THE EXISTENCE OF SOLUTIONS TO VARIATIONAL PROBLEMS OF SLOW GROWTH.

ARRIGO CELLINA ANDVASILE STAICU

Abstract. We consider the existence of solutions, in the space \( W^{1,1}(\Omega) \), to the problem

\[
\text{minimize } \int_{\Omega} L(\nabla v(x))\,dx \quad \text{on} \quad \phi + W^{1,1}_0(\Omega)
\]

where \( L \) is of slow (linear or at most quadratic) growth. We present a necessary and sufficient condition in order that, for any smooth boundary datum \( \phi \) and for any bounded \( \Omega \) with smooth boundary, the minimum problem be solvable.

1. Introduction

We consider the existence of solutions, in the space \( W^{1,1}(\Omega) \), to the problem

\[
\text{(1) minimize } \int_{\Omega} L(\nabla v(x))\,dx \quad \text{on} \quad \phi + W^{1,1}_0(\Omega)
\]

where \( L \) is smooth and of slow (linear or at most quadratic) growth. More precisely, the class \( L \) of Lagrangians we shall consider is

\[
L = \{ L(\xi) = l(|\xi|) : l : \mathbb{R} \to \mathbb{R}^+ \text{ is strictly convex}, \, l(t) = l(-t), \, l \in C^2 \text{ and } l'' \text{ is non-increasing} \}
\]

Lagrangians defined by smooth strictly convex functions \( l \) that, for \(|t| \) large, grow like \( \frac{1}{2}t^2 \), or \(|t| - \sqrt{|t|} + \gamma \), or \( \sqrt{1 + t^2} \), all belong to \( L \). The theory of existence of solutions for different Lagrangians, in particular, for some Lagrangians belonging to the class \( L \), is based on different arguments. For Lagrangians of superlinear growth as \( L(\xi) = \frac{1}{2}|\xi|^2 \), the direct method yields existence of solutions, based on lower semicontinuity and weak compactness, with no mention of the properties neither of \( \phi \) nor of the boundary of \( \Omega \). On the other hand of the spectrum, for the non-parametric minimal surface problem, i.e. for \( L(\xi) = \sqrt{1 + |\xi|^2} \), in order that the minimum problem be solvable for any smooth datum \( \phi \), a necessary and sufficient condition \([7]\) is that the mean curvature of \( \partial \Omega \) be non-positive.

A condition for the existence of solutions (intermediate growth condition) that does not imply superlinear growth was introduced in \([4]\); the same condition was used in \([1]\) and \([2]\) to prove existence and regularity (lipschitzianity) of solutions to the problem

\[
\text{minimize } \int_a^b L(x(t), x'(t))\,dt; \quad x(a) = \alpha, \quad x(b) = \beta.
\]

1991 Mathematics Subject Classification. 49K10, 76M30.

Work partially supported by INDAM-GNAMPA. The paper was written while the second author was visiting the University of Milano Bicocca under a grant from GNAMPA, here gratefully acknowledged.
The results of the above mentioned papers are based on reparametrizations, an argument specific to one-dimensional integration set and, to these authors’ knowledge, this intermediate growth condition has not yet been used for problems on a multi-dimensional integration set \( \Omega \).

In this paper we show that this condition (Assumption 1 below) is necessary and sufficient in order that, for any smooth boundary datum \( \phi \) and for any bounded \( \Omega \) with smooth boundary, the minimization problem (1) admits a solution.

In particular, this condition is able to divide Lagrangians of linear growth in two separate classes: those like the non-parametric minimal area problem, \( L(\xi) = \sqrt{1 + |\xi|^2} \), where the above statement is not true, from those Lagrangians growing, for \( |\xi| \) large, like \( L(\xi) = |\xi| - \sqrt{|\xi|^2 + \gamma} \), for which we shall prove existence of solutions.

Models with Lagrangians growing linearly are important in elasticity \([5]\); our \( u \) is a scalar and not a vector and we make no claims at solving these problems; still, finding connections might be of some interest.

