðt=tPlanckÞ.

Inflation start a ¼ 1 Inflation end: €a ¼ 0þ

� �344:9 514 017 . . . 0 17.40 482 446. . .
� 10�8 6.7 484 118. . . 18.5 586 530. . .
_� �10�8 ¼ 5:8 937 108 453 . . . 10�10 0.3 973 384. . . 0.94 150 557. . .
loga �1 938:4 867 948 . . . 0 60

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N=ð3yÞp ¼ 5:6 361 006 . . . 4.9 653 973. . . 0.6 657 449. . .

� �1 (f.a.p.p) �0:2 020 610 . . . 0

C. DESTRI, H. J. DE VEGA, AND N.G. SANCHEZ PHYSICAL REVIEW D 81, 063520 (2010)

063520-12



B. The inflaton during slow-roll inflation: analytical
solution

In the slow-roll regime higher time derivatives can be
neglected in the evolution Eqs. (2.11) with the result

3hð�Þ _�þ v0ð�Þ ¼ 0; h2ð�Þ ¼ vð�Þ
3

: (3.4)

These first order equations can be solved in closed form as

N½�� ¼ �
Z �end

�
vð�0Þ d�

0

dv
d�0; (3.5)

where N½�� is the number of e-folds since the field� exits
the horizon until the end of inflation (where it takes the
value �end).

Equation (3.5) indicates that N½�� scales as �2 and

hence the field � is of the order
ffiffiffiffi
N

p � ffiffiffiffiffiffi
60

p
. Therefore,

we proposed as universal form for the inflaton potential
[1,8]

vð’Þ ¼ NM4wð�Þ; (3.6)

where � is the dimensionless, slowly varying field

� ¼ ’ffiffiffiffi
N

p
MPl

¼ �ffiffiffiffi
N

p : (3.7)

The equations of motion (2.11) in the field � become

H 2ð�̂Þ ¼ 1

3

�
1

2N

�
d�

d�̂

�
2 þ wð�Þ

�
with H ¼ hffiffiffiffi

N
p ;

1

N

d2�

d�̂2
þ 3H

d�

d�̂
þ w0ð�Þ ¼ 0; (3.8)

and �̂ stands for the rescaled dimensionless time

�̂ � �ffiffiffiffi
N

p ¼ mtffiffiffiffi
N

p :

To leading order in the slow-roll approximation (neglecting
1=N corrections), Eqs. (3.8) are solvable in terms of quad-
ratures

�̂� �̂trans ¼ �
Z �

�ð�̂transÞ
d�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3wð�0Þp
w0ð�0Þ ; (3.9)

where �̂trans stands for the beginning of slow-roll inflation
and we used that

H ð�̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
wð�Þ
3

s
þO

�
1

N

�
: (3.10)

For the broken symmetric potential Eq. (2.20), from
Eqs. (2.10), (3.9), and (3.10), we find

�ð�̂Þ ¼ �ð�̂transÞe
ffiffiffiffiffiffi
y=6

p
ð�̂��̂transÞ þO

�
1

N

�

¼
ffiffiffi
8

y

s
e�

ffiffiffiffiffiffi
y=6

p
ð�̂end��̂Þ þO

�
1

N

�
; (3.11)

H ð�̂Þ ¼
ffiffiffiffiffi
2

3y

s
½1� e�

ffiffiffiffiffiffiffiffi
2y=3

p
ð�̂end��̂Þ� þO

�
1

N

�
;

p

�
ð�̂Þ ¼ �1þ y

6N

1

sinh2½
ffiffi
y
6

q
ð�̂end � �̂Þ�

þO
�
1

N2

�
;

(3.12)

for

�̂ trans � �̂ � �̂end ¼
ffiffiffiffiffi
3

2y

s
ln

�
8

�2ð�̂transÞy
�
þO

�
1ffiffiffiffi
N

p
�
:

(3.13)

Inflation ends when the equation of state becomes p=� ¼
�1=3 [see Eq. (2.12)]. According to Eq. (3.12), this hap-

pens when �̂end � �̂�Oð1= ffiffiffiffi
N

p Þ. Therefore, expressions
Eqs. (3.11) and (3.12) are valid as long as

�̂ trans � �̂ � �̂end �O
�
1ffiffiffiffi
N

p
�

where O
�
1ffiffiffiffi
N

p
�
> 0:

That is, Eqs. (3.11) hold while the inflaton is not very near

the minimum of the potential �end ¼
ffiffiffiffiffiffiffiffi
8=y

p
.

By integrating the Hubble parameter H ð�̂Þ we obtain
for the scale factor að�̂Þ

log
að�̂Þ

að�̂transÞ ¼
ffiffiffiffiffi
2

3y

s
Nð�̂� �̂transÞ � N

8
�2ð�̂transÞ

	 ½e
ffiffiffiffiffiffiffiffi
2y=3

p
ð�̂��̂transÞ � 1�

¼
ffiffiffiffiffiffiffi
2N

3y

s
mðt� ttransÞ � 1

8

�
’ðttransÞ
MPl

�
2

	½e
ffiffiffiffiffiffiffiffiffiffi
2y=3N

p
mðt�ttransÞ � 1�; (3.14)

where we used Eqs. (2.7) and (2.11). It must be noticed that
að�̂Þ is not exactly a de Sitter scale factor, even in the large
N limit at fixed �̂.
At the end of inflation the number of e-folds is lna ’ 64,

the inflaton is near its minimum

� ¼
ffiffiffi
8

y

s
’ 2:52;

_� starts to oscillate around zero and H ð�̂Þ begins a rapid
decrease (see Fig. 3). At this time the inflaton field is no
longer slowly coasting in the w00ð�Þ< 0 region but rapidly
approaching its equilibrium minimum. When inflation
ends, the inflaton is at its minimum value up to corrections

of order 1=
ffiffiffiffi
N

p
. Therefore, we see from the Friedmann

Eqs. (3.8) and (3.11) that
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1

N

�
d�

d�̂

�
2ð�̂endÞ ¼ O

�
1

N

�
;

wð�ð�̂endÞÞ ¼ O
�
1

N

�
and therefore;

H ð�̂endÞ ¼ O
�
1ffiffiffiffi
N

p
�
; (3.15)

while H ð�̂transÞ ¼ Oð1Þ. Namely, the Hubble parameter

decreases by a factor of the order
ffiffiffiffi
N

p � 8 during slow-roll
inflation. We see in Fig. 3 that the exactH ð�̂Þ decreases by
a factor six during slow-roll inflation, confirming the slow-
roll analytic estimate.

