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Introduction

Given a function

G : R× Rn → R ,

such that G(t, s) is T -periodic in t, the study of T -periodic solutions u : R→ Rn for the

system

−u′′(t) = ∇sG(t, u(t))

constitutes a widely investigated subject and a typical area of application of variational

methods, as u is a T -periodic solution if and only if its restriction to [0, T ] is a critical

point of the functional {
u 7→ 1

2

∫ T

0

|u′|2 dt−
∫ T

0

G(t, u) dt

}
defined on u’s in W 1,2(0, T ;Rn) such that u(0) = u(T ) (see e.g. [30, 35]).

Among several possible assumptions on G, special attention has been devoted, start-

ing from [34], to the case in which G(t, s) ≈ |s|β as |s| → ∞, with β > 2.

Many refinements and generalizations have been produced since that paper. First of

all, if ∇sG is allowed to be discontinuous in t (typically, ∇sG(·, s) ∈ L1
loc(R;Rn)), it is

equivalent to consider G just defined on ]0, T [×Rn. Then, among very recent contribu-

tions, let us mention [28], where it is proved that there exists a nonconstant T -periodic

solution u of

−
(
|u′|p−2u′

)′
= ∇sG(t, u) ,

with 1 < p <∞, provided that:

(a) the function G(·, s) is measurable for every s ∈ Rn, G(t, 0) = 0 and G(t, ·) is of

class C1 for a.e. t ∈]0, T [ and, for every r > 0, there exists αr ∈ L1(0, T ) satisfying

|∇sG(t, s)| ≤ αr(t) for a.e. t ∈]0, T [ and every s ∈ Rn with |s| ≤ r;

(b) G(t, s) ≥ 0 for a.e. t ∈]0, T [ and every s ∈ Rn;

iii



iv INTRODUCTION

(c) there exist β > p, α ∈ L1(0, T ) and a measurable subset E of ]0, T [ with positive

measure such that

β G(t, s)−∇sG(t, s) · s ≤ (1 + |s|p)α(t) for a.e. t ∈]0, T [ and every s ∈ Rn ,

lim sup
|s|→∞

β G(t, s)−∇sG(t, s) · s
|s|p

≤ 0 for a.e. t ∈]0, T [ ,

lim inf
|s|→∞

G(t, s)

|s|p
> 0 for a.e. t ∈ E ;

(d) we have

lim
s→0

G(t, s)

|s|p
= 0 uniformly for a.e. t ∈]0, T [ .

Let us observe that, since the functional{
u 7→ 1

p

∫ T

0

|u′|p dt
}

is convex, we have that u ∈ W 1,p(0, T ;Rn) with u(0) = u(T ) is a critical point of{
u 7→ 1

p

∫ T

0

|u′|p dt−
∫ T

0

G(t, u) dt

}
if and only if

1

p

∫ T

0

|v′|p dt+

∫ T

0

∇sG(t, u) · (u− v) dt

≥ 1

p

∫ T

0

|u′|p dt for any v ∈ W 1,p(0, T ;Rn) with v(0) = v(T ) .

Coming back to the general study of periodic solutions, not necessarily in the case

started by [34], a certain attention has been recently devoted to the limit case as p → 1

(see e.g. [33]). In this case the term ∫ T

0

|u′| dt

defined for u’s in W 1,1(0, T ;Rn) with u(0) = u(T ) has to be substituted by the term

|u′|(]0, T [) + |u(0+)− u(T−)|

defined for u’s in BV (0, T ;Rn) (see also the next Proposition 1.2.2). Therefore, one looks

for u ∈ BV (0, T ;Rn) such that

|v′|(]0, T [) + |v(0+)− v(T−)|+
∫ T

0

∇sG(t, u) · (u− v) dt

≥ |u′|(]0, T [) + |u(0+)− u(T−)| for any v ∈ BV (0, T ;Rn) .
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Now one could ask whether it is possible to find a nonconstant solution under the

same assumptions (a)–(d) with p replaced by 1.

The adaptation is not standard and the point is assumption (a). More precisely,

the most conservative approach, with respect to the case p > 1, would be to define

f : BV (0, T ;Rn)→ R as

f(u) = |u′|(]0, T [) + |u(0+)− u(T−)| −
∫ T

0

G(t, u) dt .

Then f turns out to be locally Lipschitz and nonsmooth critical point theory allows to

treat this level of regularity. However, the Palais-Smale condition fails, because the BV

norm is too strong with respect to the lack of uniform convexity of the principal part of

the functional.

This difficulty was already recognized and overcome in [17], if u is defined on an open

subset of RN with N ≥ 2 (so we have a PDE instead of an ODE and the assumptions on G

have to be naturally adapted). The device is to extend the functional to L1∗ = L
N

N−1 with

value +∞ outside BV . In this way the functional becomes a C1 perturbation of a convex

and lower semicontinuous functional, a class still covered by nonsmooth critical point

theory, and now the Palais-Smale condition can be proved (see e.g. [17, Theorem 6.2]).

This kind of device has been also applied in [6, 15, 27, 31].

The same idea, when N = 1, would suggest to extend f to L∞ with value +∞
outside BV , but now L∞ is not so well behaved as L

N
N−1 with N ≥ 2 and the Palais-

Smale condition still fails. To recover a more comfortable Lebesgue space, one could

extend the functional to Lq with 1 < q <∞, again with value +∞ outside BV , but now

assumption (a) is not enough to guarantee that the functional is lower semicontinuous

on Lq, as we will see in Remark 2.2.10. The lack of lower semicontinuity is a serious

difficulty in view of direct methods. By the way, also [33], which treats a different problem,

requires a stronger version of (a), with αr ∈ Lq with q > 1.

The purpose of this thesis is to propose a different functional approach that allows to

prove the required result (see Theorem 2.2.1 and Remark 2.2.6) and also other existence

and multiplicity results under different behaviors of G.

The starting point is a device introduced in [12] and largely exploited. Given a

discontinuous function f : X →]−∞,+∞], it is often convenient to consider the epigraph

of f

epi (f) = {(u, λ) ∈ X × R : f(u) ≤ λ}

and then the continuous function Gf : epi (f) → R defined as Gf (u, λ) = λ. In this way
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the study of a general function can be reduced, to a certain extent, to that of a continuous

function.

In our case this device does not improve the situation, because the lack of lower

semicontinuity of f becomes a lack of completeness of epi (f). However, a variation of

this idea will solve the problem.

Since our functional f has two parts, say f = f0 + f1 with

f0(u) = |u′|(]0, T [) + |u(0+)− u(T−)| , f1(u) = −
∫ T

0

G(t, u) dt ,

we can consider the epigraph just of f0

epi (f0) = {(u, λ) ∈ BV (0, T ;Rn)× R : f0(u) ≤ λ}

which is complete also under very weak norms, say that of L1(0, T ;Rn)×R. Then define

F : epi (f0)→ R by F (u, λ) = λ+f1(u), which turns out to be continuous with respect to

the topology of L1(0, T ;Rn)×R as the convergence in this topology, restricted to epi (f0),

implies a BV bound.

In the end, the solutions u of the periodic problem will be obtained as “critical points”

of F of the form (u, f0(u)).

In Chapter 1 we review some known results and describe the general functional set-

ting. In Chapter 2 we treat the problem addressed in the Introduction, while in Chapter 3

we adapt to our setting a result of [29] concerning the case p = 2 (see Theorems 3.1.4

and 3.2.1). Finally, in Chapter 4 we treat the case in which G(t, s) ≈ |s| as |s| → ∞,

under a suitable nonresonance condition (see Theorem 4.2.2).



Chapter 1

Auxiliary results and general setting

In this first chapter we review some general facts, which will be useful in the following,

and we formulate the general setting of the problem.

1 Some auxiliary results

1.1 Functions with bounded variation

We refer the reader to [2, 23].

Definition 1.1.1. Let Ω be an open subset of R. We denote by BV (Ω;Rn) the set of u’s

in L1(Ω;Rn) such that

sup

{∫
Ω

u · v′ dt : v ∈ C1
c (Ω;Rn) , |v(t)| ≤ 1 ∀t ∈ Ω

}
< +∞ .

If u ∈ BV (Ω;Rn), it turns out that the distributional derivative u′ is a vector

Radon measure with bounded total variation. The Lebesgue’s decomposition and Radon-

Nikodym theorem then allow to write

du′ = u′a dL
1 +

u′s
|u′s|

d|u′s| .

In particular, we have

|u′|(Ω) =

∫
Ω

|u′a| dt+ |u′s|(Ω) .

In the case Ω =]a, b[, we will write L1(a, b;Rn), BV (a, b;Rn) instead of L1(]a, b[;Rn),

BV (]a, b[;Rn). Moreover, we will denote by ‖u‖p the usual norm in Lp.

1



2 CHAPTER 1. AUXILIARY RESULTS AND GENERAL SETTING

Proposition 1.1.2. For every T > 0 and u ∈ BV (0, T ;Rn), we have

ess sup
]0,T [

∣∣∣∣u− 1

T

∫ T

0

u dt

∣∣∣∣ ≤ |u′|(]0, T [) ,

ess sup
]0,T [

|u| ≤ 1

T

∫ T

0

|u| dt+ |u′|(]0, T [) ,

ess inf
]0,T [

|u| ≥ 1

T

∫ T

0

|u| dt− |u′|(]0, T [) .

Proof. For every u ∈ BV (0, T ;Rn), α ∈ Rn and a.e. t, s ∈]0, T [, we have

α · (u(s)− u(t)) ≤ |α| |u′|(]0, T [) .

Integrating in dt, we get

α ·
(
Tu(s)−

∫ T

0

u(t) dt

)
≤ T |α| |u′|(]0, T [) for a.e. s ∈]0, T [ ,

whence ∣∣∣∣u(s)− 1

T

∫ T

0

|u| dt
∣∣∣∣ ≤ |u′|(]0, T [) for a.e. s ∈]0, T [

by the arbitrariness of α. Then the assertions easily follow.

1.2 Lower semicontinuity

We refer the reader to [2, 23].

Definition 1.1.3. Let X be a set and let f : X → [−∞,+∞] be a function. We define

the epigraph of f as

epi (f) := {(u, λ) ∈ X × R : f(u) ≤ λ} .

We also consider the function Gf : epi (f)→ R defined as Gf (u, λ) = λ.

Definition 1.1.4. Let X be a topological space. A function f : X → [−∞,+∞] is said

to be lower semicontinuous if epi (f) is closed in X × R.

Proposition 1.1.5. Let X be a topological space and let f : X → [−∞,+∞] be a function.

Then the following facts are equivalent:

(a) f is lower semicontinuous;

(b) for every c ∈ R, the set {u ∈ X : f(u) > c} is open in X;

(c) for every c ∈ R, the set {u ∈ X : f(u) ≤ c} is closed in X.
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1.3 Nonsmooth analysis

We refer the reader to [4, 8, 10, 16, 19, 25, 26].

Let X be a metric space endowed with the distance d. We will denote by Bδ (u) the open

ball of center u and radius δ. Moreover, X × R will be endowed with the distance

d( (u, λ) , (v, µ) ) =
(
d(u, v)2 + (λ− µ)2)1/2

and epi (f) with the induced distance.

The next notion has been independently introduced in [10, 16] and in [26], while a

variant has been proposed in [25].

Definition 1.1.6. Let f : X → R be a continuous function and let u ∈ X. We denote by

|df |(u) the supremum of the σ’s in [0,+∞[ such that there exist δ > 0 and a continuous

map

H : Bδ (u)× [0, δ]→ X

satisfying

d(H (v, t), t) ≤ t , f(H (v, t)) ≤ f(v)− σt ,

for every v ∈ Bδ (u) and t ∈ [0, δ].

The extended real number |df |(u) is called the weak slope of f at u.

Proposition 1.1.7. Let X be an open subset of a normed space and let f : X → R be of

class C1. Then we have |df | (u) = ‖f ′(u)‖ for any u ∈ X.

Proposition 1.1.8. Let f : X → R be a continuous function, u ∈ X and λ ∈ R.

Then we have

|dGf |(u, f(u)) =


|df |(u)√

1 +
(
|df |(u)

)2
if |df |(u) < +∞ ,

1 if |df |(u) = +∞ ,

|dGf |(u, λ) = 1 if f(u) < λ .

This proposition allows to define, in a consistent way, the weak slope of a general func-

tion. Since Gf is Lipschitz continuous of constant 1, it is easily seen that |dGf | (u, λ) ≤ 1

for any (u, λ) ∈ epi (f).
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Definition 1.1.9. Let f : X → [−∞,+∞] be a function and let u ∈ X with f(u) ∈ R.

We set

|df |(u) :=


|dGf |(u, f(u))√

1−
(
|dGf |(u, f(u))

)2
if |dGf |(u, f(u)) < 1 ,

+∞ if |dGf |(u, f(u)) = 1 .

Proposition 1.1.10. Let f : X → [−∞,+∞] be a function, let

D = {u ∈ X : f(u) < +∞}

and denote by f the restriction of f to D.

Then, for every u ∈ D with f(u) > −∞, we have∣∣df ∣∣ (u) = |df | (u) .

Proof. We have epi
(
f
)

= epi (f) and Gf = Gf .

Proposition 1.1.11. Let f : X → [−∞,+∞] be a function and β : X → R a Lipschitz

continuous function of constant L. Let

Y = {u ∈ X : f(u) ≤ β(u)}

and denote by f the restriction of f to Y .

Then, for every u ∈ Y with f(u) > −∞ and |df | (u) > L, we have∣∣df ∣∣ (u) ≥ |df | (u) .

