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Abstract

This doctoral dissertation addresses some of the current open prob-
lems in the prediction of aquatic bioaccumulation of organic chemicals,
by exploiting Quantitative Structure-Activity Relationship (QSAR) and
chemometric techniques. It aims to advance the mechanistic knowl-
edge about the bioaccumulation processes and to overcome some of
the existing modelling gaps. Bioconcentration and dietary bioaccumu-
lation are addressed separately, using fish as the target organism.

The bioconcentration is considered the main bioaccumulation route
and, therefore, the Bioconcentration Factor (BCF) has been widely
modelled. However, in this work, the comparison of nine well-
established models for BCF showed that, in most of the cases, only
lipid-driven bioconcentration is well predicted and other influential
processes, such as storage within non-lipid tissues or metabolism, are
neglected. This set the basis for the development of a classification
scheme to identify compounds that (1) are well predicted by their
lipophilicity, (2) have additional storage sites (e.g. proteins) and an
increased BCF, or (3) are metabolized/eliminated, with a reduced bio-
concentration. The classification scheme allowed to gather knowledge
about the mechanisms of bioconcentration, and to develop an expert
system to choose the most appropriate modelling tool according to
the predicted bioconcentration mechanism. The final expert system
led to an increased accuracy than its sub-models.

The second target was the dietary bioaccumulation, expressed through
the laboratory-based Biomagnification Factor (BMF), which is usually
not considered for the bioaccumulation assessment. The comparison
between BMF and BCF revealed that, for some chemical classes, the
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dietary bioaccumulation could be more relevant than the bioconcen-
tration. On this basis, a QSAR model was developed to predict the
BMF of organic chemicals. The mechanistic interpretation of the re-
sults unveiled the structural features that may be responsible for a
preferential bioaccumulation through diet and those that are shared
with the bioconcentration process. The model, which complied with
the OECD principles for QSAR validity and regulatory acceptance, can
be used as a side tool for the assessment of the bioaccumulation of
chemicals.

This dissertation put special attention to the mechanistic interpretation
of the selected molecular descriptors and provided a set of efficient
tools to estimate the chemical’s propensity to bioaccumulate within the
food chain, also adding knowledge to the field. Salient features of the
developed QSAR approaches are simplicity and interpretability, which
can allow for a widespread and transparent application, especially for
regulatory purposes. Moreover, this work offers a theoretical basis
for the hazard assessment of new emerging contaminants, such as
Perfluorinated compounds.
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Preface

In silico toxicology melds advanced computational technology with
molecular biology and chemistry, to improve agency prioritization of
data requirements and risk assessment of chemicals [1]. It is an area
of very active development and great potential, whose importance is
expected to grow in the next future [2].

The potential of computational toxicology lies in its broad scale of
application, in terms of number of studied chemicals, breadth of
endpoints and pathways covered, levels of biological organization
and ranges of exposure conditions considered, and in the coverage
of life stages, genders, and species. Thus, success in this area would
translate into a more efficient determination of the hazards related
to many environmental stressors [3]. Moreover, in silico methods are
gaining increasing momentum to replace, reduce and refine, as much
as possible, the use of animal testing for ethical reasons, goals that
are pursued by many national and international legislations [4].

This work targets the bioaccumulation in aquatic environment, be-
cause of its potential to expose organisms, especially top-predators
such as humans, to severe long-term effects difficult to predict. One
of the most widely applied in silico methods, QSAR (Quantitative
Structure-Activity Relationship), was combined with recent chemo-
metric advances, aiming to address some gaps and problems in the
state-of-the-art of bioaccumulation modelling.
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Introduction





1Background

„ The ultimate test of man’s conscience
may be his willingness to sacrifice
something today for future generations
whose words of thanks will not be heard.

— Gaylord Nelson
United States Senator

Humans produce and emit in the environment up to tens of thousands
of xenobiotics, whose fate is influenced by both their physico-chemical
properties and those of the surrounding environment. Aquatic envi-
ronment, in particular, has a crucial role in determining the fate of
contaminants, as it is often their final sink, because of direct immision
or hydrological/atmospheric processes. Within water, substances can
be subject to long-range transport and can be transferred to other envi-
ronmental compartments, such as biota. From water, some substances
can bioaccumulate within organisms, reaching tissue concentrations
that are several orders of magnitude higher than those measured in
the environment.