We can compute the total number of inflation e-folds
Ntot to leading order in slow roll inserting the analytic
formula for �̂end Eq. (3.13) in Eq. (3.14) with the result

Ntot ¼ N

y

�
ln

�
8

�2ð�̂transÞy
�
� 1þ 1

8
y�2ð�̂transÞ

�
þO

�
1ffiffiffiffi
N

p
�
:

(3.16)

We have verified the slow-roll analytical results
Eqs. (3.11), (3.12), (3.13), (3.14), (3.15), and (3.16) com-
paring them with the numerical solution of Eqs. (2.11).
Both results are concordant up to the error estimation in

each case: Oð1=NÞ or Oð1= ffiffiffiffi
N

p Þ.
The field � as a function of the dimensionless time �

Eq. (3.11) takes the form

�ð�Þ ¼ �ð�transÞe
ffiffiffiffiffiffiffiffi
y=6N

p
ð���transÞ

and then

_�ð�Þ ¼
ffiffiffiffiffiffiffi
y

6N

r
�ð�Þ:

For y ’ 1:26 and N ¼ 60 we get
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y=½6N�p ¼ 0:0577 in

agreement with the slope of the quasihorizontal slow-roll
line in the phase space flow Fig. 1. We display in Table III
relevant time values in the inflaton and fluctuations evolu-
tion for the best values y ¼ 1:26 and Nsr ¼ 63.

IV. COMPLETE FLUCTUATIONS EVOLUTION
AND FAST-ROLL EFFECTS ON THE POWER

SPECTRUM

A. Scalar and tensor fluctuations near the initial
singularity

In order to study the curvature and tensor fluctuations in
this regime, it is important to evaluate the parameter �v and
the potential felt by the fluctuations VR.

Inserting Eqs. (2.29) and (2.31) into Eqs. (2.19) and
(2.27) yields near the initial singularity

VRð�Þ ¼�!�� � 1

9ð�� ��Þ2
�
1þ ð�� ��Þ2PV

4

�
log

�� ��
b

��
;

�v ¼�!��
3

�
1þ ð�� ��Þ2P�

4

�
log

�� ��
b

��
; (4.1)

WRð�Þ ¼�!0� 1

4�2
½1þ �3PW

4 ðlog�Þ�; (4.2)

where

� ¼�!�� 3
2ð�� ��Þ2=3

is the conformal time for � ! �� and PV
4 ðxÞ, P�

4ðxÞ and

PW
4 ðxÞ are polynomials of degree four in x.
We see that the fluctuations feel a singular attractive

potential near the � ¼ 0 singularity. Actually, the behavior
of WRð�Þ for � ! 0 is exactly the critical strength
(� 1=4) for which the fall to the center becomes possible
in a central and attractive singular potential [3].
We find from Eqs. (2.26) and (4.1) for the fluctuations

near the singularity

SRðk;�Þ ¼�;�0!0
ffiffiffiffiffiffi
�

�0

s �
ARðkÞ þBRðkÞ log�

�0

�
; (4.3)

where �0 is the time when the initial conditions will be
imposed, AR and BR are complex constants constrained
by the Wronskian condition (that ensures the canonical
commutation relations) [1]

W½SR; S�R� ¼ SR
dS�R
d�

� dSR
d�

S�R ¼ i: (4.4)

Namely,

2 Im½ARB�
R� ¼ �0: (4.5)

Precisely, the logarithmic behavior for � ! 0 of the wave
function Eq. (4.3) describes the fall to �� �� ¼ 0 for the
critical strength of the potential WRð�Þ. For larger attrac-
tive strengths the wave function Eq. (4.3) shows up an
oscillatory behavior [3]. Notice, however the physical
nature of the process: here we have a time evolution near
a classical singularity at a given time while in the potential
case one has particles falling (or emerging) from a point in
space where the potential is singular.
In general, the mode functions for large kmust behave as

free modes (plane waves) since the potential WRð�Þ in
Eq. (2.24) becomes negligible in this limit except at the
singularity � ¼ ��. One can then impose Bunch-Davies
conditions for large k, which corresponds to assume an
initial quantum vacuum Fock state, empty of curvature
excitations [1]

SRðk; �Þ ¼k!1 e�ik�ffiffiffiffiffi
2k

p (4.6)

and therefore

dSR
d�

ðk;�0Þ ¼k!1�ikSRðk;�0Þ:

Equation (4.6) fulfills the Wronskian normalization
Eq. (4.4).
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In asymptotically flat (or conformally flat) regions of the
space-time the potential felt by the fluctuations vanish and
the fluctuations exhibit a plane wave behavior for all k (not
necessarily large). This is not the case near strong gravity
fields or curvature singularities as in the present cosmo-
logical space-time whereWRð�Þ can never be neglected at
fixed k. However, we can choose BDic at � ¼ �0 by
imposing

dSR
d�

ðk;�0Þ ¼ �ikSRðk;�0Þ for all k: (4.7)

That is, we consider the initial value problem for the mode
functions giving the values of SRðk;�Þ and dSR=d� at
� ¼ �0.