Proof. See [13, Proposition 3.2].

Proposition 1.1.12. Let f : X → [−∞,+∞] be a function and let g : X → R be a

Lipschitz continuous function of constant L.

Then, for every u ∈ X with f(u) ∈ R, we have

|df | (u)− L ≤ |d(f + g)| (u) ≤ |df | (u) + L .

Proof. See [19, Proposition 1.6].

Definition 1.1.13. Let f : X → [−∞,+∞] be a function. We say that u ∈ X is a

(lower) critical point of f if f(u) ∈ R and |df |(u) = 0. We say that c ∈ R is a (lower)

critical value of f if there exists u ∈ X such that f(u) = c and |df |(u) = 0.
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Definition 1.1.14. Let f : X → [−∞,+∞] be a function and let c ∈ R. We say that f

satisfies the Palais-Smale condition at level c ((PS)c, for short), if every sequence (uk)

in X, with f(uk)→ c and |df |(uk)→ 0, admits a convergent subsequence in X.

Definition 1.1.15. Let f : X → [−∞,+∞] be a function, let ū ∈ X and c ∈ R. We say

that f satisfies the Cerami-Palais-Smale condition at level c ((CPS)c, for short), if every

sequence (uk) in X, with f(uk)→ c and
(
1 + d(uk, ū)

)
|df |(uk)→ 0, admits a convergent

subsequence in X.

Since (
1 + d(uk, û)

)
|df |(uk) ≤

(
1 + d(ū, û)

)(
1 + d(uk, ū)

)
|df |(uk) ,

it is easily seen that (CPS)c is independent of the choice of the point ū. It is also clear

that (PS)c implies (CPS)c.

Being a generalization of ‖f ′(u)‖, the weak slope |df | (u) cannot have a rich calculus.

For this reason, an auxiliary concept is sometimes useful.

From now on in this subsection, we assume that X is a normed space over R and

f : X → [−∞,+∞] a function.

The next notion has been introduced in [4].

Definition 1.1.16. For every u ∈ X with f(u) ∈ R, v ∈ X and ε > 0, let f 0
ε (u; v) be the

infimum of r’s in R such that there exist δ > 0 and a continuous map

V :
(
Bδ(u, f(u)) ∩ epi (f)

)
×]0, δ]→ Bε(v)

satisfying

f(z + tV((z, µ), t)) ≤ µ+ rt

whenever (z, µ) ∈ Bδ(u, f(u)) ∩ epi (f) and t ∈]0, δ].

Then let

f 0(u; v) = sup
ε>0

f 0
ε (u; v) .

Let us recall that the function f 0(u; ·) : X → [−∞,+∞] is convex, lower semicontin-

uous and positively homogeneous of degree 1. Moreover f 0(u; 0) ∈ {0,−∞}.

Definition 1.1.17. For every u ∈ X with f(u) ∈ R, we set

∂f(u) =
{
α ∈ X ′ : 〈α, v〉 ≤ f 0(u; v) ∀v ∈ X

}
.
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This kind of subdifferential is suitably related to the weak slope, because of the next

result.

Theorem 1.1.18. For every u ∈ X with f(u) ∈ R, the following facts hold:

(a) |df |(u) < +∞ ⇐⇒ ∂f(u) 6= ∅;

(b) |df |(u) < +∞ =⇒ |df |(u) ≥ min { ‖α‖ : α ∈ ∂f(u) }.

Proposition 1.1.19. Assume there exists D ⊆ X such that f
∣∣
D

is real valued and con-

tinuous, while f = +∞ on X \D.

Then for every u ∈ D, v ∈ X and ε > 0 we have that f 0
ε (u; v) is the infimum of the

r’s in R such that there exist δ > 0 and a continuous map

V :
(
Bδ(u) ∩D

)
×]0, δ]→ Bε(v)

satisfying

f(z + tV(z, t)) ≤ f(z) + rt

whenever z ∈ Bδ(u) ∩D and t ∈]0, δ].

Remark 1.1.20. If f is convex, then ∂f agrees with the subdifferential of convex analysis.

If f is locally Lipschitz, then f 0 and ∂f agree with Clarke’s notions [8]. In particular,

f 0(u, ·) also is Lipschitz continuous and for every u, v ∈ X we have

f 0(u; v) = lim sup
(z,t)→(u,0+)

f(z + tv)− f(z)

t

= lim sup
(z,w,t)→(u,v,0+)

f(z + tw)− f(z)

t
,

(−f)0(u; v) = f 0(u;−v) ,

{
(u, v) 7→ f 0(u; v)

}
is upper semicontinuous .

2 The general setting

Let us introduce the general setting that will be considered from now on.
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2.1 The principal part

Throughout the thesis, we assume that Ψ : Rn → R satisfies:

(Ψ) the function Ψ is convex, with Ψ(0) = 0, and there exists ν > 0 satisfying

ν|ξ| − 1

ν
≤ Ψ(ξ) ≤ 1

ν

(
1 + |ξ|

)
for every ξ ∈ Rn .

Let us also introduce the recession function Ψ∞ : Rn → R defined as:

Ψ∞(ξ) := lim
τ→+∞

Ψ(τξ)

τ
.

It is well known (see e.g. [2, 11, 23]) that Ψ∞ is convex and positively homogeneous of

degree 1.

Proposition 1.2.1. The following facts hold:

(a) the function Ψ is Lipschitz continuous of constant 1/ν; in particular, it follows that

Ψ(ξ) ≤ 1

ν
|ξ| for every ξ ∈ Rn ;

(b) for every ε > 0 there exists Mε > 0 such that

|Ψ(2ξ)− 2Ψ(ξ)| ≤ εΨ(ξ) +Mε for every ξ ∈ Rn ;

(c) the function Ψ∞ itself is Lipschitz continuous with the same constant 1/ν and we

have

ν|ξ| ≤ Ψ∞(ξ) ≤ 1

ν
|ξ| for every ξ ∈ Rn ;

(d) for every ε > 0 there exists Mε > 0 such that

(1− ε)Ψ∞(ξ)−Mε ≤ Ψ(ξ) ≤ Ψ∞(ξ) for every ξ ∈ Rn .

Proof. (a)&(c) For every ξ0, ξ1 ∈ Rn and τ ≥ 1, we have

ξ1 = ξ0 +
1

τ
{[ξ0 + τ(ξ1 − ξ0)]− ξ0} ,

whence, by the convexity of Ψ,

Ψ(ξ1) ≤ Ψ(ξ0) +
1

τ
{Ψ(ξ0 + τ(ξ1 − ξ0))−Ψ(ξ0)} ,
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which is equivalent to

Ψ(ξ0) + τ [Ψ(ξ1)−Ψ(ξ0)] ≤ Ψ(ξ0 + τ(ξ1 − ξ0)) .

By the upper estimate in assumption (Ψ), it follows

Ψ(ξ0) + τ [Ψ(ξ1)−Ψ(ξ0)] ≤ 1

ν
(1 + |ξ0 + τ(ξ1 − ξ0)|) ,

whence
1

τ
Ψ(ξ0) + Ψ(ξ1)−Ψ(ξ0) ≤ 1

ν

(
1

τ
+

∣∣∣∣1τ ξ0 + ξ1 − ξ0

∣∣∣∣) .

Going to the limit as τ → +∞, we get

Ψ(ξ1)−Ψ(ξ0) ≤ 1

ν
|ξ1 − ξ0| ,

whence the Lipschitz continuity of Ψ, as we can exchange ξ0 with ξ1.

Consequently, we also have∣∣∣∣Ψ(τξ1)

τ
− Ψ(τξ0)

τ

∣∣∣∣ ≤ 1

τ

1

ν
τ |ξ1 − ξ0| =

1

ν
|ξ1 − ξ0| .

Going to the limit as τ → +∞, we obtain

|Ψ∞(ξ1)−Ψ∞(ξ0)| ≤ 1

ν
|ξ1 − ξ0| ,

that means that Ψ∞ also is Lipschitz continuous of constant 1/ν.

Since

ν|ξ| − 1

τν
≤ Ψ(τξ)

τ
≤ 1

ν

(
1

τ
+ |ξ|

)
,

going to the limit as τ → +∞ the double estimate on Ψ∞ also follows.

(b) Because of assumption (Ψ), it is equivalent to prove that

lim
|ξ|→∞

Ψ(2ξ)− 2Ψ(ξ)

|ξ|
= 0 .

Let (τk) be a sequence with τk → +∞ and (vk) a sequence in Rn with |vk| = 1. Up to a

subsequence, we may assume that vk → v.

Since Ψ is Lipschitz continuous of constant 1/ν, we get

Ψ(2τkvk)− 2Ψ(τkvk)

τk
=

Ψ(2τkv)− 2Ψ(τkv)

τk
+

Ψ(2τkvk)−Ψ(2τkv)

τk

− 2
Ψ(τkvk)−Ψ(τkv)

τk

≤ Ψ(2τkv)− 2Ψ(τkv)

τk
+

1

τk

(
2

ν
τk|vk − v|+

2

ν
τk|vk − v|

)
= 2

[
Ψ(2τkv)

2τk
− Ψ(τkv)

τk

]
+

4

ν
|vk − v| ,
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whence

lim sup
k

Ψ(2τkvk)− 2Ψ(τkvk)

τk
≤ 2Ψ∞(v)− 2Ψ∞(v) = 0 .

The lower limit can be treated in a similar way.

(d) If τ ≥ 1 and ξ ∈ Rn, we have

ξ =
(

1− 1

τ

)
0 +

1

τ
(τξ) ,

whence

Ψ(ξ) ≤ 1

τ
Ψ(τξ) .

Going to the limit as τ → +∞, we get Ψ(ξ) ≤ Ψ∞(ξ). On the other hand, assume for a

contradiction that there exist ε > 0 and (ξk) such that

(1− ε)Ψ∞(ξk)− k > Ψ(ξk) .

First of all, it follows |ξk| → ∞. If ξk = τkvk with τk → +∞, |vk| = 1 and vk → v, we

have

(1− ε)Ψ∞(vk) >
Ψ(τkvk)

τk
≥ Ψ(τkv)

τk
− 1

ν
|vk − v| ,

whence

(1− ε)Ψ∞(v) ≥ Ψ∞(v)

and a contradiction follows.

Now let T > 0 and let

f̌0 , f0 : L1(0, T ;Rn)→]−∞,+∞]

be the functionals defined as

f̌0(u) =


∫ T

0

Ψ(u′) dt if u ∈ W 1,1
T (0, T ;Rn) ,

+∞ if u ∈ L1(0, T ;Rn) \W 1,1
T (0, T ;Rn) ,

f0(u) =



∫ T

0

Ψ(u′a) dt+

∫
]0,T [

Ψ∞
(
u′s
|u′s|

)
d|u′s|

+Ψ∞
(
u(0+)− u(T−)

)
if u ∈ BV (0, T ;Rn) ,

+∞ if u ∈ L1(0, T ;Rn) \BV (0, T ;Rn) ,

where

W 1,1
T (0, T ;Rn) =

{
u ∈ W 1,1(0, T ;Rn) : u(0) = u(T )

}
.
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Proposition 1.2.2. The functional f0 is the lower semicontinuous envelope of the func-

tional f̌0.

Proof. It is well known that

∫ T

0

Ψ(u′a) dt+

∫
]0,T [

Ψ∞
(
u′s
|u′s|

)
d|u′s|

+Ψ∞
(
u(0+)

)
+ Ψ∞

(
− u(T−)

)
if u ∈ BV (0, T ;Rn) ,

+∞ if u ∈ L1(0, T ;Rn) \BV (0, T ;Rn) ,

is the lower semicontinuous envelope of
∫ T

0

Ψ(u′) dt if u ∈ W 1,1
0 (0, T ;Rn) ,

+∞ if u ∈ L1(0, T ;Rn) \W 1,1
0 (0, T ;Rn) ,

(see e.g. [3, Corollary 11.3.1]).

It is easily seen that f0 ≤ f̌0. To prove the lower semicontinuity of f0, consider a

sequence (uk) converging to u in L1(0, T ;Rn). Without loss of generality, we may assume

that sup
k
f0(uk) < +∞. Then from assumption (Ψ) we infer that (uk) is bounded in

BV (0, T ;Rn), so that u ∈ BV (0, T ;Rn) and (uk(T−)) is convergent, up to a subsequence,

to some y in Rn.

If we set

vk(t) = uk(t)− uk(T−) ,

v(t) = u(t)− y ,

we have

Ψ∞ (u(0+)− u(T−)) = 2Ψ∞
(

1

2
(u(0+)− y) +

1

2
(y − u(T−))

)
≤ Ψ∞ (u(0+)− y) + Ψ∞ (y − u(T−))

= Ψ∞ (v(0+)) + Ψ∞ (−v(T−)) ,

whence

f0(u) ≤
∫ T

0

Ψ(v′a) dt+

∫
]0,T [

Ψ∞
(
v′s
|v′s|

)
d|v′s|+ Ψ∞

(
v(0+)

)
+ Ψ∞

(
− v(T−)

)
≤ lim inf

k

[∫ T

0

Ψ((vk)
′
a) dt+

∫
]0,T [

Ψ∞
(

(vk)
′
s

|(vk)′s|

)
d|(vk)′s|+ Ψ∞

(
vk(0+)

)]
= lim inf

k
f0(uk) .
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Let now u ∈ BV (0, T ;Rn) and set

v(t) = u(t)− u(T−) .