2. Notation and preliminary results

In what follows we assume that \( \mathbb{R}^N \) is endowed with the Euclidian norm \(||\) and the inner product \((,\,.)\). For \( u \in C^2(\Omega) \) we denote by \( u_{x_i} = \frac{\partial u}{\partial x_i} \) and \( u_{x_i,x_j} = \frac{\partial^2 u}{\partial x_i \partial x_j} \) the first and the second order partial derivatives of \( u \), respectively. The gradient \( \nabla u \) and the Hessian \( H_u \) of \( u \) are given by \( \nabla u = (u_{x_1}, \ldots, u_{x_n}) \) and \( H_u = [u_{x_i,x_j}]_{1 \leq i,j \leq n} \), respectively. The transpose of \( a \) is \( a^T \). We shall set

\[
d(x) = d(x, \partial \Omega) = \inf_{y \in \partial \Omega} \{|x - y|\},
\]

the distance of a point \( x \in \Omega \) from the boundary of \( \Omega \). The measure of the unit ball \( B \subset \mathbb{R}^n \) is \( \omega_n \), and the \((n - 1)\) Hausdorff measure of \( \partial B \) is \( n \omega_n \). By \( I_A \) we mean the indicator function of the set \( A \). We shall also set

\[
F = \{ \phi \in C^2(\overline{\Omega}) \} \quad \text{and} \quad \emptyset = \{ \Omega \text{ open and bounded: } \partial \Omega \subset C^2 \}.
\]

For a function \( l : \mathbb{R} \to \mathbb{R}^+ \), by \( l^* \) we mean its polar, or Legendre-Fenchel transform, defined by

\[
l^*(p) = \sup_{t \in \mathbb{R}} pt - l(t)
\]

[8]. \( l^* \) is a convex, possibly extended-valued function, i.e., with values in \( \mathbb{R} \cup \{+\infty\} \). We set \( \text{Dom}l^* \) to be the effective domain of \( l^* \), i.e. the set of points where \( l^* \) takes finite values. When \( l \) is strictly convex, \( l^* \) is differentiable on its effective domain. By its very definition, the map \( l^* \), as a map from \( \mathbb{R} \) to \( \mathbb{R} \cup +\infty \), is lower semicontinuous. In this paper we shall discuss the implications of the following assumption.

Assumption 1. The map \( l^* \) is continuous as a map from \( \mathbb{R} \) to \( \mathbb{R} \cup +\infty \).

In particular, under Assumption 1, it cannot happen that \( \text{Dom}l^* = [-p^*, +p^*] \) with \( p^* \) finite, since \( l^* \) would be discontinuous at \( p^* \) and at \(-p^*\).

The polar to the map \( t \to \frac{1}{2}t^2 \) is \( p \to \frac{1}{2}p^2 \), a continuous map on \( \mathbb{R} \), so that Assumption 1 is satisfied.

The map

\[
l(t) = \begin{cases} |t| - \sqrt{|t|} + \frac{1}{2}\alpha + \frac{1}{2}\beta + \gamma & \text{for } |t| \geq \frac{1}{2} \\ \frac{1}{4}\alpha|t|^4 + \frac{1}{2}\beta|t|^2 & \text{for } |t| \leq \frac{1}{2} \end{cases}
\]
where $\alpha = \frac{3}{\sqrt{2}} - 2$, $\beta = \frac{4 + \sqrt{2}}{4\sqrt{2}} - \frac{9}{4\sqrt{2}}$ and $\gamma = \sqrt{2} - 1$ is strictly convex, $C^2$ and
of linear growth; again, Assumption 1 is satisfied. In fact, for this $l$ we have (we compute $l^*$ only for $|p| \geq 1 - \frac{1}{\sqrt{2}}$),
\[
l^*(p) = \begin{cases} \frac{1}{4} - \frac{1}{|p|} + 1 & \text{for } 1 > |p| > 1 - \frac{1}{\sqrt{2}} \\ +\infty & \text{for } |p| \geq 1 \end{cases},
\]
so that $l^*$ is continuous as a map to $\mathbb{R} \cup \{+\infty\}$.

Consider our third example, the Lagrangian of the non-parametric minimal area problem, i.e., $l(t) = \sqrt{1 + t^2} - 1$; $L$ belongs to $L$ but it does not satisfy Assumption 1; in fact, in this case we have that $l^*(p) = 1 - \sqrt{1 - p^2}$ for $-1 \leq p \leq 1$, and $l^*(p) = +\infty$ for $|p| > 1$, so that $l^*$ is lower semicontinuous and not continuous.

The following is our main result.

**Theorem 1.** Let $L \in L$. Then, for every $\phi \in F$, for every $\Omega \in \Omega$, problem (1) admits a (unique) solution $\hat{u} \in W^{1,1}(\Omega)$ if and only if Assumption 1 holds.

For the non-parametric minimal area problem Assumption 1 is not satisfied and it is not true that for every $\phi \in F$, for every $\Omega \in \Omega$, problem (1) admits a solution.

**Proposition 1.** Let $l \in L$ satisfy Assumption 1; let Dom$l^*$ be $(-p^*, +p^*)$, $p^*$ possibly $+\infty$. Then, $\lim_{p \uparrow p^*} l^*(p) = +\infty$ and $\lim_{p \uparrow p^*}(l^*(p))' = +\infty$.