Notice that Eq. (4.7) combined with the Wronskian
condition Eq. (4.4) implies that

jSRðk;�0Þj ¼ 1ffiffiffiffiffi
2k

p ;

��������dSRd�
ðk;�0Þ

��������¼
ffiffiffi
k

2

s
;

which is equivalent to Eq. (4.6) for large k.
Since the mode functions SRðk;�Þ are defined up to an

arbitrary constant phase we can write Eq. (4.3) valid near
the metric singularity as

SRðk;�Þ ¼�;�0!0
ffiffiffiffiffiffiffiffiffiffiffi
�

2k�0

s �
1�

�
1

2
þ ik�0

�
log

�

�0

�
: (4.8)

In Eq. (4.3) this corresponds to the coefficients

AR ¼ 1ffiffiffiffiffi
2k

p ; BR ¼ 1ffiffiffiffiffi
2k

p
�
1

2
þ ik�0

�
:

We have in cosmic time,

SRðk; �Þ ¼�;�0!�� 1ffiffiffiffiffi
2k

p
�
�� ��
�0

�
1=3

	
�
1�

�
1

3
þ ik�2=30

�
log

�� ��
�0

�
; (4.9)

where �0 � �� ¼ ð2�0=3Þ3=2 for � ! ��.
Namely, imposing the BDic Eq. (4.7) at small �0 where

the small � behavior Eq. (4.3) applies, yields specific
values for the coefficients of the linearly independent
solutions

ffiffiffiffi
�

p
and

ffiffiffiffi
�

p
log� that we can read from

Eqs. (4.8) and (4.9).
For general �0 (i.e., �0 not near ��), the mode functions

for � ! �� take the form

SRðk; �Þ ¼�!�� 1ffiffiffiffiffi
2k

p
�
�� ��
�0

�
1=3

�
Xðk; �0Þ

�
�
Yðk; �0Þ þ ik�2=30

Xðk; �0Þ
�
log

�� ��
�0

�
; (4.10)

where we imposed Eq. (4.5), and we have from Eq. (4.9),

Xðk; ��Þ ¼ 1 and Yðk; ��Þ ¼ 1

3
:

Notice that Xðk; �0Þ> 0 for �0 ! �� as we see from
Eq. (4.9). Our numerical calculations show that Xðk; �0Þ>
0 for all �0 and k.

B. The primordial power spectrum, scalar curvature
fluctuations and the CMB + LSS data

The power spectrum of curvature perturbations R is
given by the expectation value hR2i in the state with
general initial conditions [1]

hR2ð ~x; �Þi ¼
�
m

MPL

�
2 Z 1

0

jSRðk;�Þj2
z2ð�Þ

k2dk

2	2
; (4.11)

where zð�Þ is given by Eq. (2.25). Notice in Eq. (4.11) the
factor ðm=MPLÞ2 in the physical power spectrum expressed
in terms of the dimensionless quantities used here.
The power spectrum at time � is customary defined as

the power per unit logarithmic interval in k

hR2ð ~x; �Þi ¼
Z 1

0

dk

k
PRðk; �Þ:

Therefore, the scalar power for general initial conditions is
given by the fluctuations behavior by the end of inflation
[1],

PRðkÞ ¼
�
m

MPL

�
2 k3

2	2
lim
�!0�

��������SRðk;�Þ
zð�Þ

��������2

: (4.12)

The mode functions SRðk;�Þ obey the fluctuations
Eq. (2.24) where the potential WRð�Þ [Eq. (2.27)] during
slow roll and to leading order in 1=N takes the simple form
[1],

WRð�Þ ¼ 2

�2

�
1þ 3

2
ð3�v � �vÞ

�
¼ 
2

R � 1
4

�2
;


R ¼ 3

2
þ 3�v � �v þO

�
1

N2

�
: (4.13)

TABLE III. Selected time values for y ¼ 1:26 and Nsr ¼ 63 e-folds of slow-roll inflation.
Notice that slow roll starts exactly when fast roll ends. Recall that � ¼ 4:9710�6ðt=tPlanckÞ.
Inflation (fast roll) starts €að�sÞ ¼ 0 �s ¼ �� þ 0:0 753 090

VRð�Þ becomes positive VRð�þÞ ¼ 0 �þ ¼ �� þ 0:114
End of fast roll N�vð�transÞ ¼ 1 �trans ¼ �� þ 0:2 487 963 . . .
Maximum of VRð�Þ V0

Rð�MÞ ¼ 0 �M ¼ �� þ 0:3503, VRð�MÞ ¼ 51:196
End of inflation pð�endÞ ¼ 0 �end ¼ �� þ 18:2 547 816
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In the slow-roll regime we can consider �v and �v [see
Eq. (2.19)] constants in time in Eq. (4.13). During slow roll,
the general solution of Eq. (2.24) is then given by

SRðk;�Þ ¼ ARðkÞg
R
ðk;�Þ þ BRðkÞg�
R

ðk;�Þ; (4.14)

with

g
ðk;�Þ ¼ 1
2i

þð1=2Þ ffiffiffiffiffiffiffiffiffiffiffiffi�	�

p
Hð1Þ


 ð�k�Þ; (4.15)

ARðkÞ, BRðkÞ are constants determined by the initial con-

ditions and Hð1Þ

 ðzÞ is a Hankel function.