There exists a sequence (vk) in W 1,1
0 (0, T ;Rn) such that

lim
k

∫ T

0

Ψ(v′k) dt =

∫ T

0

Ψ(v′a) dt+

∫
]0,T [

Ψ∞
(
v′s
|v′s|

)
d|v′s|+ Ψ∞

(
v(0+)

)
= f0(u) .

If we set

uk(t) = vk(t) + u(T−) ,

we have uk ∈ W 1,1
T (0, T ;Rn) and

lim
k
f̌0(uk) = lim

k

∫ T

0

Ψ(v′k) dt = f0(u) .

For every u ∈ BV (0, T ;Rn), we also have

f0(u) =

∫ T

0

Ψ(u′a) dt+

∫
[0,T [

Ψ∞
(
u′s
|u′s|

)
d|u′s| ,

after extending u to ]−T, T [ by u(t+T ) = u(t) for a.e. t ∈]−T, 0[. With this extension,

it turns out that u(T−) = u(0−).

We also denote by f∞0 the corresponding functional induced by Ψ∞ instead of Ψ

(then (Ψ∞)∞ = Ψ∞), namely

f∞0 (u) =



∫
]0,T [

Ψ∞
(
u′

|u′|

)
d|u′|

+Ψ∞
(
u(0+)− u(T−)

)
if u ∈ BV (0, T ;Rn) ,

+∞ if u ∈ L1(0, T ;Rn) \BV (0, T ;Rn) ,

and we denote by f̂0 the functional induced by Ψ̂(ξ) = |ξ|, namely

f̂0(u) =


∫

]0,T [

|u′|+
∣∣u(0+)− u(T−)

∣∣ if u ∈ BV (0, T ;Rn) ,

+∞ if u ∈ L1(0, T ;Rn) \BV (0, T ;Rn) .

Proposition 1.2.3. The following facts hold:

(a) the functional f0 is convex and lower semicontinuous, namely epi (f0) is a closed

and convex subset of L1(0, T ;Rn)× R;
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(b) we have

νf̂0(u)− T

ν
≤ f0(u) ≤ 1

ν
f̂0(u) ∀u ∈ L1(0, T ;Rn) ;

(c) for every ε > 0 there exists Mε > 0 such that

|f0(2u)− 2f0(u)| ≤ εf0(u) +Mε ∀u ∈ BV (0, T ;Rn) ,

(1− ε)f∞0 (u)− TMε ≤ f0(u) ≤ f∞0 (u) ∀u ∈ BV (0, T ;Rn) ;

(d) for every (u, λ) ∈ epi (f0) and every R > 0, we have

sup { f̂0(v) : (v, η) ∈ epi (f0) , ‖v − u‖2
1 + |η − λ|2 ≤ R2 } < +∞ ,

sup { ‖v‖∞ : (v, η) ∈ epi (f0) , ‖v − u‖2
1 + |η − λ|2 ≤ R2 } < +∞ .

Proof. We already know that f0 is convex and lower semicontinuous.

By assumption (Ψ) and Proposition 1.2.1, for every u ∈ BV (0, T ;Rn) we have

f0(u) ≥ ν

∫ T

0

|ua′| dt−
T

ν
+ ν

∫
]0,T [

d|us′|+ ν|u(0+)− u(T−)| ,

= νf̂0(u)− T

ν
.

The upper estimate and assertion (c) can be proved in a similar way.

Finally, if f0(v) ≤ η ≤ λ + R, from assertion (b) we infer a bound for f̂0(v). Since

‖v‖1 ≤ ‖u‖1 +R, we deduce from Proposition 1.1.2 a bound for v in L∞(0, T ;Rn).

2.2 The lower order term

We also consider G :]0, T [×Rn → R satisfying:

(Gb) the function G(·, s) is measurable for every s ∈ Rn, G(t, 0) = 0 for a.e. t ∈]0, T [

and, for every r > 0, there exists αr ∈ L1(0, T ) satisfying

|G(t, s)−G(t, σ)| ≤ αr(t)|s− σ|

for a.e. t ∈]0, T [ and every s, σ ∈ Rn with |s| ≤ r and |σ| ≤ r.

From (Gb) it follows that G(t, ·) is locally Lipschitz, for a.e. t ∈]0, T [. Then, according

to Remark 1.1.20, for a.e. t ∈]0, T [ and every s, σ ∈ Rn we have

G0(t, s;σ) = lim sup
ŝ→s
τ→0+

G(t, ŝ+ τσ)−G(t, ŝ)

τ
(1.2.4)

= lim sup
ŝ→s
σ̂→σ
τ→0+

G(t, ŝ+ τ σ̂)−G(t, ŝ)

τ
,
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(1.2.5) (−G)0(t, s;σ) = G0(t, s;−σ) .

If G(t, ·) is of class C1, then

G0(t, s;σ) = ∇sG(t, s) · σ .

Taking into account that BV (0, T ;Rn) ⊆ L∞(0, T ;Rn), we define the functional

f1 : BV (0, T ;Rn)→ R by

f1(u) := −
∫ T

0

G(t, u) dt .

2.3 The problem and the functional setting

According to the Introduction, we are interested in the solutions u ∈ BV (0, T ;Rn) of the

hemivariational inequality

(HI) f0(v) +

∫ T

0

G0(t, u;u− v) dt ≥ f0(u) for every v ∈ BV (0, T ;Rn) .

Then we introduce the functional F : L1(0, T ;Rn)× R→]−∞,+∞] defined as

F (u, λ) :=

λ+ f1(u) if (u, λ) ∈ epi (f0) ,

+∞ otherwise .

The space L1(0, T ;Rn)× R will be endowed with the norm

‖(u, λ)‖ =
(
‖u‖2

1 + λ2
) 1

2 ,

while the dual space of L1(0, T ;Rn)×R will be identified with L∞(0, T ;Rn)×R, so that

〈(w, µ), (u, λ)〉 =

∫ T

0

w · u dt+ µλ ,

‖(w, µ)‖ =
(
‖w‖2

∞ + µ2
) 1

2 .

In the following, we will also consider the functional f : BV (0, T ;Rn)→ R defined as

f(u) := f0(u) + f1(u) .

This subsection is devoted to general properties of the functional F , that are implied just

by assumptions (Ψ) and (Gb).

Theorem 1.2.6. The functional F is lower semicontinuous and bounded from below on

bounded subsets. Moreover its restriction to epi (f0) is continuous.



14 CHAPTER 1. AUXILIARY RESULTS AND GENERAL SETTING

Proof. If (vk, ηk) is a sequence convergent to (u, λ) in epi (f0), from Proposition 1.2.3

we infer that (vk) is bounded in L∞(0, T ;Rn). From assumption (Gb) it follows that

f1(vk)→ f1(u). Therefore the restriction of F to epi (f0) is continuous.

Again by Proposition 1.2.3 we know that the set epi (f0) is closed in L1(0, T ;Rn)×R,

so that F is lower semicontinuous, and that f0(u) and ‖u‖∞ are bounded on bounded

subsets of epi (f0).

Theorem 1.2.7. Let (uk, λk) be a sequence in epi (f0) such that (uk, λk) is bounded in

L1(0, T ;Rn)× R.

Then (uk, λk) admits a convergent subsequence in L1(0, T ;Rn)× R.

Proof. Since f0(uk) ≤ λk, from Proposition 1.2.3 we infer that f̂0(uk) is bounded, hence

that (uk) is bounded in BV (0, T ;Rn). Then the assertion follows from the compact

embedding of BV (0, T ;Rn) in L1(0, T ;Rn).

Theorem 1.2.8. For every (u, λ) ∈ epi (f0), the following facts hold:

(a) for every (v, η) ∈ epi (f0), we have

F 0((u, λ); (v, η)− (u, λ)) ≤ η − λ+

∫ T

0

G0(t, u;u− v) dt ;

(b) if (w, µ) ∈ ∂F (u, λ), then we have µ ≤ 1 and

(1− µ)f0(v) +

∫ T

0

G0(t, u;u− v) dt

≥ (1− µ)λ+

∫ T

0

w · (v − u) dt ∀v ∈ BV (0, T ;Rn) ;

(c) if (w, µ) ∈ ∂F (u, λ) with f0(u) < λ, then we have µ = 1.

Proof. We aim to apply Proposition 1.1.19 with D = epi (f0). Let (v, η) ∈ epi (f0) and

let ε > 0. Let also σ > 0. We claim that there exists δ > 0 such that

f1(z + τ(v − z))− f1(z)

τ
= −

∫ T

0

G(t, z + τ(v − z))−G(t, z)

τ
dt

<

∫ T

0

(−G)0(t, u; v − u) dt+ σ ,

whenever (z, µ) ∈ epi (f0) with ‖z − u‖2
1 + |µ− λ|2 < δ2 and 0 < τ ≤ δ. Actually, assume

for a contradiction that (zk, µk) ∈ epi (f0) and τk > 0 satisfy

‖zk − u‖2
1 + |µk − λ|2 → 0 , τk → 0
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and

−
∫ T

0

G(t, zk + τk(v − zk))−G(t, zk)

τk
dt ≥

∫ T

0

(−G)0(t, u; v − u) dt+ σ .

Without loss of generality, we may assume that (zk) is convergent to u a.e. in ]0, T [.

Moreover, according to Proposition 1.2.3 we have that (zk) is bounded in L∞(0, T ;Rn).

From assumption (Gb) we infer that

G(t, zk + τk(v − zk))−G(t, zk)

τk
≥ −‖v − zk‖∞ αr(t)

for a suitable αr ∈ L1(0, T ). Then, from Fatou’s Lemma and (1.2.4) we deduce that

lim sup
k

[
−
∫ T

0

G(t, zk + τk(v − zk))−G(t, zk)

τk
dt

]
≤
∫ T

0

(−G)0(t, u; v − u) dt

and a contradiction follows. Therefore the claim is proved.

Now, let us define the continuous map

V : epi (f0)×]0,+∞[→ L1(0, T ;Rn)× R

by

V
(
(z, µ), τ

)
=
(
v − z, η − µ

)
.

By reducing δ, we may assume that

‖V
(
(z, µ), τ

)
− (v − u, η − λ)‖ < ε , |µ− λ| < σ

whenever ‖z − u‖2
1 + |µ− λ|2 < δ2. Moreover, if 0 < τ ≤ δ we have

F
(
(z, µ) + τV ((z, µ), τ)

)
= µ+ τ(η − µ) + f1

(
z + τ(v − z)

)
= µ+ f1(z) + τ(η − µ) + f1

(
z + τ(v − z)

)
− f1(z)

= F (z, µ) + τ

(
(η − µ) +

f1

(
z + τ(v − z)

)
− f1(z)

τ

)

≤ F (z, µ) + τ

(
(η − λ) +

∫ T

0

(−G)0(t, u;u− v) dt+ 2σ

)
.

It follows

F 0
ε ((u, λ); (v, η)− (u, λ)) ≤ η − λ+

∫ T

0

(−G)0(t, u; v − u) dt+ 2σ

= η − λ+

∫ T

0

G0(t, u;u− v) dt+ 2σ ,
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whence

F 0
ε ((u, λ); (v, η)− (u, λ)) ≤ η − λ+

∫ T

0

G0(t, u;u− v) dt

by the arbitrariness of σ. Then assertion (a) follows.

If (w, µ) ∈ ∂F (u, λ), for every (v, η) ∈ epi (f0) we have∫ T

0

w · (v − u) dt+ µ(η − λ) ≤ F 0((u, λ); (v, η)− (u, λ))

≤ η − λ+

∫ T

0

G0(t, u;u− v) dt ,

whence

(1− µ)η +

∫ T

0

G0(t, u;u− v) dt ≥ (1− µ)λ+

∫ T

0

w · (v − u) dt .

If we choose (v, η) = (u, η) with η → +∞, we infer that µ ≤ 1. On the other hand, we

can also choose (v, η) = (v, f0(v)) and assertion (b) follows.

Finally, if f0(u) < λ we can choose v = u in assertion (b), obtaining

(1− µ)f0(u) ≥ (1− µ)λ ,

namely (1− µ)(λ− f0(u)) ≤ 0, which implies µ ≥ 1.

The next result provides the crucial information, that allows to solve (HI) by

the study of the functional F . However, by the results of [32], one can guess that

|dF | (u, f0(u)) = 0 carries much more information than just (HI).

Corollary 1.2.9. The following facts hold:

(a) if (u, λ) ∈ epi (f0) with f0(u) < λ, then we have |dF | (u, λ) ≥ 1;

(b) if u ∈ BV (0, T ;Rn) and |dF | (u, f0(u)) < +∞, then there exist w ∈ L∞(0, T ;Rn)

and µ ≤ 1 such that

‖w‖2
∞ + µ2 ≤ (|dF | (u, f0(u)))2

and

(1− µ)f0(v) +

∫ T

0

G0(t, u;u− v) dt

≥ (1− µ)f0(u) +

∫ T

0

w · (v − u) dt ∀v ∈ BV (0, T ;Rn) .

Proof. The assertions are consequences of the previous theorem and Theorem 1.1.18.



Chapter 2

Superlinear lower order terms

This chapter is devoted to the case in which G(t, s) ≈ |s|β as |s| → ∞, with β > 1. In

other words, G(t, ·) is “superlinear” at infinity, while Ψ is “linear” at infinity.

1 The generalized linking theorem

We following concept has been introduced in [22].

Definition 2.1.1. Let D,S,A,B be four subsets of X, with S ⊆ D, B ⊆ A and

S ∩ A = B ∩ D = ∅. We say that (D,S) links (A,B) if, for every deformation

η : D × [0, 1]→ X \B with η(u, t) = u on S × [0, 1], it holds η(D × {1}) ∩ A 6= ∅.