More than forty years after the book of Rachel Carson (Silent Spring,
[5]) documenting the detrimental effects of a widespread and not-
regulated use of chemicals, in 2004, 131 Countries ratified and
adopted the Stockholm Convention on Persistent Organic Pollutants
(POPs). The main goal of the convention was to identify chemi-
cals that, because of their lack of degradability, their tendency to
bioaccumulate in food chains and their toxicity, can achieve harm-
ful concentrations in upper trophic level organisms, such as human
beings [6].
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Bioaccumulation is recognized by the Stockholm Convention as a
key feature of hazardous compounds. Hazardous POPs, in particular,
are those chemicals that: “(1) possess toxic characteristics, (2) are
persistent, (3) are liable to bioaccumulate, (4) are prone to long-range
transport and (5) are likely to cause significant adverse effects”.
Moreover, even without acute/chronic effects detected from standard
(eco)toxicity tests, bioaccumulation should be regarded as an hazard
in itself. Some effects, in fact, may manifest in later phases of life, are
multi-generational (e.g. endocrine disruption [7]) or can affect only
high members of food webs [8].

Some of the most notorious examples of the potential deleterious
effects of bioaccumulation are the near extinction of birds of prey due
to the egg-shell thinning induced by dichlorodiphenyltrichloroethane
(DDT) ([9], [10]) and the human methylmercury poisoning due to
contaminated seafood in the Minamata Bay, Japan ([11], [12]).

This chapter introduces some fundamental concepts about the bioaccu-
mulation process and its regulation. Moreover, it gives some insights
into the field of QSAR (Quantitative Structure-Activity Relationship)
modelling and its role in assessing the environmental fate of pollu-
tants.

1.1 Bioaccumulation

1.1.1 Bioaccumulation processes

The hypothesis that man-made chemicals could bioaccumulate in food
webs was first brought to the attention of the scientific community
by Woodwell in 1967 [13]. His hypothesis was that ecological cycles
can concentrate pollutants to levels at which they could be harmful to
animals and humans, because of biomass transfer in food chains (Fig.
1.1).
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Fig. 1.1: Complex interactions between organisms of the food web;
image from the original work of Woodwell, 1967 [13], which firstly
hypothesised the bioaccumulation process. Numbers indicate the
residues of DDT and its metabolites (ppm) in a Long Island estuary
ecosystem.

A later study of Hamelink et al. in 1971 [14] observed the bioaccu-
mulation of DDT in the food chain, but could not demonstrate that
it was due to predator-prey mechanisms. The authors proposed that
DDT bioaccumulation was the result of an exchange between water
and fats, caused by the lipophilicity of DDT. This work was followed
by a large number of other studies, in which fish were exposed to
chemicals through water under laboratory conditions (e.g. [15]–[17]).
The results showed excellent correlations between the octanol-water
partition coefficient (KOW) and the concentrations found within or-
ganisms. In this way, the bioaccumulation of chemicals was assumed
to be an extremely predictable phenomenon.

However, later, field studies of the bioaccumulation of DDT and other
persistent halogenated organic chemicals [18] showed that chemical
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concentrations in biota were greater than expected from lipid-water
partitioning and also increased with increasing trophic level. These
results evidenced that lipid-water partitioning alone is not able to
explain the distribution of chemicals within biota and that additional
processes could cause chemical transport from prey to predator. This
chemical transport, differently from that driven by KOW, involves
the chemical transport against the thermodynamic gradient (from
a low fugacity in the prey, to a higher fugacity in the predator),
in a more complex way than expected. Nowadays, the complexity
of bioaccumulation has been widely recognized, and the processes
through which it occurs have been clearly defined and are briefly
described below.

Bioconcentration Bioconcentration is the process of accumulation
of water-borne chemicals in aquatic animals through non-dietary
routes [19], such as skin or respiratory surfaces (e.g. lungs/gills). It
occurs as a solubility-controlled partitioning between water and the
animal. Bioconcentration ability of chemicals is quantified through
the Bioconcentration Factor (BCF). BCF is determined in a laboratory
experiment where the test organism is exposed to the chemical in the
water but not in the diet. BCF is expressed as follows:

BCF = CO

CW
(1.1)

where CO (g/kg wet weight) is the chemical concentration in the
water-respiring organism and CW (g/L) is the concentration in the
water at the steady-state. The BCF is an estimate of a chemical’s
propensity to accumulate in aquatic animals. Typically fish are the
targets of BCF assessment because of their importance in the food web
(e.g. as a human food source) and the availability of standardized
testing protocols.