The Wronskian of the solutions SR, S�R is given by

Eq. (4.4) and

W½g
; g�
� ¼ i:

This generically determines that

jARðkÞj2 � jBRðkÞj2 ¼ 1: (4.16)

For wave vectors deep inside the Hubble radius jk�j 

1 the mode functions g
ðk;�Þ have the asymptotic behav-
ior

g
ðk;�Þ ¼�!�1 1ffiffiffiffiffi
2k

p e�ik�; g�
ðk;�Þ ¼�!�1 1ffiffiffiffiffi
2k

p eik�;

(4.17)

while for � ! 0�, they behave as

g
ðk;�Þ ¼�!0� �ð
Þffiffiffiffiffiffiffiffiffi
2	k

p
�
2

ik�

�

�ð1=2Þ

: (4.18)

In particular, in the scale-invariant case 
 ¼ 3
2 , which is the

leading order in the slow-roll expansion, the mode func-
tions Eqs. (4.15) simplify to

g3=2ðk;�Þ ¼ e�ik�ffiffiffiffiffi
2k

p
�
1� i

k�

�
: (4.19)

As we see from Eq. (2.25), zð�Þ obeys Eq. (2.24) for k ¼ 0
and therefore zð�Þ in the slow-roll regime behaves as

zð�Þ ¼ z0

ð�k0�Þ
R�ð1=2Þ ; (4.20)

where z0 is the value of zð�Þ when the pivot scale k0 exits
the horizon, that is at � ¼ �1=k0. Combining this result
with the small � limit Eq. (4.18) we find from Eqs. (4.12)
and (4.20),

PRðkÞ ¼ PBD
R ðkÞ½1þDðkÞ�; (4.21)

where we introduced the transfer function for the initial
conditions of curvature perturbations:

DðkÞ ¼ 2jBRðkÞj2 � 2Re½ARðkÞB�
RðkÞi2
R�3�: (4.22)

DðkÞ is obtained imposing BDic at � ¼ �0 according to
Eq. (4.7).

Notice as shown in Sec. VA that the transfer function
DðkÞ enjoys the properties

1þDðkÞ ¼k!0
Oðknsþ1Þ; DðkÞ ¼k!1

O
�
1

k2

�
: (4.23)

DðkÞ accounts for the effect in the power spectrum both of
the initial conditions and of the fluctuations evolution
during fast roll (before slow roll). DðkÞ depends on the
time �0 at which BDic are imposed.
If one chooses the extreme slow-roll solution presented

in Sec. III A and imposes BDic at �0 ¼ �1 (that is, �0 ¼
�1) then DðkÞ ¼ 0 and the fluctuation power spectrum at
the end of inflation is the usual power spectrum PRðkÞ ¼
PBD
R ðkÞ.
PBD
R ðkÞ is given by its customary slow-roll expression,

logPBD
R ðkÞ ¼ logAsðk0Þ þ ðns � 1Þ log k

k0

þ 1

2
nrunlog

2 k

k0
þO

�
1

N3

�
: (4.24)

We solved numerically the fluctuations Eq. (2.26) in cos-
mic time with the BDic Eq. (4.7) covering both the fast-roll
and slow-roll regimes. We started at initial times �0 rang-
ing from the vicinity of � ¼ �� until the transition time
�trans ¼ 0:2 487 963 . . . from fast roll to slow roll. We
computed the transfer function DðkÞ from the mode func-
tions behavior deep during slow-roll inflation from
Eqs. (4.12) and (4.21) [1]. In Figs. 6 we depict 1þDðkÞ
vs k for 12 values of the time �0 where BDic are imposed.
Notice that when BDic are imposed at finite times �0, the

spectrum is not the usual PBD
R ðkÞ but it gets modified by a

nonzero transfer function DðkÞ Eq. (4.21). The power
spectrum PRðkÞ vanishes at k ¼ 0 and exhibits oscillations
which vanish at large k (see Figs. 6 and 7).
During slow roll different initial times �0 lead essen-

tially to a rescaling of k in DðkÞ by a factor �0 since the
conformal time � is almost proportional to 1=að�Þ during
slow roll [see Figs. 7 and 6 and below Eq. (5.7)]. By virtue
of the dynamical attractor character of slow roll, the power
spectrum when the BDic are imposed at a finite time �0
cannot really distinguish between the extreme slow-roll
solution (for which slow roll starts from the very beginning
�0 ¼ �1) or any other solution which is attracted to slow
roll well before the time �0.

C. Accurate numerical computation of the power
spectrum and the transfer function DðkÞ of initial

conditions

In order to accurately calculate ns we proceed as fol-
lows: We match the solution SRðk;�Þ with the slow-roll
solution g
R

ðk;�Þ Eq. (4.15) at the time �0 when Nsr e-

folds of slow roll have still to occur. � and 
R are com-
puted at this time �0. In practice, this corresponds to setting
ARðkÞ ¼ 1, BRðkÞ ¼ 0 (and therefore DRðkÞ ¼ 0) in the
Bogoliubov transformation Eq. (4.14).
Then, we integrate numerically the fluctuations equa-

tions Eq. (2.26). By construction, this produces the stan-
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dard spectra PBD
R ðkÞ Eq. (4.24) that quickly stabilize as Nsr

is increased a few e-folds above N ¼ 60.
It is convenient to introduce the quantity