Now let us mention an interesting extension of the celebrated mountain pass theo-

rem [1].

Theorem 2.1.2. Let X be a complete metric space and let f : X → R be a continuous

function. Let D,S,A,B be four subsets of X such that (D,S) links (A,B) and such that

sup
S
f < inf

A
f , sup

D
f < inf

B
f

(we agree that sup ∅ = −∞, inf ∅ = +∞).

If f satisfies (CPS)c for any c with

inf
A
f ≤ c ≤ sup

D
f ,

then f admits a critical value c with

inf
A
f ≤ c ≤ sup

D
f .

17
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Proof. According to [9], the (CPS)c condition is just the (PS)c condition with respect to

an auxiliary distance which keeps the completeness of X and does not change the critical

points of f and the topology of X. Then the assertion follows from [22, Theorems 3.1

and 3.9].

Corollary 2.1.3. Let X be a Banach space, let C be a closed subset of X and let

f : X →] − ∞,+∞] be a function such that f is real valued and continuous on C,

while f = +∞ on X \ C. Assume that

X = X− ⊕X+

with X− finite dimensional and X+ closed in X. Suppose also that there exist 0 < r+ < r−

and ǔ ∈ X \X− such that

sup
D−∪H

f < inf
S+

f , sup
Q
f < +∞ ,

where

S+ = {u ∈ X+ : ‖u‖ = r+} ,

Q = {u+ tǔ : u ∈ X− , t ≥ 0 , ‖u+ tǔ‖ ≤ r−} ,

H = {u+ tǔ : u ∈ X− , t ≥ 0 , ‖u+ tǔ‖ = r−} ,

D− = {u ∈ X− : ‖u‖ ≤ r−} .

If f satisfies (CPS)c for any c with

inf
S+

f ≤ c ≤ sup
Q
f ,

then f admits a critical value c with

inf
S+

f ≤ c ≤ sup
Q
f .

Proof. It is well known (see e.g. [22]) that (Q,D− ∪H) links (S+, ∅). On the other hand,

Q ⊆ C and then (Q,D− ∪ H) links (S+ ∩ C, ∅) in the metric space C. Moreover C is

complete and, by Proposition 1.1.10, there is no change in critical points and (CPS)c, if

we restrict f to C. Then the assertion follows from Theorem 2.1.2.
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2 Existence of a periodic solution

Throughout this section, we still assume that

Ψ : Rn → R , G :]0, T [×Rn → R

satisfy conditions (Ψ) and (Gb). We also require that:

(P ) we have G(t, s) ≥ 0 for a.e. t ∈]0, T [ and every s ∈ Rn;

(P∞) there exist β > 1, α ∈ L1(0, T ) and a measurable subset E of ]0, T [ with positive

measure such that

β G(t, s) +G0(t, s;−s) ≤ (1 + |s|)α(t) for a.e. t ∈]0, T [ and every s ∈ Rn ,

lim sup
|s|→∞

β G(t, s) +G0(t, s;−s)
|s|

≤ 0 for a.e. t ∈]0, T [ ,

lim sup
|s|→∞

β G(t, s) +G0(t, s;−s)
|s|

< 0 for a.e. t ∈ E ;

(P0) there exists p ≥ 1 such that:

(i) lim inf
ξ→0

Ψ(ξ)
|ξ|p > 0;

(ii) lim
s→0

G(t,s)
|s|p = 0 for a.e. t ∈]0, T [;

(iii) there exist r > 0 and α̂r ∈ L1(0, T ) such that G(t, s) ≤ |s|pα̂r(t) for a.e.

t ∈]0, T [ and every s ∈ Rn with |s| ≤ r.

About (i) of assumption (P0), the typical cases are:

Ψ(ξ) = |ξ| with p = 1 ,

Ψ(ξ) =
√

1 + |ξ|2 − 1 with p = 2 .

In the case p = 1, assumption (iii) of (P0) is implied by (Gb).

If G(t, ·) is of class C1 for a.e. t ∈]0, T [, assumption (P∞) is equivalent to:

β G(t, s)−∇sG(t, s) · s ≤ (1 + |s|)α(t) for a.e. t ∈]0, T [ and every s ∈ Rn ,

lim sup
|s|→∞

β G(t, s)−∇sG(t, s) · s
|s|

≤ 0 for a.e. t ∈]0, T [ ,

lim sup
|s|→∞

β G(t, s)−∇sG(t, s) · s
|s|

< 0 for a.e. t ∈ E .

Let us state our main result.
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Theorem 2.2.1. Under assumptions (Ψ), (Gb), (P ), (P∞) and (P0), there exists a non-

constant u ∈ BV (0, T ;Rn) satisfying (HI).

For the proof we need some lemmas.

Lemma 2.2.2. Under assumptions (Ψ), (Gb) and (P∞), the functional F satisfies (PS)c

for any c ∈ R.

Proof. Let (uk, λk) be a sequence in epi (f0) with

F (uk, λk) = λk + f1(uk)→ c , |dF |(uk, λk)→ 0 .

From Corollary 1.2.9 we infer that λk = f0(uk) eventually as k →∞, so that f(uk)→ c,

and that there exist wk ∈ L∞(0, T ;Rn) and µk ≤ 1 such that

‖wk‖2
∞ + µk

2 ≤
(
|dF |

(
uk, f0(uk)

))2

,

(1− µk)f0(v) +

∫ T

0

G0(t, uk;uk − v) dt

≥ (1− µk)f0(uk) +

∫ T

0

wk · (v − uk) dt ∀v ∈ BV (0, T ;Rn) .

The choice v = 2uk yields

(1− µk)f0(2uk) +

∫ T

0

G0(t, uk;−uk) dt ≥ (1− µk)f0(uk) +

∫ T

0

wk · uk dt ,

whence, taking into account (P∞),∫ T

0

α(1 + |uk|) dt ≥
∫ T

0

[
β G(t, uk) +G0(t, uk;−uk)

]
dt

≥ −β f(uk) + β f0(uk)

− (1− µk)f0(2uk) + (1− µk)f0(uk) +

∫ T

0

wk · uk dt

= [β − 1 + µk]f0(uk) +

∫ T

0

wk · uk dt

− (1− µk)[f0(2uk)− 2f0(uk)]− β f(uk) .

On the other hand, by Proposition 1.2.3 we have

|f0(2uk)− 2f0(uk)| ≤ εf0(uk) +Mε ,
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whence ∫ T

0

α(1 + |uk|) dt ≥
∫ T

0

[
β G(t, uk) +G0(t, uk;−uk)

]
dt(2.2.3)

≥ [β − 1 + µk − (1− µk)ε]f0(uk) +

∫ T

0

wk · uk dt

− (1− µk)Mε − β f(uk) .

We claim that (uk) is bounded in L∞(0, T ;Rn). Assume, for a contradiction, that

uk = τkvk with τk → +∞ and ‖vk‖∞ = 1. From (2.2.3) it follows

[β − 1 + µk − (1− µk)ε]
f0(uk)

τk

≤
∫ T

0

β G(t, uk) +G0(t, uk;−uk)
τk

dt−
∫ T

0

wk · vk dt+
(1− µk)Mε + β f(uk)

τk
.

Since ‖wk‖∞ → 0, µk → 0 and f(uk)→ c, it follows

(2.2.4) lim sup
k

[β − 1 + µk − (1− µk)ε]
f0(uk)

τk

≤ lim sup
k

∫ T

0

β G(t, uk) +G0(t, uk;−uk)
τk

dt .

On the other hand, from (2.2.3) we also infer

τ−1
k [β − 1 + µk − (1− µk)ε] f0(τkvk)

≤
∫ T

0

α
(
τ−1
k + |vk|

)
dt−

∫ T

0

wk · vk dt+ τ−1
k (1− µk)Mε + τ−1

k β f(uk) .

Since β > 1, ‖wk‖∞ → 0, µk → 0, f(uk)→ c and ε is arbitrary, it follows that

lim sup
k

f0(τkvk)

τk
< +∞

hence, by Proposition 1.2.3,

lim sup
k

f̂0(vk) < +∞ .

Therefore (vk) is bounded in BV (0, T ;Rn) hence convergent, up to a subsequence, to

some v ∈ BV (0, T ;Rn) a.e. in ]0, T [.

From (P∞) we infer that

β G(t, τkvk) +G0(t, τkvk;−τkvk)
τk

≤ α
(
τ−1
k + |vk|

)
a.e. in ]0, T [ ,

lim sup
k

β G(t, τkvk) +G0(t, τkvk;−τkvk)
τk

≤ 0 a.e. in ]0, T [ .
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From Fatou’s lemma we deduce that

lim sup
k

∫ T

0

β G(t, uk) +G0(t, uk;−uk)
τk

dt ≤ 0 ,

hence, by (2.2.4),

lim sup
k

f0(τkvk)

τk
≤ 0 .

By Proposition 1.2.3 it follows

lim
k
f̂0(vk) = 0 ,

so that ‖vk − v‖∞ → 0 and v is constant a.e. In particular, v 6= 0 a.e. in ]0, T [.

Again from (P∞) and Fatou’s lemma now we infer that

lim sup
k

∫
]0,T [\E

β G(t, τkvk) +G0(t, τkvk;−τkvk)
τk

dt ≤ 0 ,

lim sup
k

∫
E

β G(t, τkvk) +G0(t, τkvk;−τkvk)
τk

dt < 0 ,

whence

lim sup
k

f0(τkvk)

τk
< 0 ,

which implies

lim sup
k

f̂0(vk) < 0

and a contradiction follows. Therefore (uk) is bounded in L∞(0, T ;Rn).

From assumption (Gb) it follows that (f1(uk)) is bounded. Since λk + f1(uk) → c,

we infer that (λk) also is bounded. By Theorem 1.2.7 we conclude that (uk, λk) admits a

convergent subsequence in L1(0, T ;Rn)× R.

Lemma 2.2.5. Under assumptions (Gb), (P ) and (P∞), we have

lim inf
|s|→∞

G(t, s)

|s|β
> 0 for a.e. t ∈ E .

In particular,

lim
|s|→∞

G(t, s)

|s|
= +∞ for a.e. t ∈ E .

Proof. Let t ∈ E be such that G(t, ·) is locally Lipschitz, G(t, s) ≥ 0 for any s ∈ Rn and

lim sup
|s|→∞

β G(t, s) +G0(t, s;−s)
|s|

< 0 .
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Then let S > 0 be such that

β G(t, s) +G0(t, s;−s) < 0 whenever |s| ≥ S .

It follows G0(t, s;−s) < 0 whenever |s| ≥ S, hence G(t, s) > 0 whenever |s| ≥ S, as s

cannot be a minimum point of G(t, ·). If we set γ(τ) = τ−β G(t, τs), it follows

γ0(τ ;−1) ≤ τ−βG0(t, τs;−s) + βτ−β−1G(t, τs)

= τ−β−1
(
G0(t, τs;−τs) + β G(t, τs)

)
< 0

whenever τ |s| ≥ S. From Lebourg’s theorem [8] we infer that

γ(1) ≥ γ(τ0) whenever 1 ≥ τ0 and τ0|s| ≥ S ,

whence

G(t, s) ≥ S−β|s|β G
(
t,
S

|s|
s

)
whenever |s| ≥ S

and the assertion follows.

Remark 2.2.6. Under assumptions (Gb) and (P ), condition (P∞) can be reformulated

in several equivalent ways. For instance, condition (P∞) holds if and only if

(P̃∞) there exist β > 1, α ∈ L1(0, T ) and a measurable subset E of ]0, T [ with positive

measure such that

β G(t, s) +G0(t, s;−s) ≤ (1 + |s|)α(t) for a.e. t ∈]0, T [ and every s ∈ Rn ,

lim sup
|s|→∞

β G(t, s) +G0(t, s;−s)
|s|

≤ 0 for a.e. t ∈]0, T [ ,

lim
|s|→∞

G(t, s)

|s|
= +∞ for a.e. t ∈ E .

Proof. Just the previous proof shows that (P∞) implies (P̃∞). Conversely, assume (P̃∞).

If 1 < β̂ < β, because of (P ) we also have

β̂ G(t, s) +G0(t, s;−s) ≤ (1 + |s|)α(t) for a.e. t ∈]0, T [ and every s ∈ Rn ,

lim sup
|s|→∞

β̂ G(t, s) +G0(t, s;−s)
|s|

≤ 0 for a.e. t ∈]0, T [ .

We can also write

lim sup
|s|→∞

(
(β − β̂)G(t, s)

|s|
+
β̂ G(t, s) +G0(t, s;−s)

|s|

)
≤ 0 ,
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whence

lim
|s|→∞

β̂ G(t, s) +G0(t, s;−s)
|s|

= −∞ for a.e. t ∈ E

and (P∞) follows (with β replaced by β̂).

Now let

X̂− =
{
u ∈ L1(0, T ;Rn) : u is constant a.e.

}
,

X̂+ =

{
u ∈ L1(0, T ;Rn) :

∫ T

0

u(t) dt = 0

}
,

X− = X̂− × { 0 } ,

X+ = X̂+ × R ,

so that

L1(0, T ;Rn)× R = X− ⊕X+

with X− finite dimensional and X+ closed in L1(0, T ;Rn)× R.

Let also û ∈ X̂+ \ {0} be defined as

û(t) =

(
sin

(
2π

T
t

)
, 0, · · · , 0

)
and let ǔ ∈ X+ \ {0} be defined as

ǔ =

(
û,

1

ν
f̂0(û)

)
.