**Proof.** When $p^*$ is finite, the assumption of continuity implies that $\lim_{p \uparrow p^*} l^*(p) = +\infty$; when $p^* = +\infty$, it can be that $\lim_{p \uparrow p^*} l^*(p)$ is finite only if $l^*$ is a constant $c$; in this case, $l = l^*$ would be $I_{(0) - c}$, a contradiction to the properties of $l$.

Since $l$ is strictly convex, $(l^*)'$ exists on $(-p^*, +p^*)$ and, for $p \geq 0$, it is an increasing function, so that $\lim_{p \uparrow p^*}(l^*(p))'$ exists. Assume that $(l^*)'$ is bounded above by $K$; then, from $(l^*)'(l(t)) \equiv t$ we would obtain that $t$ must be bounded, a contradiction to Dom$l$ = $\mathbb{R}$.

**Proposition 2.** Let $l \in L$; then, there exist $\tau$ and $\hat{\lambda}$: $t \geq \tau$ implies
\[
l''(t) \leq \hat{\lambda}(t)
\]

**Proof.** We have that $\lim_{t \uparrow +\infty} l''(t)$ is either $+\infty$ or $p^* > 0$. Since $l''(0) \geq l''(t)$, for a suitable $\tau$ we have, for $t \geq \tau$, in the first case $l''(t) \leq l''(t)$ and, in the second case (choosing $\tau$ so that $t \geq \tau$ implies $l''(t) \geq \frac{w^*}{p^*}$), $l''(t) \leq l''(0) \frac{2l'(t)}{p^*}$.

**Proposition 3.** Let $B$ be a ball about 0; let $u \in W^{1,1}(B)$. For $x \in B$ set
\[
\hat{u}(x) = \frac{1}{n\omega_n} \int_{|\omega| = 1} u(\omega|x|) d\omega.
\]
Then,
\[
\nabla \hat{u}(x) = \begin{cases} \frac{1}{n\omega_n} \frac{x}{|x|} \int_{|\omega| = 1} (\nabla u(\omega|x|), \omega) d\omega & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}
\]

**Proof.** It is proved in [3].

We also recall a definition and an useful result.

**Definition 1.** A function $w \in C^2(\Omega)$ with $w|_{\partial\Omega} = \phi$ is called supersolution (resp. subsolution) of (1) if for every $v \in C^2(\Omega)$ with $w|_{\partial\Omega} = v|_{\partial\Omega}$ and $v \geq w$ on $\Omega$, (resp. $v \leq w$ on $\Omega$) we have
\[
\int_{\Omega} L(\nabla v(x)) \, dx \geq \int_{\Omega} L(\nabla w(x)) \, dx
\]
Lemma 1. If \( w \in C^2(\Omega) \) is such that \( \text{div} \, \nabla L(\nabla w(x)) \leq 0 \) on \( \Omega \) and \( w \big|_{\partial \Omega} = \phi \) then \( w \) is a supersolution of (1).

3. Proof of Theorem 1

Proof of sufficiency. Let \( \Phi \) be such that \(-\Phi \leq \phi \leq \Phi\), so that for any solution \( \tilde{u} \) we must have \(-\Phi \leq \tilde{u} \leq \Phi\). The Proof is based on constructing a neighborhood of \( \partial \Omega \) in \( \Omega \), \( \Omega_3 = \{x \in \Omega : d(x) < \delta\} \) and, on \( \Omega_3 \), a super-solution \( u^+ \) and a sub-solution \( u^- \), both satisfying the same boundary condition \( \phi \) on \( \partial \Omega \) while satisfying respectively \( u^+ \geq \Phi \) and \( u^- \leq -\Phi \) on that part of \( \partial(\Omega_3) \) that is contained in \( \Omega \). The construction then guarantees that a solution \( \tilde{u} \) is constrained between two Lipschitzian functions, each coinciding with \( \phi \) at \( \partial \Omega \). Then, the results implying that the supremum of the absolute value of the differential quotients is attained at the boundary of \( \Omega \), apply and we obtain an a-priori upper bound for the Lipschitz constant of a possible solution \( \tilde{u} \). In turn (see e.g. [6]), this fact and the strict convexity of \( L \) imply the existence of a Lipschitzian solution \( \tilde{u} \) to problem (1). Hence, this part of the proof follows the same pattern as the proof for the non-parametric minimal area problem, the essential difference being that in our case we have no control whatsoever on the sign of \( \Delta \).\( d \) so that the discussion of the properties of the solutions to the basic differential equation for \( \psi' \) is totally different.

a) In the paper we shall build a super solution \( u^+ \), the construction for \( u^- \) being similar.