Ls � log

��
MPL

m

�
2
Asðk0 ¼ mÞ

�
; (4.25)

with k0 ¼ m when að�Þ ¼ 1, that is N ¼ 60 e-folds before
inflation ends. In Table IV we provide Ls for several values
of Nsr.
To transform this k0 in a wave number today we need
� the total redshift from 60 e-folds before inflation ends

until today [since we choose að� ¼ 0Þ ¼ 1 when
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FIG. 6 (color online). Numerical transfer function 1þDðkÞ. Lower left panel: Numerical transfer function 1þDðkÞ for BDic at
� ¼ �0 ¼ �� þ��, for different �� values as given in the picture. We see here that the peak of 1þDðkÞ grows and moves for larger k
as �0 increases. Here, Nsr ¼ 63. Lower right panel: The transfer function 1þDðkÞ when the BDic Eq. (4.7) are imposed during slow
roll at finite times �0 and Nsr e-folds of slow roll have still to occur. Upper panels: Numerical transfer function 1þDðkÞ for BDic at
� ¼ �0 ¼ �� þ��, for different values of �� as given in the picture. We get stronger oscillations in 1þDðkÞ for decreasing �0 in the
range �� < 0:04. Here Nsr ¼ 63.
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FIG. 7 (color online). Power spectrum with BDic Eq. (4.7)
imposed during slow roll when Nsr e-folds of slow-roll inflation
have still to occur. We see here the decrease of the power
spectrum PR as kns�1 multiplied by the oscillations of 1þ
DðkÞ. See Eqs. (4.21) and (4.24) and Figs. 6. The nonoscillatory
curve corresponds to the usual power with BDic at �0 ¼ �1
Eq. (4.24) decreasing as kns�1. The later are imposed the BDic,
the smaller is the number of slow-roll e-folds Nsr and the whole k
spectrum shifts to larger k.

TABLE IV. Exact values of Ls ¼ log½ðMPl=mÞ2Asðk0 ¼ mÞ�
for several values of Nsr from the numerical calculation. The
exact values of ns vary little with Nsr and are close to the slow-
roll approximation value. Also nrun is close to the value in the
slow-roll approximation.

Nsr Ls ns nrun

61 4.6 585 381. . . 0.9 637 013. . . �0:0 000 701 . . .
63 4.6 583 004. . . 0.9 641 135. . . �0:0 001 639 . . .
65 4.6 584 371. . . 0.9 642 483. . . �0:0 002 165 . . .
67 4.6 584 463. . . 0.9 642 444. . . �0:0 002 165 . . .
69 4.6 584 469. . . 0.9 642 448. . . �0:0 002 167 . . .
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there are still N ¼ 60 e-folds until the end of
inflation].

� the value ofm as determined by the observed value of
the amplitude Asðk0Þ.

Let kCMC
0 be the value of the pivot scale of COSMOMC

[that is 50 ðGpcÞ�1 today] 60 e-folds before the end of
inflation. Then, we have from Eqs. (4.24) and (4.25),

logAsðk0 ¼ mÞ ¼ Ls þ 2 log
m

MPL

¼ LCMC
s þ ðnCMC

s � 1Þ log m

kCMC
0

þ 1

2
nrun

�
log

m

kCMC
0

�
2 þO

�
1

N3

�
; (4.26)

where LCMC
s � logACMC

s ðkCMC
0 Þ and nCMC

s are best fit val-

ues in a given COSMOMC run. Since the running index nrun
is Oð1=N2Þ, we get for m,�

m

MPL

�
2 ¼

�
m

kCMC
0

�
nCMC
s �1

expðLCMC
s � LsÞ

�
1þO

�
1

N2

��
:

(4.27)

The wave vectors at a ¼ 1 (60 e-folds before inflation
ends) and today are related by [1]

ka¼1 ¼ e60

ar
ktoday; (4.28)

where ar is the scale factor by the end of inflation

ar ¼ 2:5	 10�29

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�4MPL

H60

s
; (4.29)

andH60 is the Hubble parameter 60 e-folds before inflation
ends. We thus have for the pivot wave number at a ¼ 1

kCMC
0 ’ 1:46 . . .

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H60

10�4MPL

s
	 1015 GeV (4.30)

and�
m

MPL

�
2�ðnCMC

s �1Þ=2 ¼
�
16:67 . . .ffiffiffiffiffiffiffi

h60
p

�
nCMC
s �1

expðLCMC
s � LsÞ;

where h60 � H60

m
:

Notice the small 1=N correction ðnCMC
s � 1Þ=2 in the ex-

ponent of m=MPL. Equation (4.26) yields for the best fit
COSMOMC run LCMC

s ¼ �19:9808 . . . and ns ¼ 0:9635 . . .
[1]:

m ’ 4:8114 . . . 10�6MPL ¼ 1:1717 . . . 1013 GeV

The exact values given above in Table IV

As ¼
�
m

MPL

�
2
expðLsÞ; ns and nrun

are obtained taking into account the fast-roll and slow-roll

stages in the numerical calculation. We can compare them
to their slow-roll (leading 1=N) analytic counterparts for
the double-well quadratic plus quartic potential, [1]

As ¼ N2

12	2

�
m

MPL

�
2 ð1� zÞ4

y2z
; ns ¼ 1� y

N

3zþ 1

ð1� zÞ2 ;

nrun ¼ y2z

N2ð1� zÞ4 ð24z
2 � 35zþ 3Þ;

where N ¼ 60, z ¼ 0:117 446 and y ¼ z� 1� logz ¼
1:2 592 226 . . . , that is

As ¼ N2

12	2

�
m

MPL

�
2
expð4:59 536 898 . . .Þ;

ns ¼ 0:9 635 620 . . . ; nrun ¼ �0:0 000 664 . . .