Lemma 2.2.7. Under assumptions (Ψ), (Gb), (P ) and (P∞), we have

F (u, λ) ≤ 0 for every (u, λ) ∈ X− ,

sup
B

F < +∞ for every bounded subset B of X− + [0,+∞[ǔ ,

lim
‖(u,λ)‖→∞

(u,λ)∈X−+[0,+∞[ǔ

F (u, λ) = −∞ .

Proof. From assumption (P ) it follows that

F (u, λ) ≤ 0 for every (u, λ) ∈ X− .

Moreover, by Proposition 1.2.3 we have

f0(c+ τ û) ≤ 1

ν
f̂0(c+ τ û) =

τ

ν
f̂0(û) ,
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hence

(c, 0) + τ ǔ =
(
c+ τ û,

τ

ν
f̂0(û)

)
∈ epi (f0) for every c ∈ X̂− and τ ≥ 0 .

Since X̂− ⊕Rû is a finite dimensional subspace of BV (0, T ;Rn), if ‖c+ τ û‖1 is bounded,

then (c + τ û) is bounded in BV (0, T ;Rn), which implies that f1(c + τ û) is bounded.

Therefore F is bounded on every bounded subset of X− + [0,+∞[ǔ.

Now assume, for a contradiction, that

inf
k

F
(
ck + τkû,

τk
ν
f̂0(û)

)
> −∞

with ck ∈ Rn, τk ≥ 0 and ‖ck + τkû‖2
1 +

(
τk
ν
f̂0(û)

)2

→∞.

Again, if ‖ck + τkû‖1 is bounded, then (ck + τkû) is bounded in BV (0, T ;Rn), which

implies that τk
ν
f̂0(û) = 1

ν
f̂0(τkû) is bounded in R and a contradiction follows. Therefore

‖ck + τkû‖1 →∞.

Moreover

inf
k

(
1

ν
f̂0(ck + τkû)−

∫ T

0

G (t, ck + τkû) dt

)
= inf

k

(τk
ν
f̂0(û) + f1 (ck + τkû)

)
> −∞ .

Let us write ck + τkû = %kvk with %k → +∞ and ‖vk‖1 = 1. We have

lim inf
k

(
1

ν
f̂0(vk)−

∫ T

0

G (t, %kvk)

%k
dt

)
≥ 0

hence, being X̂− ⊕ Rû a finite dimensional subspace of BV (0, T ;Rn),

lim sup
k

∫ T

0

G (t, %kvk)

%k
dt < +∞ .

On the other hand, up to a subsequence, (vk) is convergent a.e. in ]0, T [ to some

v ∈ X̂− ⊕ Rû with ‖v‖1 = 1. In particular, v 6= 0 a.e. in ]0, T [.

From assumption (P ), Lemma 2.2.5 and Fatou’s lemma we infer that

lim
k

∫ T

0

G (t, %kvk)

%k
dt = +∞

and a contradiction follows.

Lemma 2.2.8. Under assumptions (Ψ) and (i) of (P0), there exists ν̂ > 0 such that

Ψ(ξ) ≥ ν̂ ϕp(|ξ|) for any ξ ∈ Rn ,
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where

ϕp(τ) = (1 + |τ |p)
1
p − 1 .

Then we have

f0(u) ≥ ν̂Tϕp

(
1

T
f̂0(u)

)
for any u ∈ BV (0, T ;Rn) .

Proof. It is clear that there exists ν̂ > 0 such that

Ψ(ξ) ≥ ν̂ ϕp(|ξ|) for any ξ ∈ Rn .

It follows Ψ∞(ξ) ≥ ν̂ |ξ|. Then, for every u ∈ BV (0, T ;Rn), we have

f0(u) ≥ ν̂

(∫ T

0

ϕp(|u′a|) dt+ |u′s|(]0, T [) +
∣∣u(0+)− u(T−)

∣∣) .

On the other hand, if

λ ∈ ∂ϕp
(

1

T
f̂0(u)

)
,

we have

ϕp(|u′a|) ≥ ϕp

(
1

T
f̂0(u)

)
+ λ

(
|u′a| −

1

T
f̂0(u)

)
a.e. in ]0, T [ ,

whence

1

T

∫ T

0

ϕp(|u′a|) dt ≥ ϕp

(
1

T
f̂0(u)

)
+ λ

(
1

T

∫ T

0

|u′a| dt−
1

T
f̂0(u)

)
= ϕp

(
1

T
f̂0(u)

)
− λ

T

(
|u′s|(]0, T [) +

∣∣u(0+)− u(T−)
∣∣) .

We infer that

T ϕp

(
1

T
f̂0(u)

)
≤
∫ T

0

ϕp(|u′a|) dt+ λ
(
|u′s|(]0, T [) +

∣∣u(0+)− u(T−)
∣∣)

≤
∫ T

0

ϕp(|u′a|) dt+ |u′s|(]0, T [) +
∣∣u(0+)− u(T−)

∣∣ ,
as λ ≤ 1, and the assertion follows.

Lemma 2.2.9. Under assumptions (Ψ), (Gb) and (P0), we have

lim inf
‖(u,λ)‖→0
(u,λ)∈X+

F (u, λ)

‖(u, λ)‖p
> 0 .
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Proof. It is enough to show that

lim inf
‖(u,λ)‖→0
(u,λ)∈X+

f0(u)≤λ

λ+ f1(u)

(‖u‖2
∞ + λ2)p/2

> 0 .

According to Lemma 2.2.8, we may assume that λ ≥ 0 and, of course, λ ≤ 1. It follows

νf̂0(u)− T

ν
≤ f0(u) ≤ λ ≤ 1 ,

so that f̂0(u) is bounded.

If ‖u‖∞ ≤ λ, we have

λ

(‖u‖2
∞ + λ2)p/2

≥ λp

(2λ2)p/2
= 2−p/2 .

If ‖u‖∞ ≥ λ, we have
λ

(‖u‖2
∞ + λ2)p/2

≥ f0(u)

(2‖u‖2
∞)p/2

.

On the other hand, from Proposition 1.1.2 and Lemma 2.2.8 we infer that

f0(u)

(2‖u‖2
∞)p/2

≥ ν̂T

2p/2T p

ϕp

(
1
T
f̂0(u)

)
(

1
T
f̂0(u)

)p .

Therefore

lim inf
‖(u,λ)‖→0
(u,λ)∈X+

f0(u)≤λ

λ

(‖u‖2
∞ + λ2)p/2

> 0 .

On the other hand, we have

|f1(u)|
(‖u‖2

∞ + λ2)p/2
≤ |f1(u)|
‖u‖p∞

and from Lemma 2.2.8 we infer that ‖(u, λ)‖ → 0 implies ‖u‖∞ → 0.

From (P0) it easily follows that

lim
‖u‖∞→0

∫ T

0

G(t, u) dt

‖u‖p∞
= 0 ,

whence

lim
‖(u,λ)‖→0
(u,λ)∈X+

f0(u)≤λ

f1(u)

(‖u‖2
∞ + λ2)p/2

= 0 .

Then the assertion follows.
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Proof of Theorem 2.2.1.

We aim to apply Corollary 2.1.3 to

F : L1(0, T ;Rn)× R→ R .

By Proposition 1.2.3 the set epi (f0) is closed in L1(0, T ;Rn) × R and by Theorem 1.2.6

the restriction of F to epi (f0) is continuous. Moreover, F satisfies (PS)c for any c ∈ R
by Lemma 2.2.2.

By Lemma 2.2.9, there exists r+ > 0 such that

inf
S+

F > 0 .

On the other hand, by Lemma 2.2.7,

sup
D−∪H

F ≤ 0 ,

provided that r− is large enough, and F is bounded from above on Q for any r− > 0.

From Corollary 2.1.3 we infer that there exists a critical point (u, λ) of F with

F (u, λ) > 0. From Corollary 1.2.9 we infer that u is a solution of (HI), while F (u, λ) > 0

and (P ) imply that u is not constant.

Remark 2.2.10. Let Ψ be a function satisfying (Ψ), let β ≥ 1, let G : ]0, 1[×R → R be

the function defined by

G(t, s) = t−α(s) |s|β ,

where

α(s) =
2

π
arctan(|s|β) ,

and let f0, f1 be defined as before.

Then the following facts hold:

(a) the function G satisfies (Gb) and (P );

(b) for every q <∞, the functional

f : Lq(0, 1;R)→]−∞,+∞]

defined as

f(u) =

f0(u) + f1(u) if u ∈ BV (0, 1;R) ,

+∞ otherwise ,

is not lower semicontinuous;
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(c) if β > p ≥ 1, then G also satisfies (P∞) and (P0).

Proof. We have 0 ≤ α(s) < 1, hence

max
|s|≤S

α(s) < 1 for any S > 0 .

Moreover G(t, ·) is of class C1 on R \ {0}, so that

G0(t, s;σ) = DsG(t, s)σ = t−α(s)

(
β|s|β−2s− 2

π

β|s|2β−2s

1 + |s|2β
log t

)
σ ∀s 6= 0 .

Then it is easily seen that G satisfies (Gb) and (P ).

Now define uk ∈ BV (0, 1;R) by

uk(t) =


log k if 0 < t ≤ 1

k
,

0 if
1

k
< t < 1 .

It is easily seen that uk → 0 in any Lq(0, 1;R) with q <∞. On the other hand, we have

f0(uk) ≤
1

ν
f̂0(uk) =

2

ν
log k ,

while ∫ 1

0

G(t, uk) dt =
kα(log k)−1

1− α(log k)
(log k)β .

Since

lim sup
s→+∞

(α(s)− 1)s < +∞ ,

we have

lim sup
k

kα(log k)−1 = lim
k

exp [(α(log k)− 1) log k] < +∞ ,

hence

lim
k

(f0(uk) + f1(uk)) = −∞ .

Therefore f is not lower semicontinuous.

If β > p ≥ 1, it is easily seen that G also satisfies (P0). Moreover, we have

G0(t, s;−s) = −DsG(t, s)s = −t−α(s)

(
β|s|β − 2

π

β|s|2β

1 + |s|2β
log t

)
∀s 6= 0 ,

hence

βG(t, s) +G0(t, s;−s) =
2β

π
t−α(s) |s|2β

1 + |s|2β
log t < 0 ∀s 6= 0 ,

as log t < 0. By Remark 2.2.6, assumption (P∞) also holds with E =]0, 1[.
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Chapter 3

Many solutions near the origin

This chapter is devoted to a case whose model is

Ψ(ξ) =
√

1 + |ξ|2 − 1 , G(t, s) = |s| .

1 A D.C. Clark type result

Among multiplicity results of critical points in the coercive case, the classical theorem by

D.C. Clark (see eg. [35]) has been the object of several developments (see [24, 29]), also

in the direction of a local analysis in a neighborhhod of 0, so that the behavior of the

functional at infinity has no relevance.

We aim to propose, by a completely different proof, the extension of the abstract

result of [29] to continuous functionals and then apply it to the existence of solutions

of (HI).

Let X be a metric space endowed with the distance d and let Φ: X → X be an

isometry such that Φ2 = Id.

Definition 3.1.1. A function f : X → [−∞,+∞] is said to be Φ-invariant, if

f(Φ(u)) = f(u) for any u ∈ X .

If S ⊆ Rm is symmetric with respect to the origin, a map ψ : S → X is said to be

Φ-equivariant, if

ψ(−x) = Φ(ψ(x)) for any x ∈ S .

Finally, we set

Fix(X) = {u ∈ X : Φ(u) = u } .

31
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The next result, contained in [19, Theorem 2.5], is the natural extension of

D.C. Clark’s theorem to continuous functionals.

Theorem 3.1.2. Let f : X → R be a continuous and Φ-invariant function and let m ≥ 1.

Assume that:

(a) f is bounded from below;

(b) there exists a continuous Φ-equivariant map ψ : Sm−1 → X such that

sup { f(ψ(x)) : x ∈ Sm−1 } < inf { f(v) : v ∈ Fix(X) } ,

(where Sm−1 is the (m− 1)-dimensional sphere and we agree that inf ∅ = +∞);

(c) X is complete and, for every c ∈ R with c < inf { f(v) : v ∈ Fix(X) }, the function f

satisfies (CPS)c.

Then there exist at least m distinct pairs {u1,Φ(u1)} , ... , {um,Φ(um)} of critical

points of f with

f(uj) < inf { f(v) : v ∈ Fix(X) } ∀j = 1, ...,m .

If assumption (b) is satisfied for any m ≥ 1, then a further information can be

provided, in the line of [24, Proposition 2.2].

Theorem 3.1.3. Let f : X → R be a continuous and Φ-invariant function. Assume that:

(a) f is bounded from below;

(b) for every m ≥ 1 there exists a continuous and Φ-equivariant map ψm : Sm−1 → X

such that

sup { f(ψm(x)) : x ∈ Sm−1 } < inf { f(v) : v ∈ Fix(X) } ;

(c) X is complete and, for every c ∈ R with c < inf { f(v) : v ∈ Fix(X) }, the function f

satisfies (CPS)c.

Then there exists a sequence (uk) of critical points of f such that

f(uk) < inf { f(v) : v ∈ Fix(X) } , f(uk)→ inf { f(v) : v ∈ Fix(X) } .

Proof. It is enough to combine the general technique of [19, Theorem 2.5] with the

argument of [24, Proposition 2.2].
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Our purpose is to prove a variant, related to [29, Theorem 1.1], where the Palais-

Smale condition is assumed also at the level

inf { f(v) : v ∈ Fix(X) } .