For a generic smooth function \( u \) we have

\[
\text{div} \, \nabla L(\nabla u(x)) = \nabla u^T H_u \frac{\nabla u}{|\nabla u|} (l'' - \frac{l'}{|\nabla u|}) + \frac{l'}{|\nabla u|} \Delta u;
\]

(2)

In particular, We shall define \( u^+ \) through the distance function \( d \) and a function \( \psi \), to be defined, such that \( \psi(0) = 0 \), setting

\[
u(x) = \psi(d(x)) + \phi(x).
\]

This function \( u \) is such that, for \( x \in \partial \Omega \), we have \( u(x) = \phi(x) \) and it satisfies

\[
\nabla u = \psi' \nabla d + \nabla \phi : |\nabla u|^2 = (\psi')^2 + |\nabla \phi|^2 + 2(\nabla \phi, \nabla d) \psi',
\]

(3)

so that (taking \( \psi' > 0 \))

\[
|\nabla u| = \psi' + e(\psi')
\]

(4)

with \( e(\psi') = \sqrt{(\psi')^2 + |\nabla \phi|^2 + 2(\nabla \phi, \nabla d) \psi'} - \psi' \) such that \( \frac{e(\psi')}{\psi'} \to 0 \) as \( \psi' \to \infty \).

Moreover,

\[
u_{x,x_j} = u_{ij} = \psi'' d_i d_j + \psi' d_{ij} + \phi_{ij},
\]

hence

\[
H_u = \psi'' \nabla d \otimes \nabla d + \psi' H_d + H_\phi
\]

and, in particular,

\[
\Delta u = \psi'(d) \Delta d + \psi''(d) + \Delta \phi.
\]

Then, from (2) we have

\[
\text{div} \, \nabla L(\nabla u(x)) = \nabla u^T \left( \psi'' \nabla d \otimes \nabla d + \psi' H_d + H_\phi \right) \frac{\nabla u}{|\nabla u|} (l'' - \frac{l'}{|\nabla u|}) + \frac{l'}{|\nabla u|} (\psi'(d) \Delta d + \psi''(d) + \Delta \phi).
\]
Since $H_d \nabla d = 0$ and $\langle d, d \rangle = 1$, recalling (3) we obtain

$$
\text{div} \nabla L(\nabla u(x)) = \left( l'' - \frac{l'}{|\nabla u|} \right) \frac{\psi' \nabla d + \nabla \phi}{|\nabla u|^2} (\psi' \nabla d \otimes \nabla d + \psi' \nabla H_d + H_\phi)(\psi' \nabla d + \nabla \phi) \\
+ \frac{l'}{|\nabla u|} (\psi' \Delta d + \psi'' + \Delta \phi) \\
= \left( \frac{\psi'^2}{|\nabla u|^2} \right) \frac{l''}{|\nabla u|^2} \psi'' (l'' - \frac{l'}{|\nabla u|}) + \frac{l''}{|\nabla u|^2} \left( (\nabla \phi, \nabla d)^2 + 2 \psi' (\nabla \phi, \nabla d) \right) \left( l'' - \frac{l'}{|\nabla u|} \right) \\
+ \psi'' \frac{l'}{|\nabla u|^2} \frac{\psi'^2}{|\nabla u|^2} \left( \psi'' \right)^2 \\
= \left( \frac{\psi'^2}{|\nabla u|^2} \right) \frac{l''}{|\nabla u|^2} \psi'' \left( l'' - \frac{l'}{|\nabla u|} \right) + \frac{l''}{|\nabla u|^2} \left( (\nabla \phi, \nabla d)^2 + 2 \psi' (\nabla \phi, \nabla d) \right) \left( l'' - \frac{l'}{|\nabla u|} \right) \\
+ \frac{l''}{|\nabla u|^2} \frac{1}{|\nabla u|^2} \left( (\nabla \phi, \nabla d)^2 + 2 \psi' (\nabla \phi, \nabla d) \right) \left( l'' - \frac{l'}{|\nabla u|} \right) \\
= \left( \frac{\psi'^2}{|\nabla u|^2} \right) \frac{l''}{|\nabla u|^2} \psi'' \left( l'' - \frac{l'}{|\nabla u|} \right) \\
+ \left( \frac{\psi'^2}{|\nabla u|^2} \right) \frac{l''}{|\nabla u|^2} \left( (\nabla \phi, \nabla d)^2 + 2 \psi' (\nabla \phi, \nabla d) \right) \left( l'' - \frac{l'}{|\nabla u|} \right) \\
+ \frac{l''}{|\nabla u|^2} \frac{1}{|\nabla u|^2} \left( (\nabla \phi, \nabla d)^2 + 2 \psi' (\nabla \phi, \nabla d) \right) \left( l'' - \frac{l'}{|\nabla u|} \right)
$$