Dietary bioaccumulation Dietary bioaccumulation is the process of
chemical storage within organisms that is caused by the transport from
prey to predator through diet [20]. Dietary bioaccumulation is funda-
mentally different from bioconcentration, since it involves chemical
transport against the thermodynamic gradient. Often, dietary bioaccu-
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mulation is referred to as biomagnification, causing some ambiguities
within the literature. In this dissertation, we will keep the definition
of dietary bioaccumulation and use the term biomagnification with its
broadest meaning (see next paragraph). The dietary bioaccumulation
is quantified using the Biomagnification Factor (BMF), defined as
follows:

BMF = CO

CD
(1.2)

where CO (g/kg wet weight) is the chemical concentration in the water-
or air-respiring organism and CD (g/kg dry) is the concentration in
the diet at the steady-state. The BMF can be laboratory-based or
field-based. In the former case, organisms are exposed only through
the diet, while in the latter case, they can be exposed through all the
possible routes.

Bioaccumulation The term bioaccumulation is used to indicate the
generic accumulation from the environment to organisms, by con-
sidering all the possible routes of uptake [21]. The bioaccumulation
ability of chemicals is quantified using the Bioaccumulation Factor
(BAF):

BAF = CO

CW
(1.3)

where CO (g/kg wet weight) is the chemical concentration in the
water- respiring organism and CW (g/L) is the concentration in the
water. The BAF is determined from field data and, thus, it accounts
for both bioconcentration and dietary accumulation.

Biomagnification Biomagnification is the increase of the chemical
concentration when increasing the trophic level (Fig. 1.2). It is the
result of dietary bioaccumulation and bioconcentration at each level
of the food web [22]. A relevant measure of biomagnification is the
Trophic Magnification Factor (TMF) [23]. In the simplest formulation,
an exponential increase of the chemical concentration with increasing
the trophic level is assumed and the TMF is defined as follows:

CT L = 10b·T L
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logCT L = a+ b · TL (1.4)

TMF = 10b

where CTL is the concentration at a given trophic level. In other
words, because contaminant concentrations often increase exponen-
tially through the food web, the TMF is calculated as the antilog of
the regression slope b with base 10 (or e). Interested readers can find
additional details in the work of Borgå et al. [23].
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Fig. 1.2: Simplified scheme of the bioaccumulation processes in food
webs. At each trophic level, bioconcentration or dietary bioaccumula-
tion can occur, resulting in an increase of the chemical concentration
with increasing trophic level (biomagnification).
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1.1.2 Regulation of bioaccumulative chemicals

National and international regulations share a similar approach to
identify bioaccumulative substances, for what concerns the set of
requested criteria and hazard thresholds (Table 1.1).
All regulations identify bioaccumulative substances on the basis of
the bioconcentration (BCF), the octanol-water partition coefficient
(KOW) and, only in the case of the Canadian regulation, using the field
bioaccumulation (BAF).

Tab. 1.1: Summary of the criteria for regulatory bioaccumulation
assessment (B = Bioaccumulative, vB = very Bioaccumula-
tive).

Regulatory Agency Criterion Threshold Judgement

European Uniona logBCF ≥ 3.3 B
logBCF ≥ 3.7 vB

Environment Canadab logKOW ≥ 5.0 B
logBCF ≥ 3.7 B
logBAF ≥ 3.7 B

United Statesc logBCF ≥ 3.0 B
logBCF ≥ 3.7 vB

United Nationsd logKOW ≥ 5.0 B
logBCF ≥ 3.7 B

a REACH Regulation (EC 1907/2006)
b Canadian Environmental Protection Act (S.C. 1999, c. 33)
c Toxic Substances Control Act (TSCA) and Toxic Release Inventory (TRI)
d Stockholm Convention on Persistent Organic Pollutants, 2001

The use of the afore-mentioned criteria is connected to the availability
of experimental data. Empirical BCF and BAF, for example, have
been estimated to be available only for 4% and 0.2% of compounds,
respectively [20], while more complex and realistic data are available
only for even less chemicals. However, as pointed out by the recent
work of Gobas et al. [24], more realistic data could be useful to fully
account for the bioaccumulation behaviour of chemicals.

In regulatory frameworks, the QSAR approach is gaining increasing
importance for the prediction of ecologic effects and of the envi-
ronmental fate of chemical substances [25]. Moreover, the recent
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European REACH Regulation (EC 1907/2006) recognized its central
role in data-gap filling, testing prioritization and reduction of animals
used for experimental studies. This is particularly relevant in the case
of bioaccumulation-related measures. The determination of BCF, for
instance, is very expensive (approximately 35,000 euro per single
chemical) and requires the use of more than 100 animals for each
standard study [26]. The theoretical bases of QSAR and some details
about its role in environmental modelling and in REACH Regulation
will be described in the next paragraphs.