Theorem 3.1.4. Let f : X → R be a continuous and Φ-invariant function. Assume that:

(a) f is bounded from below and Fix(X) 6= ∅;

(b) for every m ≥ 1 there exists a continuous and Φ-equivariant map ψm : Sm−1 → X

such that

sup { f(ψm(x)) : x ∈ Sm−1 } < inf { f(v) : v ∈ Fix(X) } ;

(c) X is complete and, for every c ∈ R with c ≤ inf { f(v) : v ∈ Fix(X) }, the function f

satisfies (PS)c.

Then, at least one of the following facts holds:

(i) there exists a sequence (uk) of critical points of f such that

f(uk) < inf { f(v) : v ∈ Fix(X) } , d(uk,Fix(X))→ 0 ;

(ii) there exists r > 0 such that, for every r ∈]0, r], there exists a critical point u of f

with

f(u) = inf { f(v) : v ∈ Fix(X) } , d(u,Fix(X)) = r .

Proof. Let us set

b = inf { f(v) : v ∈ Fix(X) }

and argue by contradiction. Since (i) is false, there exists r > 0 such that[
d(u,Fix(X)) ≤ r and f(u) < b

]
⇒ |df |(u) > 0 .

Since (ii) also is false, there exists 0 < r ≤ r such that[
d(u,Fix(X)) = r and f(u) = b

]
⇒ |df |(u) > 0 .

In particular, we have[
d(u,Fix(X)) ≤ r and f(u) < b

]
⇒ |df |(u) > 0 ,[

d(u,Fix(X)) = r and f(u) ≤ b

]
⇒ |df |(u) > 0 .
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Because of (PS)c and the boundedness from below of f , there exists σ > 0 such that[
r ≤ d(u,Fix(X)) ≤ r + σ and f(u) ≤ b+ σ2

]
⇒ |df |(u) ≥ σ .

Let ϕ : R→ R be a function of class C1 such that

ϕ(τ) = 0 whenever τ ≤ r ,

ϕ(τ) = −σ
2

4
whenever τ ≥ r + σ ,

− σ

2
≤ ϕ′(τ) ≤ 0 whenever τ ∈ R ,

and denote by f the restriction of

{u 7→ f(u) + ϕ(d(u,Fix(X)))}

to

Y :=

{
v ∈ X : f(v) ≤ b+

σ2

8

}
.

We aim to apply Theorem 3.1.3 to f : Y → R. Taking into account Propositions 1.1.11

and 1.1.12, we infer that∣∣df ∣∣ (u) = |df | (u) if u ∈ Y with d(u,Fix(X)) 6∈ [r, r + σ] ,∣∣df ∣∣ (u) ≥ σ

2
if u ∈ Y with d(u,Fix(X)) ∈ [r, r + σ] ,

f(u) ≤ b− σ2

8
if u ∈ Y with d(u,Fix(X)) ≥ r + σ .

Then it is easy to check that all the assumptions of Theorem 3.1.3 are satisfied with

inf { f(v) : v ∈ Fix(Y ) } = b .

Let (uk) be a sequence of critical points of f , hence of f , with f(uk) < b and f(uk)→ b.

Then we have d(uk,Fix(X)) ≤ r and f(uk) < b, eventually as k → ∞. A contradiction

follows.

Corollary 3.1.5. Under the same assumptions of Theorem 3.1.4, there exists a conver-

gent sequence (uk) of critical points of f such that

f(uk) ≤ inf { f(v) : v ∈ Fix(X) } , d(uk,Fix(X)) > 0 , d(uk,Fix(X))→ 0 .

Proof. We have only to observe that, if (uk) is a sequence of critical points of f such that

f(uk) ≤ inf { f(v) : v ∈ Fix(X) } ,

then by the Palais-Smale condition and the boundedness from below of f , the sequence

(uk) admits a convergent subsequence.



2. EXISTENCE OF INFINITELY MANY PERIODIC SOLUTIONS 35

2 Existence of infinitely many periodic solutions

Throughout this section, we still assume that

Ψ : Rn → R

satisfies condition (Ψ). Since we are interested in a result in a neighborhood of the origin,

here we suppose that

G :]0, T [×{s ∈ Rn : |s| < r} → R ,

for some T > 0, r > 0. We also assume that:

(G0) the function G(·, s) is measurable for every s ∈ Rn with |s| < r, G(t, 0) = 0 for a.e.

t ∈]0, T [ and there exists α̌ ∈ L1(0, T ) satisfying

|G(t, s)−G(t, σ)| ≤ α̌(t)|s− σ|

for a.e. t ∈]0, T [ and every s, σ ∈ Rn with |s| < r and |σ| < r;

(B0) the following conditions hold:

(i) we have lim
ξ→0

Ψ(ξ)
|ξ| = 0;

(ii) there exists a measurable subset E of ]0, T [ with positive measure such that

lim inf
s→0

G(t, s)

|s|
≥ 0 for a.e. t ∈]0, T [ ,

lim inf
s→0

G(t, s)

|s|
> 0 for a.e. t ∈ E ;

(Be) we have

Ψ(−ξ) = Ψ(ξ) for every ξ ∈ Rn; ,

G(t,−s) = G(t, s) for a.e. t ∈]0, T [ and every s ∈ Rn with |s| < r .

About the function Ψ, a typical example is

Ψ(ξ) =
√

1 + |ξ|2 − 1 .

Let us state the main result.

Theorem 3.2.1. Under assumptions (Ψ), (G0), (B0) and (Be), there exists a sequence

(uk) in BV (0, T ;Rn) \ {0} of solutions of (HI) with ‖uk‖∞ → 0.

We will prove the result first in a particular case, then in the general case.
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2.1 Proof in a particular case

Throughout this subsection, we also assume that G(t, s) is defined for any s ∈ Rn, with

G(t,−s) = G(t, s) for a.e. t ∈]0, T [ and every s ∈ Rn, satisfies (Gb) and:

(G∞) we have

lim sup
|s|→∞

G(t, s)

|s|
< 0 for a.e. t ∈]0, T [

and there exists α̃ ∈ L1(0, T ) such that

G(t, s) ≤ (1 + |s|) α̃(t) for a.e. t ∈]0, T [ and every s ∈ Rn .

Then we consider f0, f1 and

F : L1(0, T ;Rn)× R→]−∞,+∞]

as before and denote by F̂ its restriction to epi (f0).

Since Ψ is even, we can define an isometry

Φ : epi (f0)→ epi (f0)

by

Φ(u, λ) = (−u, λ) .

It is easily seen that Φ2 = Id and that

F̂ (Φ(u, λ)) = F̂ (u, λ) ,

as G(t, ·) also is even. Moreover,

Fix(epi (f0)) = {0} × [0,+∞[

and

min
{

F̂ (u, λ) : (u, λ) ∈ Fix(epi (f0))
}

= 0 .

Lemma 3.2.2. Under assumptions (Ψ), (Gb) and (G∞), for every c ∈ R the set{
(u, λ) ∈ epi (f0) : F̂ (u, λ) ≤ c

}
is compact in L1(0, T ;Rn)× R. In particular, F̂ is bounded from below.
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Proof. By Theorem 1.2.7, it is enough to show that{
(u, λ) ∈ epi (f0) : F̂ (u, λ) ≤ c

}
is bounded in L1(0, T ;Rn)× R.

Assume, for a contradiction, that (uk, λk) is a sequence in epi (f0) with

‖uk‖2
1 + λ2

k → +∞ , λk −
∫ T

0

G(t, uk) dt ≤ c .

Let us write (uk, λk) = τk(vk, µk) with

τk → +∞ , ‖vk‖2
1 + µ2

k = 1 ,

so that, by Proposition 1.2.3,

ν f̂0(vk)−
T

τkν
≤ f0(uk)

τk
≤ µk .

Therefore, up to a subsequence, (µk) is convergent to µ ≥ 0 and (vk) is bounded in

L∞(0, T ;Rn) and convergent a.e. in ]0, T [ to v ∈ BV (0, T ;Rn) with ‖v‖2
1 + µ2 = 1.

Moreover, we have

µk −
∫ T

0

G(t, τkvk) dt

τk
dt ≤ c

τk
,

whence

lim inf
k

∫ T

0

G(t, τkvk) dt

τk
dt ≥ µ .

On the other hand, from assumption (G∞) we infer that

G(t, τkvk)

τk
≤
(

1

τk
+ |vk|

)
α̃(t) for a.e. t ∈]0, T [ ,

lim sup
k

G(t, τkvk)

τk
≤ 0 for a.e. t ∈]0, T [ ,

lim sup
k

G(t, τkvk)

τk
< 0 for a.e. t ∈]0, T [ with v(t) 6= 0 .

By Fatou’s lemma we first deduce that

lim sup
k

∫ T

0

G(t, τkvk) dt

τk
dt ≤ 0 ,

whence µ = 0, which in turn implies v(t) 6= 0 on a set of positive measure, hence

0 = µ ≤ lim sup
k

∫ T

0

G(t, τkvk) dt

τk
dt < 0
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and a contradiction follows. Therefore, the set{
(u, λ) ∈ epi (f0) : F̂ (u, λ) ≤ c

}
is bounded, hence compact, in L1(0, T ;Rn)× R.

From Theorem 1.2.6 we infer that F̂ is bounded from below.

Lemma 3.2.3. Under assumptions (Ψ), (Gb) and (G∞), for every c ∈ R the functional

F̂ satisfies (PS)c.

Proof. It easily follows from Lemma 3.2.2.

Lemma 3.2.4. Under assumptions (Ψ), (G0), (B0) and (Be), for every m ≥ 1 there

exists a continuous and Φ-equivariant map ψm : Sm−1 → epi (f0) such that

sup { F̂ (ψm(x)) : x ∈ Sm−1 } < 0 .

Proof. Let V be the linear subspace of W 1,1
0 (0, T ;Rn) spanned by(

sin
(π
T
t
)
, 0, . . . , 0

)
,
(

sin
(

2
π

T
t
)
, 0, . . . , 0

)
, . . . ,

(
sin
(
m
π

T
t
)
, 0, . . . , 0

)
,

let ‖ ‖ be any norm on V and let

S = {v ∈ V : ‖v‖ = 1} .

Since

f0(v) =

∫ T

0

Ψ(v′) dt for any v ∈ V ,

the map ψ : S → epi (f0) defined as

ψ(v) = (τv, f0(τv))

is clearly continuous and Φ-equivariant, for any τ > 0. It is enough to show that

F̂ (ψ(v)) < 0 for any v ∈ S ,

provided that τ is small enough.

Assume, for a contradiction, that τk > 0 and vk ∈ V satisfy

τk → 0 , ‖vk‖ = 1 ,

∫ T

0

Ψ(τkv
′
k) dt−

∫ T

0

G(t, τkvk) dt ≥ 0 .
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Then, up to a subsequence, (vk) is strongly convergent in W 1,1
0 (0, T ;Rn) to some v ∈ S.

From Proposition 1.2.1 and (B0) it is easy to deduce that

lim
k

∫ T

0

Ψ(τkv
′
k) dt

τk
= 0 .

On the other hand, v 6= 0 a.e. in ]0, T [, so that (G0) and (B0) imply that

G(t, τkvk)

τk
≥ −α̌ |vk| for a.e. t ∈]0, T [ ,

lim inf
k

G(t, τkvk)

τk
≥ 0 for a.e. t ∈]0, T [ ,

lim inf
k

G(t, τkvk)

τk
> 0 for a.e. t ∈ E .

Therefore,

lim inf
k

∫ T

0

G(t, τkvk) dt

τk
> 0

and a contradiction follows.

Proof of Theorem 3.2.1.

We aim to apply Corollary 3.1.5 to

F̂ : epi (f0)→ R .

By Lemmas 3.2.2, 3.2.3 and 3.2.4, all the assumptions are satisfied. Therefore, there exists

a sequence (uk, λk) of critical points of F̂ with

λk −
∫ T

0

G(t, uk) dt ≤ 0 , ‖uk‖2
1 + (λ−k )2 > 0 , ‖uk‖2

1 + (λ−k )2 → 0 .

Then ‖uk‖1 → 0 and from Corollary 1.2.9 we infer that λk = f0(uk) and uk is a solution

of (HI) with uk 6= 0. By Lemma 3.2.2, the sequence (f0(uk)) is bounded. Then (uk) is

bounded in L∞(0, T ;Rn) by Proposition 1.2.3, whence

lim sup
k

f0(uk) ≤ lim
k

∫ T

0

G(t, uk) dt = 0 .

Since Ψ is even, we have Ψ(ξ) ≥ 0 for any ξ ∈ Rn. Therefore

lim
k
f0(uk) = 0 .
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Moreover, by Propositions 1.1.2 and 1.2.3, for every ]a, b[⊆]0, T [ we have

ess sup
]a,b[

|uk| ≤
1

b− a

∫ b

a

|uk| dt+ |u′k|(]a, b[)

≤ 1

b− a

∫ b

a

|uk| dt+
1

ν

[∫ b

a

Ψ(u′a) dt+

∫
]a,b[

Ψ∞
(
u′s
|u′s|

)
d|u′s|+

b− a
ν

]
≤ 1

b− a

∫ b

a

|uk| dt+
1

ν
f0(uk) +

b− a
ν2

,

whence

lim sup
k

(
ess sup

]a,b[

|uk|

)
≤ b− a

ν2
.

By the arbitrariness of ]a, b[ we infer that

lim
k
‖uk‖∞ = 0 .

2.2 Proof in the general case

Let ϑ : R→ [0, 1] be a function of class C1 such that

ϑ(τ) = 1 if τ ≤ r2

4
,

ϑ(τ) = 0 if τ ≥ 9r2

16
.