Hence,

$$
\text{div} \nabla L(\nabla u(x)) \leq \left( \frac{\psi'^2}{|\nabla u|^2} \right) \frac{l''}{|\nabla u|^2} \psi'' \left( l'' - \frac{l'}{|\nabla u|} \right) \\
+ \frac{l''}{|\nabla u|^2} \left( (\nabla \phi, \nabla d)^2 + 2 \psi' (\nabla \phi, \nabla d) \right) \left( l'' - \frac{l'}{|\nabla u|} \right)
$$

and, in order to have $\text{div} \nabla L(\nabla u(x)) \leq 0$, it is enough to have

$$
0 \geq \psi'' \left( l'' - \frac{l'}{|\nabla u|} \right) \left( (\nabla \phi, \nabla d)^2 + 2 \psi' (\nabla \phi, \nabla d) \right) \left( l'' - \frac{l'}{|\nabla u|} \right) \\
+ \frac{l' |\nabla u| \Delta d}{\psi'} + \frac{l' |\nabla u| \Delta \phi}{\psi'} \\
+ \frac{l''}{|\nabla u|^2} \left( (\nabla d)^T H_d \nabla d + \frac{1}{\psi'} (\nabla \phi)^T H_d \nabla \phi + (\nabla \phi)^T H_d \nabla \phi \right)
$$

i.e.,

$$
(5) \quad 0 \geq \psi'' \left( l'' - \frac{l'}{|\nabla u|} \right) \left( (\nabla \phi, \nabla d)^2 + 2 \psi' (\nabla \phi, \nabla d) \right)
$$
Consider \( A \). The assumption that the boundary of \( \Omega \) is \( C^2 \) implies that there exists \( \delta^* > 0 \) such that, on \( \Omega_{\delta^*} \), \( H_d \) and \( \Delta d \) exist and, for some \( h_\Delta \), we have \( |\Delta d| \leq h_\Delta \) and \( |H_d| \leq h_\Delta \). Hence, by (4) and since, for some \( h_\phi \), we also have \( |H_\phi| \leq h_\phi \) and \( |\nabla \phi| \leq h_\phi \), it follows that, for \( \psi' \) large, \( A \leq 2h_\Delta \).

Consider \( B \): we have \( |(\nabla d)^T H_\phi \nabla d| \leq h_\phi \); hence, possibly by increasing \( P \), we can assume that \( \psi' \geq P \) implies that \( B \leq 2h_\phi \) and, to have (5), it is enough to have

\[
\psi' \geq P \quad \text{and} \quad 2\psi'' + \psi' + l' + l'' \leq 0.
\]

b) Let \( P \) be such that \( \psi' \geq P \) implies that \( \frac{1}{2} \leq 1 + \frac{1}{\psi'(\nabla \phi, \nabla d)^2 + 2\psi' \langle \nabla \phi, \nabla d \rangle} \)
so that (since \( l'' > 0 \) and \( \psi'' < 0 \)) to have the r.h.s. of (5) non positive it is enough to have \( \psi' \geq P \) and

\[
\frac{1}{2} \psi'' + l' + l'' \leq 0.
\]

c) We have to show that \( \delta > 0 \) can be found so that \( \psi(\delta) \geq \tilde{P} \) and such that the condition

\[
u(x) = \psi(d(x)) + \phi(x) \geq \tilde{P}
\]

be satisfied for \( x \) such that \( d(x) = \delta \). Since \( \phi(x) \geq -\Phi \), it will be enough to require that \( u(x) \geq 2\Phi \) for all \( x \) such that \( d(x) = \delta \).

We wish to prove the validity of the following statement: for any \( P \), there exist \( \delta > 0 \) and a function \( \psi \) such that,

\[
\psi(0) = 0; \psi(\delta) \geq 2\Phi \quad \text{and, for } \psi'(d) \geq P
\]

and such that, for \( u(x) := \psi(d(x)) + \phi(x) \), we have

\[
\psi''(d(x))l''(|\nabla u(x)|) + l'(|\nabla u(x)|)4h_\Delta + l''(d(x))(|\nabla u(x)|)4h_\phi \leq 0
\]

for any \( x \in \Omega_{\delta} \). If this statement is proved, in particular, the function \( u = \psi \circ d + \phi \) on \( \Omega_{\delta} \) will be such that

\[
(6) \quad \text{div} \nabla L(\nabla u(x)) \leq 0.
\]
To prove the statement, notice that, by Proposition 2, there exists $\tau$ and $\tilde{\tau}$ such that $t \geq \tau$ implies $l''(t) \leq \tilde{\lambda}l'(t)$ so that, for $|\nabla u| \geq \tau$, we have $4h_{\phi}l''(|\nabla u|) \leq \lambda h_{\Delta}l''(|\nabla u|)$.