The figure in the exponent is to be compared with the Ls

values in Table IV. The agreement with Table IV is quite
good, especially for ns.
We now find the exact (numerical) transfer function

DðkÞ for the initial conditions, by simply taking in
Eq. (4.21) the ratio of the two power spectra: PRðkÞ with
BDic at time �0 and PBD

R ðkÞ. In the case of BDic at finite

times the result is given in Fig. 6. At the largest value
k=m ¼ 100 of the wave number interval considered, we
have

1þDð100mÞ ¼ 0:9 996 994 . . . ; 1:0 000 061 . . . ;

1:0 000 001 . . .

for

Nsr ¼ 61; 63; 65 and 67; respectively:

This provides a good check of the accuracy of the
calculation.
In Figs. 8 we compare the numerically computed DðkÞ

against ~Dðk�0Þ analytically computed for BDic imposed at
time �0 during slow roll in Eq. (5.7), Sec. VB. The
comparison is performed for BDic imposed when Nsr ¼
63 on the extreme slow-roll solution, which corresponds to
�0 ¼ �4:0 202 308 . . . . We consider two values of

R:
R¼2�ns=2¼1:5182189... , ns ¼ 0:9 635 620 . . .
corresponding to slow roll at leading 1=N order, and the
exactly scale-invariant case 
R ¼ 3=2. Notice that in the
latter case ~Dðk�0Þ has the explicit simple analytic form
Eq. (5.9).
The maximum of the numerical transfer function 1þ

DðkÞ is located at k=m ¼ 0:68 755 . . . and has the value
1:13 218 . . . The maximum of 1þ ~Dðk�0Þ, when 
R ¼
3=2 is in k=m ¼ 0:68 755 . . . and has the value
1:13 009 . . . . Recall that these values of k=m have the scale
fixed by the choice a ¼ 1whenN ¼ 60 e-folds lack before
inflation ends.
Let us now consider the fluctuations on the fast-roll

solution of Table II. Since � has a finite lower limit, the
choice ARðkÞ ¼ 1, BRðkÞ ¼ 0 has little meaning and BDic
can be imposed only at a finite time �0 later than the
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singularity time ��. If �0 is exactly the transition time �trans
when �v ¼ 1=N, fast roll ends and slow roll begins, (to
proceed forNsr ¼ 63 e-folds), thenDðkÞ does not differ too
much from that computed with the extreme slow-roll so-
lution. This comparison is performed in the lower left panel
of Fig. 8. In the right panelDðkÞ is compared to the ~Dðk�0Þ
for 
R ¼ 3=2 and �0 ¼ �4:0 169 827 . . . , which is the
value of the conformal time at the onset of slow roll (see
Table II).

When the BDic are imposed during the fast-roll stage
well before it ends, DðkÞ changes much more significantly
than along the extreme slow-roll solution. This is due to
two main effects: the potential felt by the fluctuations is
attractive during fast roll and �0, far from being almost
proportional to 1=að�Þ, tend to the constant value �� as
� ! �þ� and að�Þ ! 0. The numerical transfer functions
1þDðkÞ obtained from Eqs. (4.12) and (4.21) are plotted
in Figs. 6.

The fact that choosing BDic leads to a primordial power
and its respective CMB multipoles which correctly repro-
duce the observed spectrum justifies the use of BDic for the
scalar curvature fluctuations.

D. The effect of the fast-roll stage on the low multipoles
of the CMB

In the region of the Sachs-Wolfe plateau for l & 30, the
matter-radiation transfer function can be set equal to unity
and the CMB multipole coefficients C0

ls are given by [14]

Cl ¼ 4	

9

Z 1

0

dk

k
PXðkÞfjl½kð�0 � �lastÞ�g2; (4.31)

where PX is the power spectrum of the corresponding
perturbation, X ¼ R for curvature perturbations and X ¼
T for tensor perturbations, jlðxÞ are spherical Bessel func-
tions [15] and �0 � �last is the comoving distance between
today and the last scattering surface given by

�0 � �last ¼ 1

H0

Z 1

1
1þzlast

daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r þ�Maþ��a

4
p ; (4.32)

where �r, �M, and �� stand for the fraction of radiation,
matter, and cosmological constant in today’s Universe. We
find using zlast ¼ 1100,
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FIG. 8 (color online). Upper left panel: Difference between the (approximate) transfer function ~Dðk�0Þ Eqs. (5.7), (5.8), and (5.9) for

R ¼ 1:5 182 189 . . . and the numerical (exact at least to a 10�7 relative error) transfer function DðkÞ, when Nsr ¼ 63. Upper right
panel: Difference between the (approximate) transfer function ~Dðk�0Þ Eqs. (5.7), (5.8), and (5.9) for 
R ¼ 3=2 (the scale-invariant
value) and the numerical (exact) transfer function. We see that the difference in the right panel [Eq. (5.9)] is <0:014 while in the left
panel the difference of the analytic formula Eq. (5.7) is much smaller, <0:0005. Lower left panel: difference between the exact
(numerical) DðkÞ computed for the fast-roll inflaton solution of Table II and for the extreme slow-roll inflaton solution of Table I when
BDic are imposed 63 e-folds before the end of inflation. Lower right panel: difference between the numerical (exact) fast roll DðkÞ and
the approximate ~Dðk�0Þ calculated with 
R ¼ 3=2 and �0 ¼ �4:0 169 827 . . . . We see that the differences are small in both cases.
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�0 � �last ¼ 3:296

H0

: (4.33)

Notice that k=H0 � dH=�physðt0Þ is the ratio between to-

day’s Hubble radius and the physical wavelength. The
power spectrum for curvature (R) perturbations PRðkÞ is
given by Eqs. (4.21), (4.22), (4.23), and (4.24).