Then define Ĝ :]0, T [×Rn → R as

Ĝ(t, s) =

G(t, ϑ(|s|2)s)− (1− ϑ(|s|2))
√

1 + |s|2 if |s| < r

−(1− ϑ(|s|2))
√

1 + |s|2 if |s| ≥ r .

It is easily seen that Ĝ satisfies all the assumptions required in the particular case. There-

fore we can apply Theorem 3.2.1 with G replaced by Ĝ. Since ‖uk‖∞ → 0, we have that,

eventually as k →∞, uk is also a solution of (HI) with the original G instead of Ĝ.



Chapter 4

Asymptotically linear lower order
terms

This chapter is devoted to the case in which G(t, s) ≈ |s| as |s| → ∞, so that a nonreso-

nance condition will be imposed.

1 The cohomology of suitable pairs

In the following, H∗ will denote Alexander-Spanier cohomology with coefficients in Z2.

Theorem 4.1.1. Let X be a normed space over R and let S be a compact and symmetric

subset of X with 0 6∈ S.

Then there exists m ≥ 0 such that Hm(X,S) 6= {0}.

Proof. Let Index denote the Z2-cohomological index of [20, 21]. Since S is compact with

0 6∈ S, we have Index(S) < ∞. From [14, Theorem 2.7] it follows that (X,S) links

(X \ S, ∅) in the sense of [14, Definition 2.3], which is just the assertion.

Theorem 4.1.2. Let X be a metric space, f : X → R a continuous function and let a ∈ R
and b ∈]−∞,+∞] with a ≤ b. Assume that f has no critical points u with a < f(u) ≤ b,

that (CPS)c holds and that {u ∈ X : f(u) ≤ c} is complete whenever c ∈ [a, b[.

Then H∗ ({u ∈ X : f(u) ≤ b} , {u ∈ X : f(u) ≤ a}) is trivial.

Proof. As in the proof of Theorem 2.1.2, by [9] (CPS)c becomes (PS)c with respect to

an auxiliary distance. Then the assertion is contained in [18, Theorem 2.7].

Theorem 4.1.3. Let X be a metric space, f : X → R a continuous function, β : X −→ R
be a Lipschitz function of constant L, let a ∈ R and let ε > 0 be such that

41
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(a) the set

Σ := {u ∈ X : a ≤ f(u) ≤ β(u)}

is complete;

(b) we have

inf {|df | (u) : u ∈ Σ , f(u) ≤ a+ ε} > 0 ;

(c) we have

inf

{
|df | (u) : u ∈ Σ , f(u) ≥ β(u)− 2

5
ε

}
> L .

Define

A = {u ∈ Σ : f(u) ≤ a+ ε} ,

Σ′ =

{
u ∈ X : a+

1

5
ε ≤ f(u) ≤ β(u)− 1

5
ε

}
,

A′ =

{
u ∈ Σ′ : f(u) ≤ a+

4

5
ε

}
,

Σ′′ =

{
u ∈ X : a+

2

5
ε ≤ f(u) ≤ β(u)− 2

5
ε

}
,

A′′ =

{
u ∈ Σ′′ : f(u) ≤ a+

3

5
ε

}
.

Then the inclusions (Σ′′, A′′) ⊆ (Σ′, A′) and (Σ′, A′) ⊆ (Σ, A) induce isomorphisms

in cohomology.

Proof. See [7, Lemma 3.1], where the assertion is proved for homology, but no change is

required to treat cohomology.

2 Existence of a periodic solution

Throughout this section, we still assume that

Ψ : Rn → R

satisfies condition (Ψ). We also suppose that

G :]0, T [×Rn → R

satisfies:
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(G) the function G(·, s) is measurable for every s ∈ Rn, G(t, 0) = 0 for a.e. t ∈]0, T [

and there exists α̌ ∈ L1(0, T ) satisfying

|G(t, s)−G(t, σ)| ≤ α̌(t)|s− σ|

for a.e. t ∈]0, T [ and every s, σ ∈ Rn;

(L) there exists a function

G∞ :]0, T [×Rn → R

such that

lim
τ→+∞

G(t, τs)

τ
= G∞(t, s) for a.e. t ∈]0, T [ and every s ∈ Rn

and, for a.e. t ∈]0, T [, for every τk → +∞, sk → s and σk → σ,

lim sup
k

G0(t, τksk;σk) ≤ (G∞)0(t, s;σ) .

If G(t, ·) is of class C1 in a neighborhood of each τksk and G∞(t, ·) is of class C1 in

a neighborhood of s, then the last condition is equivalent to

lim
k
∇sG(t, τksk) = ∇sG

∞(t, s) .

Remark 4.2.1. Since ∣∣∣∣G(t, τs)

τ
− G(t, τσ)

τ

∣∣∣∣ ≤ α̌(t)|s− σ| ,

it is easily seen that G∞ also satisfies (G).

Let us state the main result.

Theorem 4.2.2. Assume (Ψ), (G), (L), that

Ψ∞(−ξ) = Ψ∞(ξ) for every ξ ∈ Rn ,

G∞(t,−s) = G∞(t, s) for a.e. t ∈]0, T [ and every s ∈ Rn ,

and that u = 0 is the unique solution of

(4.2.3) f∞0 (v) +

∫ T

0

(G∞)0(t, u;u− v) dt ≥ f∞0 (u) for every v ∈ BV (0, T ;Rn) .

Then there exists a solution u ∈ BV (0, T ;Rn) of (HI).
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Remark 4.2.4. Since Ψ∞ and G∞(t, ·) are even, it is easily seen that u = 0 is a solution

of (4.2.3). The assumption that u = 0 is the unique solution is a form of nonresonance

condition at infinity.

The assumption that Ψ∞ and G∞(t, ·) are even also avoids a “jumping behavior”

(see [5]), which would not be compatible with the assertion of the theorem.

As usual, for the proof of the theorem, we need some lemmas.

First of all, let us define, whenever τ ≥ 1,

Ψτ (ξ) =
Ψ(τξ)

τ
, Gτ (t, s) =

G(t, τs)

τ
.

Then let us introduce f τ0 , f τ1 , f τ and F τ accordingly.

First of all, we have

(Gτ )0(t, s;σ) = G0(t, τs;σ) ,

whence, if % ≥ 1,

Ψτ (%ξ)

%
= Ψτ%(ξ) ,

Gτ (t, %s)

%
= Gτ%(t, s) , (Gτ )0(t, %s;σ) = (Gτ%)0(t, s;σ) .

Moreover, it is easily seen that

Ψτ (ξ) ≥ ν |ξ| − 1

τν
for every τ ∈ [1,∞[ and ξ ∈ Rn ,

Ψ∞(ξ) ≥ ν |ξ| for every ξ ∈ Rn ,

|Ψτ (ξ)−Ψτ (η)| ≤ 1

ν
|ξ − η| for every τ ∈ [1,∞] and ξ, η ∈ Rn ,

|Gτ (t, s)−Gτ (t, σ)| ≤ α̌(t)|s− σ| for every τ ∈ [1,∞],

a.e. t ∈]0, T [ and every s, σ ∈ Rn ,

|(Gτ )0(t, s;σ)| ≤ α̌(t)|σ| for every τ ∈ [1,∞],

a.e. t ∈]0, T [ and every s, σ ∈ Rn .

Finally, if τk → τ in [1,∞], ξk → ξ, sk → s and σk → σ in Rn, then

lim
k

Ψτk(ξk) = Ψτ (ξ) ,

lim
k
Gτk(t, sk) = Gτ (t, s) for a.e. t ∈]0, T [ ,

lim sup
k

(Gτk)0(t, sk;σk) ≤ (Gτ )0(t, s;σ) . for a.e. t ∈]0, T [ .
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2.1 Uniform Palais-Smale condition and convergence

Lemma 4.2.5. If τk → τ in [1,∞] and

(uk, λk) ∈
⋃

1≤η≤∞

epi (f η0 )

with

sup
k

(
‖uk‖2

1 + λ2
k

)
< +∞ ,

we have

lim
k
|f τk1 (uk)− f τ1 (uk)| = 0 .

Proof. Since

Ψτ (ξ) ≥ ν |ξ| − 1

ν
,

the sequence (uk) is bounded in L∞(0, T ;Rn) and precompact in L1(0, T ;Rn). Then the

assertion easily follows.

Lemma 4.2.6. If τk → τ in [1,∞] and uk, u ∈ BV (0, T ;Rn) with ‖uk − u‖1 → 0, then

we have

lim
k
f τk0 (u) = f τ0 (u) ,

lim inf
k

f τk0 (uk) ≥ f τ0 (u) .

Proof. Since

f τ0 (u) =

∫ T

0

Ψ(τu′a)

τ
dt+

∫
]0,T [

Ψ∞
(
u′s
|u′s|

)
d|u′s|+ Ψ∞

(
u(0+)− u(T−)

)
,

from Lebesgue’s theorem it follows that

lim
k
f τk0 (u) = f τ0 (u) .

If τ <∞, from
τ

τk

Ψ(τξ)

τ
≤ Ψ(τkξ)

τk
+

1

ν

∣∣∣∣ ττk − 1

∣∣∣∣ |ξ|
it follows that

f τ0 (u) ≤ lim inf
k

f τk0 (uk) .

If τ =∞, we have

f τ0 (uk) ≤ f τk0 (uk) whenever τ ≤ τk .
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It follows

f τ0 (u) ≤ lim inf
k

f τ0 (uk) ≤ lim inf
k

f τk0 (uk) ,

hence

f∞0 (u) ≤ lim inf
k

f τk0 (uk) .

Lemma 4.2.7. If c ∈ R, (τk) is a sequence in [1,∞] and (uk, λk) a sequence in

L1(0, T ;Rn)× R, with (uk, λk) ∈ epi (f τk0 ) for any k, such that

F τk(uk, λk)→ c , |dF τk | (uk, λk)→ 0 ,

then (uk, λk) admits a convergent subsequence in L1(0, T ;Rn)× R.

Moreover, if

lim
k
τk = +∞ ,

then c = 0 and (uk, λk) is convergent to 0 in L1(0, T ;Rn)× R.

Proof. Up to a subsequence, we also have τk → τ in [1,∞]. From Corollary 1.2.9 we

infer that λk = f τk0 (uk) eventually as k → ∞, so that f τk(uk) → c, and that there exist

wk ∈ L∞(0, T ;Rn) and µk ≤ 1 such that

‖wk‖2
∞ + µk

2 ≤
(
|dF τk |

(
uk, f0(uk)

))2

,

(1− µk)f τk0 (v) +

∫ T

0

(Gτk)0(t, uk;uk − v) dt

≥ (1− µk)f τk0 (%kvk) +

∫ T

0

wk · (v − uk) dt ∀v ∈ BV (0, T ;Rn) .

We claim that (uk, f
τk
0 (uk)) is bounded in L1(0, T ;Rn)×R. Assume, for a contradic-

tion, that uk = %kvk with

%k → +∞ , ‖vk‖2
1 + (f τk%k0 (vk))

2 = 1 .

Since

ν f̂0(vk)−
T

ν
≤ f τk%k0 (vk) ≤ 1 ,

up to a subsequence (vk) is bounded in L∞(0, T ;Rn) and convergent to some

v ∈ BV (0, T ;Rn) a.e. in ]0, T [.
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For any z ∈ BV (0, T ;Rn), we have

(1− µk)
f τk0 (%kz)

%k
+

∫ T

0

(Gτk)0(t, %kvk; vk − z) dt

≥ (1− µk)
f τk0 (%kvk)

%k
+

∫ T

0

wk · (z − vk) dt ,

namely

(1− µk) f τk%k0 (z) +

∫ T

0

(Gτk%k)0(t, vk; vk − z) dt

≥ (1− µk) f τk%k0 (vk) +

∫ T

0

wk · (z − vk) dt .

Since τk%k → +∞, by Lemma 4.2.6 we have

lim
k
f τk%k0 (z) = f∞0 (z) , lim inf

k
f τk%k0 (vk) ≥ f∞0 (v) ,

while Fatou’s lemma yields

lim sup
k

∫ T

0

(Gτk%k)0(t, vk; vk − z) dt ≤
∫ T

0

(G∞)0(t, v; v − z) dt .

Therefore

f∞0 (z) +

∫ T

0

(G∞)0(t, v; v − z) dt ≥ f∞0 (v) for any z ∈ BV (0, T ;Rn) ,

namely v is a solution of (4.2.3).

It follows v = 0, hence

lim
k

(f τk%k0 (vk))
2 = 1 .

On the other hand, the choice z = 0 in the previous argument yields

lim sup
k

∫ T

0

(Gτk%k)0(t, vk; vk) dt ≤ 0 ,

hence

lim sup
k

f τk%k0 (vk) ≤ 0 .

A contradiction follows and therefore it is proved that (uk, f
τk
0 (uk)) is bounded in

L1(0, T ;Rn)× R.

Since

ν f̂0(uk)−
T

ν
≤ f τk0 (uk) ,
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it follows that (uk) admits a convergent subsequence in L1(0, T ;Rn).

If now

lim
k
τk = +∞ ,

then we can repeat the previous argument with τk%k and vk replaced by τk and uk. It

follows that ‖uk‖1 → 0 and f τk0 (uk)→ 0.

2.2 The recession functional

This subsection is devoted to a study of F∞. Let us set

C : = { (u, λ) ∈ epi (f∞0 ) : F∞(u, λ) ≤ 0 } \ {(0, 0)} .

Lemma 4.2.8. There exists m ≥ 0 such that Hm (epi (f∞0 ) , C) 6= {0}.

Proof. The set epi (f∞0 ) is convex and nonempty, in particular contractible. If C = ∅, we

have H0 (epi (f∞0 ) , C) 6= {0} and the assertion follows.