Hence, in order to prove the validity of the statement in c), possibly by increasing $P$ to $\tilde{P}$ if required, it is enough to prove that: for any $\tilde{P}$, there exist $\delta > 0$ and a solution $\psi$ to the problem

$$
\psi(0) = 0; \psi(\delta) \geq 2\Phi \quad \text{and, on the interval } [0, \delta], \psi'(d) \geq \tilde{P},
$$
such that, for $u = \psi \circ d + \phi$, $\psi''(d(x))l''(|\nabla u(x)|) + Cl'(|\nabla u(x)|) \leq 0$,

where he have set $C = \max\{4h_{\phi}, \lambda h_{\Delta}\}$.

Consider a solution $\psi'(d)$ to the differential equation

$$
(7) \quad \psi''(d(x))l''(2\psi'(d)) + Cl'(2\psi'(d)) = 0
$$
such that $\psi' > 0$; then, since $l''(2\psi')$ and $l'(2\psi')$ are positive, $\psi''$ is negative. For any $|\nabla u(x)|$ such that $|\nabla u(x)| \leq 2\psi'(d(x))$, setting $\psi'(d) = v(d)$ and recalling that $l''$ is non-increasing while $l'$ is non-decreasing, we have the following inequalities

$$
(8) \quad v'(d)l''(|\nabla u(x)|) + Cl'(|\nabla u(x)|) \leq 0.
$$

Moreover, since $\psi''(d) \leq 0$, then $\psi'$ is non-increasing and, in order to have $\psi'(d) \geq \tilde{P}$ on the interval $[0, \delta]$, it is enough to have $\psi'(\delta) \geq \tilde{P}$.

From (7) we have

$$
l''(2\psi'(d))2\psi'(d) = -2C
$$
so that

$$
l'(2\psi'(d)) = l'(2\psi(0))e^{-2C\delta}.
$$

Consider $\tilde{v}$, a solution to

$$
(9) \quad l'(2\tilde{v}(d)) = l'(2\psi(0))(1 - 2Cd),
$$
so that, in particular, $\tilde{v}(0) = v(0)$; since $e^{-2C\delta} \geq 1 - 2C\delta$, we have $l'(2\tilde{d}(d)) \leq l'(2\psi(0))$ and, from the monotonicity of $l'$, we infer that

$$
(10) \quad \tilde{v}(d) \leq v(d).
$$

To show that $\delta > 0$ can be found so that $v(\delta) \geq \tilde{P}$ and such that the condition

$$
u(x) = \psi(d(x)) + \phi(x) \geq \Phi
$$
be satisfied for $x$ such that $d(x) = \delta$ it is enough to require that

$$
\int_{0}^{\delta} \psi'(t)dt = \int_{0}^{\delta} v(t)dt \geq 2\Phi.
$$

Then, by (10), it will be enough to have

$$
(11) \quad \int_{0}^{\delta} \tilde{v}(t)dt \geq 2\Phi \quad \text{and} \quad \tilde{v}(\delta) \geq \tilde{P}.
$$

e) Solve (9) setting

$$
(12) \quad \tilde{v}(t) = \frac{1}{2}(l''(2\psi'(0))(1 - 2Ct));
$$
the change of variables \( \lambda = l'(2v(0))(1 - 2Ct) \) yields that

\[
\int_0^\delta \tilde{v}(t)\,dt = -\frac{1}{l'(2v(0))2C} \int_{l'(2v(0))}^{l'(2v(0))(1 - 2C\delta)} \frac{1}{2}(l^*)(\lambda)\,d\lambda.
\]

\[
= \frac{1}{l'(2v(0))4C} \left[ l^*(l'(2v(0)) - l^*(l'(2v(0))(1 - 2C\delta)) \right] = \frac{1}{l'(2v(0))4C}[l^*(l'(2v(0)) - l^*(l'(2v(0))(1 - 2C\delta))].
\]

From Proposition 1 we infer that \( l^*(p) \) is strictly increasing for \( 0 < p < p^* \), and hence invertible; then, \( (l^*)^{-1}(y) \) exists for \( 0 < y < \infty \), it is strictly increasing and \( \lim_{y \to \infty} (l^*)^{-1}(y) = p^* \).