1.2 Quantitative Structure-Activity
Relationship (QSAR)

1.2.1 Theoretical Background

The cornerstone of the QSAR (Quantitative Structure-Activity Rela-
tionship) approach is the principle of similarity, which asserts that
similar molecules are likely to exhibit similar biological properties
[27]. On this basis, the QSAR approach exploits mathematical and
statistical techniques to find an empirical relationship between the
molecular structure and the property of interest, as follows:

Pi = f(xi, xi, ..., xp)i (1.5)

Where Pi, is the property of the i-th compound and x1,...,xp are the
predictors; f represents the mathematical relationship (i.e. model).
The independent variables are the so-called molecular descriptors,
which can be defined as "the final result of a logic and mathematical
procedure that transforms chemical information of a molecule, such as
structural features, into useful numbers or the result of standardized
experiments" [28]. The modelled property can be either physico-
chemical (Quantitative Structure−Property Relationship, QSPR) or
biological (QSAR); it can be continuous (regression modelling) or
categorical (classification modelling).
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Some of the key elements of the QSAR approach are (1) use of molec-
ular descriptors, (2) selection of variables, (3) model validation and
(4) applicability domain assessment. These aspects will be briefly
discussed in the following paragraphs.

1. Molecular Descriptors

One of the most important aspects of QSAR modelling and related
fields (e.g. virtual screening) is how to capture and convert the struc-
tural information of molecules into one or more meaningful numbers.
Molecular descriptors are formally a mathematical representation of
molecules obtained by a well-specified algorithm applied to a defined
molecular representation or a well-specified experimental procedure
[28].

Because of their numeric nature, molecular descriptors are the bridge
between chemistry and quantitative sciences, such as mathematics,
statistics and chemometrics. In this way, with the aid of different
scientific disciplines, their use has permitted for the first time to link
experimental knowledge to theoretical information arising from the
molecular structure [29].

On the basis of the molecular representation and the algorithm they
derive from, molecular descriptors can encode a wide spectrum of
different chemical information. For the sake of simplicity, they are gen-
erally grouped conceptually according to the molecular representation
they derive from [29]:

• 0D descriptors. To this class belong all the descriptors for which
no information about molecular structure and atom connectivity
is required. Some examples of 0D descriptors are atom and
bond counts, and sum or average of atomic properties. 0D
descriptors can be easily calculated, naturally interpreted and
do not require optimization of the molecular structure.

1.2 Quantitative Structure-Activity Relationship (QSAR) 11



• 1D descriptors. They are calculated from sub-structural informa-
tion about the molecule. The most known 1D descriptors are
counts of functional groups and substructure fragments, as well
as atom-centred descriptors and fingerprints.

• 2D descriptors. These descriptors are based on a graph represen-
tation of the molecule and encode graph–theoretical properties
(e.g. adjacency, connectivity). They usually derive from a
H-depleted molecular graphs and are sensitive to structural
features such as size, shape, symmetry, branching, and cyclicity.
They are divided into two categories: (1) topostructural descrip-
tors, encoding only graph information, and (2) topochemical
indices, which also encode specific chemical properties of atoms,
e.g. mass or hybridization state.

• 3D descriptors. 3D desciptors derive from a geometrical repre-
sentation of the molecule, i.e. from the x–y–z Cartesian coor-
dinates of its atoms. 3D descriptors have a high information
content, but there are also several drawbacks: (1) the geometry
optimization is required and the coordinates values can depend
on the optimization method, (2) for highly flexible molecules,
several minimum energy conformations are available, which
can lead to very different descriptor values, (3) the molecular
pose of binding can differ from the optimized geometry. For
these reasons, in this work only 0- to 2D descriptors have been
used.

Molecular descriptors are generally calculated through dedicated soft-
ware and their number can be very large. For instance, Dragon 6 [30]
can calculate up to 4,885 descriptors. Because of this, variable selec-
tion approaches play a fundamental role in identifying the relevant
descriptors for QSAR modelling, as described below.
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2. Variable selection

Nowadays, it is possible to calculate thousands of different molecular
descriptors. However, according to Ockham’s law of parsimony, it is
reasonable to assume that only a small number of them are relevant in
determining the modelled property. Furthermore, the increase in the
number of model variables is known to generally improve the fitness
to the training data, but it often causes a reduction of the predictive
ability (overfitting). On the other hand, if the model is too simple, the
bias will increase, and the model will not be able to capture important
relationships between predictors and response, leading to underfit-
ting. Thus, finding the optimal subset of variables is fundamental to
maximize the model predictive ability and its robustness [31].

Variable selection (VS) techniques aim to explore/exploit the variable
space in order to select the optimal subset of variables for building
the model of interest. This is done by searching for the best trade-
off between bias (i.e. model simplicity) and variance (i.e. data
description). Throughout the years, many different methods have
been proposed, which take inspiration from different fields, such as
Darwin’s theory of evolution (Genetic Algorithms [32]), the annealing
process of metals [33], the movement of flock of birds [34] or of ants
[35]. Because of the large number of available methods, only those
that were used in the present work will be briefly described below.