Therefore assume that C 6= ∅ and consider

K : = { (u, λ) ∈ epi (f∞0 ) : ‖u‖1
2 + λ2 = 1 and F∞(u, λ) ≤ 0 } ,

which is, by Theorem 1.2.7, a nonempty compact subset of epi (f∞0 ), and the continuous

map % : C −→ K defined as

%(u, λ) =

(
u√

‖u‖1
2 + λ2

,
λ√

‖u‖1
2 + λ2

)
.

Finally, given the canonical projection

π1 : L1(0, T ;Rn)× R→ L1(0, T ;Rn) ,

consider π1(K), which is a nonempty, compact and symmetric subset of L1(0, T ;Rn) with

0 6∈ π1(K), as f∞0 (0) = f∞1 (0) = 0. Let û0 ∈ π1(K).

From Theorem 4.1.1 we infer that there exists m ≥ 0 such that

Hm
(
L1(0, T ;Rn), π1(K)

)
6= {0} .

Since H∗ (L1(0, T ;Rn), {û0}) is trivial, from the exact sequence of the triple(
L1(0, T ;Rn), π1(K), {û0}

)
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we deduce that

Hm (π1(K), {û0}) 6= {0} .

On the other hand, we have the continuous map π1 ◦ % : C → π1(K) and we can define a

continuous map ϕ : π1(K)→ K ⊆ C by

ϕ(u) =

(
u,
√

1− ‖u‖2
1

)
.

Moreover, (π1 ◦ %) ◦ ϕ is the identity of π1(K). If we set (u0, λ0) = ϕ(û0), it follows that

Hm (C, {(u0, λ0)}) 6= {0} .

Since Hm (epi (f∞0 ) , {(u0, λ0)}) is trivial, by the exact sequence of the triple

(epi (f∞0 ) , C, {(u0, λ0)})

we conclude that Hm (epi (f∞0 ) , C) 6= {0}.

Now let

D∞ = { (u, λ) ∈ epi (f∞0 ) : − 2 ≤ F∞(u, λ) ≤ 1 } ,

E∞ = { (u, λ) ∈ epi (f∞0 ) : − 2 ≤ F∞(u, λ) ≤ −1 } .

We can prove the main result of this subsection.

Lemma 4.2.9. There exists m ≥ 0 such that

Hm(D∞, E∞) 6= {0} .

Proof. The function F∞ : epi (f∞0 )→ R is continuous and satisfies (PS)c for any c ∈ R,

by Lemma 4.2.7. Since there are no critical points (u, λ) of F∞ with F∞(u, λ) > 0, if

we set

D̃ : = { (u, λ) ∈ epi (f∞0 ) : F∞(u, λ) ≤ 1 } ,

it follows from Theorem 4.1.2 that

H∗
(

epi (f∞0 ) , D̃
)

is trivial. From the exact sequence of the triple(
epi (f∞0 ) , D̃, C

)
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and Lemma 4.2.8 we infer that

Hm
(
D̃, C

)
6= {0} .

Now define

Ẽ : = { (u, λ) ∈ epi (f∞0 ) : F∞(u, λ) ≤ −1 }

and consider the restriction of F∞ to C. It is continuous, satisfies (PS)c for any c < 0,

and has no critical point (u, λ) with F∞(u, λ) ≤ 0 by Proposition 1.1.11. Again from

Theorem 4.1.2 we infer that

H∗
(
C, Ẽ

)
is trivial. From the exact sequence of the triple(

D̃, C, Ẽ
)

it follows that

Hm
(
D̃, Ẽ

)
6= {0} .

Finally, by excision we have

Hm
(
D̃, Ẽ

)
≈ Hm (D∞, E∞)

and the assertion follows.

2.3 Proof of the main result

Lemma 4.2.10. The functional F τ : epi (f τ0 ) → R satisfies (PS)c for any τ ∈ [1,∞]

and any c ∈ R.

Proof. It follows from Lemma 4.2.7.

Lemma 4.2.11. There exist σ > 0, R > 0 and τ <∞ such that:

(a) |dF τ |(u, λ) ≥ σ whenever τ ∈ [1,∞], (u, λ) ∈ epi (f τ0 ), −3 ≤ F τ (u, λ) ≤ 1 and√
‖u‖2

1 + λ2 > R2;

(b) |dF τ |(u, λ) ≥ σ whenever τ ∈ [τ ,∞], (u, λ) ∈ epi (f τ0 ) and

F τ (u, λ) ∈ [−3,−1] ∪ [3/5, 1] .
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Proof. By Lemma 4.2.7 there exists σ > 0 such that the set⋃
1≤τ≤∞

{ (u, λ) ∈ epi (f τ0 ) : −3 ≤ F τ (u, λ) ≤ 1 and |dF τ |(u, λ) < σ }

is bounded in L1(0, T ;Rn)×R. Then assertion (a) follows. Assertion (b) also follows from

Lemma 4.2.7.

Let us define

β : L1(0, T ;Rn)× R→ [−3, 1]

as

β(u, λ) = 1−min

{
σ

2

(√
‖u‖2

1 + λ2 −R
)+

, 4

}
,

which is Lipschitz continuous of constant σ
2
, and set, for every τ ∈ [1,∞],

Dτ = { (u, λ) ∈ epi (f τ0 ) : − 2 ≤ F τ (u, λ) ≤ 1 } ,

Eτ = { (u, λ) ∈ epi (f τ0 ) : − 2 ≤ F τ (u, λ) ≤ −1 } ,

Στ = { (u, λ) ∈ epi (f τ0 ) : − 2 ≤ F τ (u, λ) ≤ β(u, λ) } ,

Aτ = { (u, λ) ∈ Στ : F τ (u, λ) ≤ −1 } .

Lemma 4.2.12. For every τ ∈ [τ ,∞], we have H∗(Dτ , Eτ ) ≈ H∗(Στ , Aτ ).

Proof. If we set

G (u, λ) = F τ (u, λ)− β(u, ξ) ,

D̃τ = { (u, λ) ∈ epi (f τ0 ) : F τ (u, λ) ≤ 1 } ,

Ẽτ = { (u, λ) ∈ epi (f τ0 ) : F τ (u, λ) ≤ −1 } ,

Σ̃τ = { (u, λ) ∈ epi (f τ0 ) : F τ (u, λ) ≤ β(u, λ) } ,

Ãτ = { (u, λ) ∈ Σ̃τ : F τ (u, λ) ≤ −1 } ,

we have that Ẽτ is a complete metric space, G is continuous and

Ãτ = { (u, λ) ∈ Ẽτ : G (u, λ) ≤ 0 } .

If (u, λ) ∈ Ẽτ with G (u, λ) ≥ 0, we have −3 ≤ F τ (u, λ) ≤ −1. From Propositions 1.1.11

and 1.1.12 and Lemma 4.2.11 it follows that

|dG | (u, λ) ≥ |dF τ | (u, λ)− σ

2
≥ σ

2
.
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From Theorem 4.1.2 we infer that H∗(Ẽτ , Ãτ ) is trivial. From the exact sequence of the

triple (
D̃τ , Ẽτ , Ãτ

)
we deduce that

H∗
(
D̃τ , Ẽτ

)
≈ H∗

(
D̃τ , Ãτ

)
.

Now observe that D̃τ also is a complete metric space and

Σ̃τ = { (u, λ) ∈ D̃τ : Ĝ (u, λ) ≤ 0 } .

If (u, λ) ∈ D̃τ with Ĝ (u, λ) ≥ 0, we have either F τ (u, λ) = 1 or −3 ≤ F τ (u, λ) < 1 with√
‖u‖2

1 + λ2 > R. From Propositions 1.1.11 and 1.1.12 and Lemma 4.2.11 it follows that∣∣∣dĜ ∣∣∣ (u, λ) ≥ |dF τ | (u, λ)− σ

2
≥ σ

2
.

From Theorem 4.1.2 we infer that H∗(D̃τ , Σ̃τ ) is trivial. From the exact sequence of the

triple (
D̃τ , Σ̃τ , Ãτ

)
and the previous step we deduce that

H∗
(
D̃τ , Ẽτ

)
≈ H∗

(
D̃τ , Ãτ

)
≈ H∗

(
Σ̃τ , Ãτ

)
.

Finally, by excision we have

H∗ (Dτ , Eτ ) ≈ H∗
(
D̃τ , Ẽτ

)
, H∗

(
Σ̃τ , Ãτ

)
≈ H∗ (Στ , Aτ ) ,

and the assertion follows.

Lemma 4.2.13. There exists τ̃ < ∞ such that, for every τ ∈ [τ̃ ,∞], we have

H∗(Στ , Aτ ) ≈ H∗(Σ∞, A∞).

Proof. Since we aim to apply Theorem 4.1.3 with a = −2 and ε = 1, let us set

Σ′τ =

{
(u, λ) ∈ epi (f τ0 ) : −9

5
≤ F τ (u, λ) ≤ β(u, λ)− 1

5

}
,

A′τ =

{
(u, λ) ∈ Σ′τ : F τ (u, λ) ≤ −6

5

}
,

Σ′′τ =

{
(u, λ) ∈ epi (f τ0 ) : −8

5
≤ F τ (u, λ) ≤ β(u, λ)− 2

5

}
,

A′′τ =

{
(u, λ) ∈ Σ′′τ : F τ (u, λ) ≤ −7

5

}
.
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Define also

ψ : L1(0, T ;Rn)× R→ L1(0, T ;Rn)× R

by ψ(u, λ) =
(
u, λ+ 1

10

)
and observe that

‖u‖2
1 + λ2 ≤

(
R +

6

σ

)2

whenever (u, λ) ∈
⋃

1≤τ≤∞

Στ .

Let ε ∈]0, 1[ be such that

λ

1− ε
≤ λ+

1

20
whenever |λ| ≤ R +

6

σ

and let Mε be such that

(1− ε)f∞0 (u)− TMε ≤ f0(u) ≤ f∞0 (u) for any u ∈ BV (0, T ;Rn) ,

according to Proposition 1.2.3.

Then, by Lemma 4.2.5, there exists τ̃ ≥ τ such that

TMε

(1− ε)τ̃
≤ 1

20
,

(4.2.14) |f τ1 (u)− f∞1 (u)| ≤ 1

10
whenever τ ≥ τ̃ ,

(u, λ) ∈
⋃

1≤η≤∞

epi (f η0 ) and ‖u‖2
1 + λ2 ≤

(
R +

6

σ

)2

.

Then, for every τ ≥ τ̃ , we have

Σ′′∞ ⊆ Σ′τ , A′′∞ ⊆ A′τ , Σ′∞ ⊆ Στ , A′∞ ⊆ Aτ ,

ψ(Σ′′τ ) ⊆ Σ′∞ , ψ(A′′τ ) ⊆ A′∞ , ψ(Σ′τ ) ⊆ Σ∞ , ψ(A′τ ) ⊆ A∞ .

Actually, we have epi (f∞0 ) ⊆ epi (f τ0 ). On the other hand, if f τ0 (u) ≤ λ, we have

f∞0 (u) ≤ 1

1− ε
f τ0 (u) +

TMε

(1− ε)τ
≤ 1

1− ε
λ+

TMε

(1− ε)τ
≤ λ+

1

10
,

whence

ψ (epi (f τ0 )) ⊆ epi (f∞0 ) .

Then the inclusions easily follow from (4.2.14).

Since the map

ψ : (Σ′′τ , A
′′
τ )→ (Στ , Aτ )
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is homotopic to the inclusion, from Theorem 4.1.3 we infer that the homomorphism in-

duced by inclusion

H∗(Στ , Aτ )→ H∗(Σ′∞, A
′
∞)

is injective.

Since the map

ψ : (Σ′′∞, A
′′
∞)→ (Σ∞, A∞)

is homotopic to the inclusion, from Theorem 4.1.3 we infer that the homomorphism in-

duced by inclusion

H∗(Σ′τ , A
′
τ )→ H∗(Σ′′∞, A

′′
∞)

is surjective. From Theorem 4.1.3 we infer that the homomorphism induced by inclusion

H∗(Στ , Aτ )→ H∗(Σ′′∞, A
′′
∞)

is bijective and the assertion follows.

Proof of Theorem 4.2.2.

From Lemmas 4.2.12, 4.2.13 and 4.2.9, we infer that there exist m ≥ 0 and τ < +∞ such

that Hm(Dτ , Eτ ) 6= {0}.
From Lemma 4.2.10 and Theorem 4.1.2 it follows that there exists a critical point

(u, λ) ∈ epi (f τ0 ) of F τ .

By Corollary 1.2.9, we have

f τ0 (v) +

∫ T

0

(Gτ )0 (t, u;u− v) dt ≥ f τ0 (u) for any v ∈ BV (0, T ;Rn) ,

namely

f0(v) +

∫ T

0

G0(t, τu; τu− v) dt ≥ f0(τu) for any v ∈ BV (0, T ;Rn) .

Therefore, τu is a solution of (HI).
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[12] E. De Giorgi, A. Marino and M. Tosques, Problems of evolution in metric

spaces and maximal decreasing curve, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis.

Mat. Natur. (8) 68 (1980), no. 3, 180–187.

[13] M. Degiovanni, Critical groups of finite type for functionals defined on Banach

spaces, Communications in Applied Analysis 13 (2009), no. 3, 395-410.

[14] M. Degiovanni and S. Lancelotti, Linking over cones and nontrivial solutions

for p-Laplace equations with p-superlinear nonlinearity, Ann. Inst. H. Poincaré Anal.
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