The redox budget of crust-derived fluid phases: a snapshot of the slab-mantle interface

NADIA MALASPINA

1Department of Earth and Environmental Sciences, Università degli Studi di Milano Bicocca, Piazza della Scienza 4 – 20126 Milano (Italy), nadia.malaspi@unimib.it

The redox processes taking place in the portion of the mantle on top of the subducting slab are poorly investigated and the redox budget of crust-derived fluid phases is still poorly constrained. A case study of supra-subduction mantle affected by metasomatism from crust-derived fluid phases is the Maowu Ultramafic Complex (China) deriving from harzburgite precursors metasomatised at ~4 GPa, 750-800 °C by a silica- and incompatible trace element-rich fluid phase. This metasomatism produced poikilitic orthopyroxene and inclusion-rich garnet porphyroblasts. Solid multiphase primary micro-inclusions in garnet display negative crystal shapes and infilling minerals (spinel, orthopyroxene, amphiboles, chlorite, talc, mica) occur with constant modal proportions, indicating that they derive from trapped solute-rich aqueous fluids. FT-IR hyper spectral imaging analyses and micro-Raman spectroscopy, together with X-Ray microtomography performed on single inclusions indicate that liquid water is still preserved at least in some inclusions.

To investigate the redox budget of these fluid phases, the Fe³⁺ concentration of the micron-sized precipitates of the multiphase inclusions has been measured for the first time using EELS on a TEM. Results indicate that spinel contains up to 12% of Fe³⁺/ΣFe, amphibole about 30%, while the ratio in inclusion phases such as chlorite and phlogopite may reach 70%. The Fe³⁺ fraction of the host garnet is equal to that measured in spinel as also confirmed by Flank Method EPMA measurements.

Forward modelling fO₂ calculations indicate that the garnet orthopyroxenites record ΔFMQ=−1.8 ÷ −1.5, resulting apparently more reduced with respect to metasomatized supra-subduction garnet-peridotites. On the other hand, oxygen mass balance, performed both on the Maowu hybrid orthopyroxenite and on metasomatized supra-subduction garnet peridotites, indicate that the excess of oxygen (nO₂) is the same (10 mol m⁻³). An oxygen mass balance of the crust-derived fluids also indicates that the fluid precipitates are more oxidised than the host rock, reaching up to 400 mol m⁻³ of nO₂. This suggests that even after their interaction with the metasomatic orthopyroxenites, the residual fluid phases could be potentially carrier of oxidised components when escaping the slab-mantle interface.