All Subset Selection (ASM) It is the simplest approach, which con-
sists in generating all the possible combinations of the p variables.
This method – in principle – guarantees to find the best subset of
variables, but it is computationally very consuming. Even when gener-
ating models up to a maximum size (V), the approach is still extremely
demanding. For example, if p = 130 and V = 20, the total number
of models to generate is 2.04 × 1023. Assuming that we can com-
pute 10,000 models per second (a reasonable estimate for current
laptops), the time required to compute all the models would be 6.46
× 1011 years, which means we should have started long before the Big
Bang to have the calculation completed by now [36]. For this reason,
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ASM was used only to explore the combination of small subsets of
variables.

Genetic Algorithms (GA) GA ([32], [37]) are inspired from Dar-
win’s theory of evolution. In analogy with biological systems, each
chromosome (model) is a sequence of genes (variables) that evolves
through two processes: (1) crossover, in which pairs of chromosomes
generate offspring sharing some of the parent genes according to a
crossover probability; and (2) mutation, in which some genes can
change according to a mutation probability. Every time a new chromo-
some with a better fitness function than the already existing ones is
generated, it enters the population and the worst model is discarded.
In this way, chromosomes compete against each other and only the
fittest survive, in analogy with Darwin’s concept of "survival of the
fittest".

Reshaped Sequential Replacement (RSR) RSR [36] was recently
proposed as an improvement of the sequential replacement (SR)
method proposed by Miller in 1984 [38]. RSR and SR share their
replacement core, consisting in replacing each variable included in
a model one at a time with each of the remaining variables and see
whether a better model is obtained; this procedure is reiterated until
convergence. According to RSR algorithm, in particular, a population
of models is generated from a chosen minimum size up to a chosen
maximum size. The model generation can be random or biased to-
wards promising models. The models evolve through the replacement
and several functions are implemented to decrease the probability of
overfitting and increase the probability of converge to optimal models.
RSR is characterized by a good compromise between exploration and
computational time [39].

Several metrics can be used to select the best models during the
selection of variables. The best practice is to use measures of model
predictivity (e.g. in cross-validation) rather than fitting to the training
data (see next paragraph).
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3. Model validation

Because of the role of QSAR models in predicting the environmental
and toxicological behaviour of chemicals, the reliability of their predic-
tions is of primary concern. The so-called model validation consists in
the quantitative assessment of their robustness and predictive power.
Generally, two types of validation can be performed: (a) internal
validation, (b) external validation. The dataset is commonly divided
in the so-called training set, used to calibrate (and internally validate)
the models and in the test set, used in a second stage only for the final
validation.

Internal validation The internal validation is usually performed
through the so-called cross-validation. In a typical cross-validation,
the n objects of the training set are divided in G cancellation groups
of equal size (sg). Each gth group is, in turn, excluded from the
model development phase and the model is calibrated using the n−sg

remaining chemicals. The chemicals belonging to the gth cancellation
group are used to test the ability of the calibrated model to predict
their properties. This procedure is repeated until each chemical is
excluded once. Different types of statistics can be then computed to
quantify the prediction accuracy. When sg = 1, the cross-validation is
defined as Leave-one-out (LOO), while if sg > 1, the cross-validation
is Leave-more-out (LMO). It is generally accepted that, for large n
values, the LOO procedure can be too optimistic and overestimate
the real predictive ability of models. In the present dissertation, the
well-established 5-fold cross-validation was used.

External validation External test objects can be arbitrarily selected
from the pool of available chemicals or can be data whose response
becomes available in a later stage. Their role is to obtain a measure
of predictivity that is independent from the data/strategy used to cali-
brate the model. The external test set should be used only in the final
stage to test the selected model(s). As for the case of cross-validation,
the response of external objects is predicted and different metrics
can be calculated to quantify the predictivity. In this dissertation, the
parameters will be discussed on a case-by-case basis.
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For what concerns training/test data splitting, several strategies have
been proposed, such as cluster analysis [40], optimal design [41],
and similarity/diversity algorithms [42]. However, a drawback is that
external objects are selected using the information about the chemical
space of the training set and thus, are not really external to the data
used for model calibration [43]. For these reasons, in this work, the
external validation sets were obtained by a random selection.
Finally, it is relevant to underline that the predictive ability can be
quantified only for test compounds that fall within the model chem-
ical space (i.e. applicability domain), as described in the next para-
graph.