Inserting Eq. (4.21) into Eq. (4.31) yields the Cl as the
sum of two terms

Cl ¼ CBD
l þ�Cl;

�Cl

Cl

¼
R1
0 Dð�xÞflðxÞdxR1

0 flðxÞdx ;

x ¼ kð�0 � �lastÞ ¼ k=�;

(4.34)

where from Eq. (4.33), � � H0=3:296 . . . ,

flðxÞ ¼ xns�2½jlðxÞ�2; (4.35)

and jlðxÞ stand for the spherical Bessel functions.
The CBD

l ’s correspond to the standard Bunch-Davies

power spectrum PBD
R ðkÞ Eq. (4.24) and the �Cl exhibit

the effect of the transfer function DðkÞ on the Cl.
Using the transfer function DðkÞ obtained above

Eq. (4.22), we computed the change on the CMB multi-
poles �C‘=C‘ for ‘ ¼ 1; . . . ; 5 as functions of the starting
instant of the fluctuations �0. We plot�C‘=C‘ for 1 � ‘ �

5 vs �0 � �� in Fig. 9. We see that �C‘=C‘ is positive for
small �0 � �� and decreases with �0 becoming then nega-
tive. The CMB quadrupole observations indicate a large
suppression thus indicating that �0 � �� * 0:05 ’
10 100�Planck.
Being DðkÞ< 0 for low k as depicted in Figs. 6, the

primordial power at large scales is then suppressed and the
low C‘ decrease as seen from Eq. (4.34).
�C‘=C‘ mainly originates from the peak of DðkÞ dis-

played in Figs. 6 whose position moves to smaller k for
decreasing �0. Therefore, the primordial power suppres-
sion is less important for decreasing �0 and the CMB
multipole suppression �C‘=C‘ less important as depicted
in Figs. 9.
For small �0 � �� & 0:05 the peak of DðkÞ grows sig-

nificantly and �C‘=C‘ become positive, namely, the low
CMB multipoles are enhanced.
It should be recalled that the observation of a low CMB

quadrupole sparked many different proposals to explain
that suppression [16,17].
Besides finding a CMB quadrupole suppression in

agreement with observations [1,3–6], we provide here
predictions for the dipole and ‘ � 5 multipole suppres-
sions. Forthcoming CMB observations can provide better
data to confront our CMB multipole suppression predic-
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FIG. 9 (color online). The change �C‘=C‘ on the CMB multipoles for ‘ ¼ 1; . . . ; 5. Upper plot: �C‘=C‘ vs �0 � �� for 0< �0 �
�� < 0:2 487 963 . . . . Lower plot: �C‘=C‘ vs �0 � �� for 0:0193< �0 � �� < 0:2 487 963 . . . . �0 is the time when the BDic Eq. (4.7)
are imposed to the fluctuations. We choose �0 inside the fast-roll stage. �C‘=C‘ is positive for small �0 � �� and decreases with �0
becoming then negative. The CMB quadrupole observations indicate a large suppression thus indicating that �0 � �� * 0:05 ’
10 100�Planck. Our predictions here for the ‘ � 5 multipole suppressions are to be confronted with forthcoming CMB observations. It
will be extremely interesting to measure the primordial dipole and compare with our predicted value.
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tions. It will be extremely interesting to measure the pri-
mordial dipole and compare with our predicted value.

V. ANALYTIC FORMULAS FOR THE TRANSFER
FUNCTION DðkÞ

It is very important to dispose of analytic formulas for
the transfer function DðkÞ in order to better understand the
physical origin of its oscillations and properties as well as
in the perspective of the MCMC data analysis.

However, the mode Eqs. (2.24) are not solvable in closed
form for k � 0, not even for the approximated inflation
solution Eq. (2.37), which leads to the potential VRð�Þ
Eq. (2.43).

The function DðkÞ must obey the general properties
Eq. (4.23).

A. The primordial power spectrum vanishes for k ! 0
and becomes the BD power spectrum for k ! 1
The fluctuations Eq. (2.24) can be solved explicitly for

k ¼ 0

sð�Þ ¼ c1zð�Þ þ c2zð�Þ
Z �

�0

d�0

z2ð�0Þ ; (5.1)

where c1 and c2 are arbitrary constants.

The BDic Eq. (4.7) introduce for k ! 0 a 1=
ffiffiffiffiffi
2k

p
singu-

larity in the mode functions. Thus, the mode functions
must have the behavior

SRðk;�Þ ¼k!0 sð�Þffiffiffiffiffi
2k

p ½1þOðkÞ�; (5.2)

where sð�Þ is given by Eq. (5.1).
Inserting Eq. (5.2) into the BDic Eq. (4.7) yields for k !

0,

sð�0Þ ¼ 1;
dsð�0Þ
d�

¼ 0;

which determines the coefficients c1 and c2 in Eq. (5.1).
We finally obtain

sð�Þ ¼ zð�Þ
zð�0Þ � z0ð�0Þzð�Þ

Z �

�0

d�0

z2ð�0Þ (5.3)

and using Eq. (4.20) valid for � ! 0� when slow roll
applies

lim
�!0�

sð�Þ
zð�Þ ¼

1

zð�0Þ : (5.4)

The primordial power spectrum for k ! 0 follows by
inserting Eqs. (5.2) and (5.4) into the general expression
Eq. (4.12),

PRðkÞ ¼k!0
�
m

MPL

�
2 k3

2	2
lim
�!0�

��������SRðk;�Þ
zð�Þ

��������2

¼k!0
�
m

MPL

�
2
�

k

2	zð�0Þ
�
2
:

We thus find in general that the power spectrum vanishes as
k2 for k ! 0, and therefore

1þDðkÞ ¼k!0
Oðknsþ1Þ

as stated in Eq. (4.23). This property is generally true
except for the extreme slow-roll inflaton solution
(Sec. III A) with BDic imposed at �0 ¼ �1 in which
case DðkÞ vanishes identically for all k.
For growing k the modes exit the horizon later on, during

the slow-roll regime where Eq. (4.14) applies. For large k
the mode functions SR as well as g
R

behave as plane

waves [Eqs. (4.6) and (4.18)], and therefore

ARðkÞ ¼ 1; BRðkÞ ¼ 0: Hence DðkÞ ¼k!1
0:

B. The transfer function DðkÞ when BDic are imposed
during slow roll

When the BDic Eq. (4.7) are imposed during slow roll at
a finite time �0 we can use Eq. (4.14) for the mode
functions at � ¼ �0 and we obtain,

e�ik�0ffiffiffiffiffi
2k

p ¼ ARðkÞg
R
ðk;�0Þ þ BRðkÞg�
R

ðk;�0Þ

�ik
e�ik�0ffiffiffiffiffi

2k
p ¼ ARðkÞg0
R

ðk;�0Þ þ BRðkÞg0�
R
ðk;�0Þ; (5.5)

which determines

ARðkÞ ¼ e�ik�0

i
ffiffiffiffiffi
2k

p ½g0�
R
ðk;�0Þ þ ikg�
R

ðk;�0Þ�;

BRðkÞ ¼ e�ik�0

i
ffiffiffiffiffi
2k

p ½g0
R
ðk;�0Þ þ ikg
R

ðk;�0Þ�:
(5.6)

These coefficients satisfy Eq. (4.16) and

jARðkÞj2 þ jBRðkÞj2 ¼ 1

k
½jg0
R

ðk;�0Þj2

þ k2jg
R
ðk;�0Þj2�:

Notice that the function g
ðk;�Þ Eq. (4.15) and the k

factors in Eq. (5.6) combine to produce functions ARðkÞ �
~ARðk�0Þ and BRðkÞ � ~BRðk�0Þ that only depend on the
product k�0.
We find from Eqs. (4.22) and (5.6) the corresponding

transfer function, which is a function of k�0 too,
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1þ ~Dðk�0Þ ¼ 1

k
fjg0
Rðk;�0Þj2 þ k2jg
R

ðk;�0Þj2

� Re½i3�2
Rðg02
R
ðk;�0Þ

þ k2g2
Rðk;�0ÞÞ�g: (5.7)

The functional dependence on k�0 confirms the assertion
in Sec. IVB that different initial times �0 lead to a rescaling
in k.

In the k�0 ! 1 limit two types of vanishing terms show
up in ~Dðk�0Þ: (a) terms that strongly oscillate as e�2ik�0 as
they tend to zero and (b) nonoscillatory decreasing terms.
Under integrals on k, the terms of type (a) yield convergent
expressions. We derive the nonoscillatory decreasing terms
(b) by inserting the asymptotic behavior of the Hankel
functions Eq. (4.15) [15] in Eq. (5.7) with the result

~Dðk�0Þ ¼k!1 ð
2 � 1
4Þ2

8ðk�0Þ4
þ terms oscillating as e�2ik�0 :

(5.8)

However, this approximation will not be valid for large
enough k since the modes at small enough wavelength will
exit the horizon after the end of slow roll where Eq. (5.8)
does not apply anymore. We recall that the occupation
number jBRðkÞj2 (and thereforeDðkÞ) must decrease faster
than 1=k4 for k ! 1 in order to ensure finite UV values for
the expectation value of the energy-momentum fluctua-
tions [1,18].

The case 
R ¼ 3=2 is a good approximation which
simplifies the expressions above. We obtain in this scale-
invariant case:

ARðkÞ ¼ 1þ i

k�0

� 1

2k2�2
0

; BRðkÞ ¼ � e�2ik�0

2k2�2
0

:

The transfer function is in this case,

~DðxÞ¼ cos2x

x2
� sin2x

x3
þ sin2x

x4
; 
R¼ 3=2; x� k�0:

(5.9)

Equation (5.8) for 
 ¼ 3=2 coincides with Eq. (5.9) in the
x ! 1 limit, as it must be.

Notice that the simple formula Eq. (5.9) obeys the
general properties Eq. (4.23). In particular,

~DðxÞ ¼x!0�1þ 4

9
x2 þOðx4Þ:

VI. FIXING THE TOTAL NUMBER OF INFLATION
E-FOLDS AND THE BOUND FROM ENTROPY

It is very useful to plot the comoving scales of the
cosmological fluctuation wave numbers and the comoving
Hubble radius together (see Fig. 10). One sees in this way
how and when the cosmological fluctuations cross out and
in the Hubble radius. The comoving Hubble radius is

defined by RH � 1=½að�ÞHð�Þ�. We display in Table IV
the dependence of RH on the scale factor a for all the
relevant eras of the Universe.
The observed CMB quadrupole suppression can be

easily explained if it exited the horizon by the end of fast
roll [5,6]. In that case, the modes which are horizon size
today had wave numbers kQ ’ 11:5m at horizon exit [6].

Combining this value of kQ with the redshift since the pivot

wave number exited the horizon, Eqs. (4.28), (4.29), and
(4.30) determines the total redshift since the beginning of
inflation to be

ztot ¼ 0:9	 1056 ’ e129:

Combining this value with the value of 1þ zr ’ 41028 ’
e66 by the end of inflation Eq. (4.29) yields a total number
of Ntot ¼ 63 inflation e-folds. This value is very close to
the minimal number of inflation e-folds required to explain
the entropy of the present Universe due to photons and
neutrinos [1]:

Ntot  62:4:

Namely, this is the minimum number of inflation e-folds
compatible with the present entropy of the Universe.
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FIG. 10 (color online). The logarithm of the comoving scales
and the logarithm of the comoving Hubble radius RH ¼ 1=½aH�
vs loga.

TABLE V. Dependence of the comoving Hubble radius RH ¼
1=½aH� on the scale factor a for the relevant eras of the Universe.

Expansion stage Dependence of RH on a

Extreme fast roll a2

Fast roll a2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a6 þ constant

p
Slow-roll inflation 1=a
Radiation dominated a
Matter dominated

ffiffiffi
a

p
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In summary, assuming that the CMB quadrupole is sup-
pressed because it exited the horizon by the end of fast-roll
inflation fixes the total number of inflation e-folds which
turns to be

Ntot ’ 63:
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