It is convenient to set \( p^0 = l'(2v(0)) \); we have \( p^0 \in \text{Dom} l^* \); set also

\[
\delta(p^0) = \frac{p^0 - (l^*)^{-1}(\frac{1}{2}l^*(p^0))}{2Cp^0}
\]

so that \( l^*(p^0(1 - 2C\delta)) = \frac{1}{2}l^*(p^0) \). Since \( (l^*)^{-1} \) is strictly increasing, we have \( (l^*)^{-1}(\frac{1}{2}l^*(p^0)) < (l^*)^{-1}(l^*(p^0)) = p^0 \) and hence

\[
1 - 2C\delta(p^0) = \frac{(l^*)^{-1}(\frac{1}{2}l^*(p^0))}{p^0} < 1
\]

so that \( \delta(p^0) > 0 \).

Then, (13) becomes

\[
\int_0^\delta \tilde{v}(t)\,dt = \frac{1}{p^04C}[l^*(p^0) - \frac{1}{2}l^*(p^0)] = \frac{1}{p^08C}l^*(p^0).
\]

We claim that we can choose \( p^0 \) sufficiently close to \( p^* \) so as to have at once \( \frac{1}{p^04C}l^*(p^0) \geq 2\Phi \) and \( \tilde{v}(\delta(p^0)) \geq \tilde{P} \).

In fact, by (12) we have

\[
\tilde{v}(\delta) = \frac{1}{2}(l^*)(l'(2v(0))(1 - 2C\delta)) = \frac{1}{2}(l^*)(p^0(1 - 2C\delta)) = \frac{1}{2}(l^*)(p^0(1 - 2C\delta))(l^*)^{-1}(\frac{1}{2}l^*(p^0));
\]

by Proposition 1, \( \frac{1}{2}l^*(p^0) \to \infty \) as \( p^0 \to p^* \), so that we have \( (l^*)^{-1}(\frac{1}{2}l^*(p^0)) \to \infty \) and hence, again by Proposition 1, \( \frac{1}{2}(l^*)(p^0(1 - 2C\delta)) \to \infty \). Moreover, since, by Proposition 1, we have \( \lim_{p^0 \to p^*} (l^*)(p^0) = +\infty \), we obtain \( \lim_{p^0 \to p^*} \frac{1}{p^04C}l^*(p^0) = +\infty \). This proves the Claim.

g) Having thus defined \( p^0 \), and hence \( v(0) \) and \( \delta(p^0) \), set \( \tilde{\psi} \) to be the solution to the differential equation (7) such that \( \tilde{\psi}(0) = 0 \) and \( \tilde{\psi}'(0) = v(0) \), and define the function \( u^+ \) setting

\[
u^+(x) = \tilde{\psi}(d(x)) + \phi(x);
\]

the results in d) and e) above imply that, for \( x \in \partial\Omega_{\delta(p^0)} \) and \( u \) any possible solution to problem (1), we have

\[
u^+(x) \geq u(x)
\]

while, for \( x \in \Omega_{\delta} \),

\[
\text{div}{\nabla}L(\nabla u^+(x)) \leq 0.
\]

Hence, \( u^+ \) is the sought super-solution. The analogous construction for \( u^- \) proves the sufficiency part.
Proof of necessity. Let \( L \) be in \( L \) but not satisfying Assumption 1; we shall define \( \Omega \in \mathcal{O} \) and \( \phi \in \mathcal{F} \) such that the corresponding Problem (1) will admit no solution in \( W^{1,1}(\Omega) \).

Set \( \Omega = \{ x \in \mathbb{R}^n : \frac{1}{2} < |x| < 1 \} \) and \( \phi(x) = \beta(|x| - \frac{1}{2}) \), with \( \beta \geq \frac{1}{2} \).

a) We shall first show that \( \beta \) large will imply that problem (1) admits no radial solution. Since \( L \) does not satisfy Assumption 1, the domain of \( l^* \) cannot coincide with \( \mathbb{R} \), and hence it is a compact interval \([ -p^*, p^* ] \). Moreover, since \( l^*(p^*) \) is bounded, there exists \( M \) such that \( p \in [ -p^*, p^* ] \) implies \( l^*(p) \leq M \).

Assume that we have a radial solution \( \tilde{u} \); then, the Euler-Lagrange equation implies that

\[
\frac{d}{dr} \left( l'(\tilde{u}'(r)) r^{n-1} \right) = l''(\tilde{u}'(r)) \tilde{u}''(r) r^{n-1} + (n-1) l'(\tilde{u}'(r)) r^{n-2} = 0
\]

i.e., that

\[
l'(\tilde{u}'(r)) = l'(\tilde{u}'(\frac{1}{2})) (\frac{1}{2r})^{n-1}.
\]

Since \( \tilde{u}(1) - \tilde{u}(1/2) = \beta \), for some \( r \in (1/2,1) \) we must have \( \tilde{u}'(r) \geq 2\beta \); since the right hand side of (15) is non-increasing, \( l'(\tilde{u}'(\frac{1}{2})) \geq l'(2\beta) \geq l'(1) \).