4. Applicability Domain assessment

QSAR models heavily rely on the chemical information of the training
set to find a relationship between structure and property. The conse-
quence is that, generally, reliable predictions are limited to to query
chemicals that fall within the chemical space of the model, i.e. those
that are structurally similar to the training compounds. The model
interpolation space, where the property can can be reliably predicted,
is defined applicability domain (AD). The AD assessment establishes
whether the theoretical assumptions of the models are met for new
chemicals to be predicted. A proper characterization of the AD, thus,
plays a crucial role in (a) quantifying the real predictive ability of the
model (i.e. only compounds within the AD should be considered to
validate the model) and (b) assess the reliability of the predictions for
new, non-tested chemicals.

The AD assessment is a non-trivial issue, as it strongly depends on
the nature of the modelling approach and on the characteristics of
the dataset. Hence, the AD assessment is generally determined on a
case-by-case basis. A comprehensive survey can be found in the recent
work of Sahigara et al. [44].
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1.2.2 REACH Regulation and OECD principles

REACH (Registration, Evaluation, Authorisation and Restriction of
Chemicals, EC 1907/2006) is the European regulation that addresses
the production and use of chemical substances, and their potential
impacts on human health and the environment.

Since the advent of REACH, QSAR methods have been in the spotlight
of industries and regulatory agencies. REACH places on the same
footing the experimental tests and the QSAR models, as far as the
latter provide the same level of information. Vertebrate testing is re-
garded as the last resort, to be considered only after having gathered
all existing information on physico-chemical, toxicological and ecotox-
icological properties of a substance, including information generated
by QSAR models. Moreover, the European Chemicals Agency (ECHA)
stated that "a QSAR is not only a model, but is associated with an un-
derlying dataset. As a representation of this dataset, the model averages
the uncertainty over all chemicals. Thus, it is possible for an individual
model estimate to be more accurate than an individual measurement"
[45], further encouraging the usage of QSAR models.

In particular, QSAR models can be applied to [45]: (1) set testing
priorities, (2) design experimental strategies, (3) improve the eval-
uation of existing test data, (4) gain mechanistic information, (5)
fill data gaps for hazard and risk assessment. Point no. 5 includes
the identification of PBT (Persistent Bioaccumulative and Toxic) or
vPvB (very Persistent, very Bioaccumulative) substances, which is
considered as a priority by REACH.

In order to facilitate the regulatory application of QSAR by govern-
ments and industry and to improve their acceptance, the OECD (Orga-
nization for Economic Collaboration and Development) has developed
five principles for the validation of QSAR models [46]. These prin-
ciples are indicated by the REACH as the systematic framework for
describing and evaluating the characteristics of a QSAR model. They
were agreed by OECD member countries at the 37th Joint Meeting
of theChemicals Committee and Working Party on Chemicals, Pesticides
and Biotechnology in November 2004. The principles aim to ensure a
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transparent validation process and an objective determination of the
reliability of QSAR models and are outlined below.

1. A defined endpoint This principle aims to ensure clarity in the
endpoint being predicted by a given model, since a given property
could be determined by different experimental protocols and under
different experimental conditions.

2. An unambiguous algorithm This principle aims to ensure trans-
parency of the algorithm that generates the predictions. Without this
information, the performance of a model cannot be independently
established and it represents a barrier for regulatory acceptance.

3. A defined domain of applicability The need to define an ap-
plicability domain is connected to the fact that QSAR models are
reductionist and, thus, inevitably associated with limitations in terms
of the types of chemical structures, physicochemical properties and
mechanisms of action for which the models can generate reliable
predictions.

4. Appropriate measures of goodness-of–fit, robustness and
predictivity This principle refers to the need of quantify the fitting
to the training data, the robustness (in order to avoid overfitting) and
its performance in predicting new data.

5. A mechanistic interpretation, if possible It is widely recog-
nised that it is not always possible to provide a mechanistic interpre-
tation of a QSAR model, or that there can be multiple interpretations.
However, the possibility of a mechanistic association between the
descriptors used and the predicted endpoint should be taken into
consideration and documented.

The framework defined in these paragraphs constitutes the start-
ing point of the present dissertation. Next chapter will give a brief
overview of the aims and the structure of the project.
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2Research Framework

„ The best scientist is open to experience
and begins with romance – the idea that
anything is possible.

— Ray Bradbury
Writer

This dissertation grounds on the state-of-the art of QSAR models for
predicting the aquatic bioaccumulation of organic chemicals, aiming
to address some of its current open problems. Bioconcentration and
dietary bioaccumulation were addressed separately and this allowed
to gather mechanistic knowledge about each of the processes. For each
topic, some gaps, problems or deficiencies in previous literature were
identified and then addressed by exploiting QSAR and chemometric
approaches.

This chapter briefly describes the motivation of the project, its contri-
butions to the field of knowledge and describes the thesis outline.

2.1 Problem Statement

The present work stems from some considerations about (1) the crite-
ria requested for assessing the bioaccumulation and (2) the existing
QSAR models for their prediction. These considerations are summa-
rized below.

KOW Because of the lack of experimental BCF/BAF data, a large num-
ber of compounds are screened according to their KOW values. Despite
KOW is, in the majority of cases, a good predictor for bioaccumulation
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in aquatic organisms, it is unable to account for any biotransformation
or elimination process of the chemical in the organism. Hence, using
KOW alone can lead to overestimation of the real bioaccumulation.
Even more important, some contaminants could be stored within
non-lipid tissues and this would lead to an underestimation of the real
bioaccumulation potential. This could be the case, for instance, of
Perfluorinated Alkyl Acids, which are hypothesized to have increased
interactions with serum albumin, liver fatty acid-binding proteins and
phospholipids bilayers [47].

BCF The critical aspects regarding KOW reflect on BCF prediction.
In fact, the majority of models for BCF prediction mainly rely on KOW

or related descriptors [48]. This potentially leads to the same errors
of underestimation/overestimation of KOW. Moreover, the BCF does
not include dietary exposure and, in some cases, it can be a poor
descriptor for biomagnification in food webs [20].

Other bioaccumulation criteria (e.g. BAF, BMF) Even when BCF
data are available/predicted, they do not give any information about
the bioaccumulation through diet. In the case of the Canadian Regula-
tion, the BAF can be used as a screening criterion, but the availability
of data (and, correspondingly, of models) is very limited. Dietary
bioaccumulation data or other food web accumulation parameters
could be extremely useful for gaining additional insights about the
bioaccumulation properties of chemicals [24]. However, only a few
QSAR models for small sets of molecules are available ([49], [50]).

2.2 Contributions

In the light of the previous considerations, the original contributions
of this dissertation are:

1. The analysis of the accuracy of the KOW-based prediction of
BCF, with a focus on the mechanistic processes underlying the
observed errors.
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2. The development of a structure-based approach to detect com-
pounds whose BCF could be overestimated/underestimated
by KOW; this gave the opportunity to gain insights into the
mechanisms of bioconcentration.

3. The development of an expert system for BCF prediction in
regulatory contexts, which combines the advantages of three
existing QSAR models.

4. The comparison of bioconcentration (BCF) and dietary bioaccu-
mulation data (BMF), with a focus on environmentally relevant
classes of compounds.

5. The development of a QSAR model to predict the dietary bioac-
cumulation (BMF) of organic chemicals.

Particular attention was posed to (1) data curation, (2) model simplic-
ity and (3) mechanistic interpretation of the results.

2.3 Research Boundaries

Fish was the model target because of its role in the trophic chain, the
availability of standardized testing protocols and its being a bench-
mark for ecotoxicity tests in regulatory contexts. This reflects in a
large availability of experimental data. Investigating the bioaccumula-
tion in other aquatic organisms (e.g. algae) would be of interest, but
it is limited by a lower availability of data. By focusing on fish, we
were able to analyse the largest chemical space available.

In this work, only organic compounds were targeted. Inorganic com-
pounds, organometallic or coordination compounds were excluded
from the analysis despite the environmental relevance of some of
them (e.g. methylmercury). This because many descriptors cannot
be calculated for heavy atoms. The same problem concerns discon-
nected structures (i.e. mixtures and salts), for which descriptors can
be calculated for one component only.

2.3 Research Boundaries 21



2.4 Thesis Structure

The dissertation is divided in two parts, reflecting the topics covered:
(1) bioconcentration (Chapters 3-5); (2) dietary bioaccumulation
(Chapters 6-7). The content of each chapter is outlined below.

Chapter 3

Nine existing models for BCF (four KOW-based and five descriptor-
based) are here compared in order to test whether the increased
complexity is outweighed by an increased accuracy. To this end,
experimental BCF data for 1056 compounds, along with experimen-
tal/predicted KOW values, were collected and used for the compari-
son.

Chapter 4

This chapter presents a classification scheme to predict whether the
BCF of a chemical can be predicted well by KOW or may be over- or
underestimated. The scheme consists of two QSAR classification trees,
which are simple and interpretable. The scheme served to gather new
insights into the mechanisms of bioconcentration.

Chapter 5

This chapter integrates the proposed classification scheme with exist-
ing BCF models for the regulatory prediction of BCF. The resulting
expert system showed an improved accuracy on external data.