Solve (15) as \( \tilde{u}'(r) = \int(1) l'(r l'(\tilde{u}'(\frac{1}{2}))) (\frac{1}{2r})^{n-1} dr \)

\[
\leq \int_{\frac{1}{2}}^{1} l'^*(l' \tilde{u}'(\frac{1}{2}))(2 \left( \frac{1}{2} \right)^{n-1} - 1) \left( r - \frac{1}{2} \right) \left( r + \frac{1}{2} \right) \right) dr
\]

\[
= \frac{1}{l'(\tilde{u}'(\frac{1}{2})))2 \left( \frac{1}{2} \right)^{n-1} - 1} \int_{y(\frac{1}{2})}^{y(1)} l'^*(y(y^1)) dy
\]

\[
= \frac{1}{l'(\tilde{u}'(\frac{1}{2})))2 \left( \frac{1}{2} \right)^{n-1} - 1} \left[ l'^*(y(1)) - l'^*(y(\frac{1}{2})) \right]
\]

\[
\leq \frac{1}{l'(1)2 \left( \frac{1}{2} \right)^{n-1} - 1} \left[ l'^*(\tilde{u}'(\frac{1}{2}))) - l'^*(l' \tilde{u}'(\frac{1}{2})) \right]
\]

\[
\leq 2 \frac{1}{l'(1)2 \left( \frac{1}{2} \right)^{n-1} - 1} M.
\]

Then, whenever \( \beta \) is larger than \( 2 \frac{1}{l'(1)2 \left( \frac{1}{2} \right)^{n-1} - 1} M \), problem (1) admits no radial solution.

b) Let \( u \in W^{1,1}(\Omega) \) be a (non-radial) solution to problem (1) with \( \Omega \) and \( \phi \) defined above and \( \beta \) larger than \( 2 \frac{1}{l'(1)2 \left( \frac{1}{2} \right)^{n-1} - 1} M \); set \( \tilde{u} \) be defined as in the statement of Proposition 3. Then, \( \tilde{u} \) satisfies the same (radial) boundary conditions as \( u \). We wish to show that

\[
\int_{\Omega} l(|\nabla \tilde{u}(x)|) dx \leq \int_{\Omega} l(|\nabla u(x)|) dx.
\]

From Proposition 3, we infer that

\[
|\nabla \tilde{u}(x)| \leq \frac{1}{n\omega_n} \int_{|\omega|=1} |\nabla u(\omega|x)| d\omega
\]
and, since the map \( t \to l(t) \) is increasing for \( t \geq 0 \), we obtain that

\[
\int \Omega l(|\nabla \tilde{u}(x)|) dx \leq \int \Omega l\left(\frac{1}{n\omega_n} \int_{|\omega|=1} |\nabla u(\omega|x|)| d\omega\right) dx.
\]

Jensen’s inequality gives

\[
l(|\nabla \tilde{u}(x)|) \leq \frac{1}{n\omega_n} \int_{|\omega|=1} l(|\nabla u(\omega|x|)|) d\omega
\]

and hence

\[
\int \Omega l(|\nabla \tilde{u}(x)|) dx \leq \int \Omega \frac{1}{n\omega_n} \int_{|\omega|=1} l(|\nabla u(\omega|x|)|) d\omega dx.
\]

Being the last integrand a radial function, passing to spherical coordinates we obtain

\[
\int \Omega l(|\nabla \tilde{u}(x)|) dx \leq n\omega_n \int_0^1 \frac{1}{n\omega_n} \int_{|\omega|=1} l(|\nabla u(\omega r)|) d\omega r^{n-1} dr = \int \Omega l(|\nabla u(x)|) dx
\]

so that \( \tilde{u} \) is a radial solution to Problem (1). This contradicts point a).  \( \square \)

Acknowledgement. The second author also acknowledges the partial support by Portuguese funds through CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (FCT), within the project PEst-OE/MAT/UI4106/2014 and the sabbatical fellowship SFRH/BSAB/113647/2015, during his visit at the Department of Information Engineering, Computer Science and Mathematics (DISIM) of the University of L’Aquila (Italy). The hospitality and partial support of DISIM are also gratefully acknowledged.

References


Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via R. Cozzi 53, 1-20125 Milano, Italy E-mail address: arrigo.cellina@unimib.it

CIDMA and Department of Mathematics, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal E-mail address: vasile@ua.pt