Chapter 6

In this chapter, a manually curated set of BMF values for 214 com-
pounds is compared with BCF and KOW values, highlighting that, for
some chemical classes, the BCF alone may not be enough to predict
the actual aquatic bioaccumulation.

Chapter 7

This chapter presents a set of QSAR models developed for BMF predic-
tion. It provides details about the modelling techniques, the validation
steps, the AD assessment and the mechanistic interpretation of the
results.
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Part II

Bioconcentration





3QSAR models for
bioconcentration:
complexity versus
accuracy

„ Frustra fit per plura quod potest fieri per
pauciora.
(It is futile to do with more things what
can be done with fewer.)

— William of Ockham
Philosopher

Complexity is often perceived by decision-makers as a limitation for
QSAR models, which are sometimes seen as black boxes, and it can
become a reason of scepticism. On one hand, the increase in the com-
plexity (e.g. number of included variables, chosen machine-learning
technique, use of non-linear methods) can increase the fitting to the
data but, on the other, it tends to lower models transparency and
interpretability, thus negatively affecting their application and accep-
tance, especially in regulatory contexts. For these reasons, increased
model complexity should be balanced by a remarkable increase in
the prediction accuracy and/or in the number of biological processes
accounted for.

Aquatic bioconcentration, in particular, is mainly driven by a passive
partitioning between water and lipids. Hence, most of the models rely
on estimates of hydrophobicity, such as the octanol-water partition
coefficient (KOW), which mimics the partitioning from water to lipids
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(lipophilicity). For this reason, many KOW-based models for BCF can
be found throughout the scientific literature [48]. The first ones to
be proposed relied solely on an empirical relationship between KOW

and BCF. Later, more complex QSAR models (based on more parame-
ters and on a variety of different regression techniques), have been
proposed; the majority of them still uses KOW as principal predictor.

Despite lipophilicity is the major driving force of bioconcentration,
other processes can significantly contribute, such as metabolism, elim-
ination, and specific interactions with tissues different from lipids
[51]. Chemicals that are metabolized into hydrophilic compounds,
for example, can be eliminated faster and thus have BCF lower than
predicted from KOW ([52], [53]). Chemicals that establish specific
interactions with non-lipid tissues can have BCF larger than predicted
from KOW, such as methylmercuric chloride, which has a low KOW but
a very high BCF (up to 1,000,000 in fish) due to its association with
protein sulfhydryl groups [54].

The main aim of this chapter is to compare empirical KOW-based equa-
tions and descriptor-based QSAR models in order to test whether:

1. The increase in the complexity of descriptor-based models is
balanced by a corresponding increase in the prediction accuracy.

2. The increased complexity allows to take into account processes
different from water-lipid partitioning.

To this end, we collected and manually curated a BCF dataset of 1056
compounds and compared 4 KOW-based equations with 5 widely-used
complex QSAR models.
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3.1 BCF models

3.1.1 KOW-based equations

KOW-based equations use predicted or experimental KOW as the inde-
pendent variable for BCF prediction. Starting from the late 1970s,
many KOW-based equations for BCF (of different degree of complexity)
have been proposed [48]. The first models to be developed were linear
and calibrated on moderately hydrophobic compounds (logKOW from
0 to 6), for which a proportional increase of logBCF when increas-
ing logKOW is generally noted. Higher order models were developed
in later stages to address the so-called cut-off problem, that is, the
tendency of highly hydrophobic substances (logKOW > 6) to show a
decreasing BCF with increasing KOW. The reasons of the observed
cut-off are still under debate and, while some authors ascribe it to
reduced bioavailability in water (e.g. Wen et al. [55]), others attribute
it to artefacts in BCF measurement [56].later

Among the linear models, two of the most widely-known equations
were analysed, namely those of Veith et al. [16] and of Mackay [17] .
Among the non-linear models, we chose: (a) the bilinear relationship
of Bintein et al. [57], which resulted to give the best predictions when
compared with a linear and a parabolic model by the authors; (b) the
set of equations suggested by the European Technical Guidance Docu-
ment (TGD) [58], which combines equations of different complexity,
according to the range of KOW of the chemical.

Models are graphically depicted in Fig. 3.1 and mathematical details
can be found in Box 3.1.1.
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Fig. 3.1: Graphical representation of KOW-based equations.

Veith

log BCF = 0.85 · log KOW − 0.70

Mackay

log BCF = log KOW − 1.32

Bintein

log BCF = (0.91 · log KOW )− 1.98 · log (6.8 · 10−7 ·KOW )− 0.79

TGD
log BCF = 0.15 log KOW < 1

log BCF = 0.85 · log KOW − 0.70 log KOW ∈ [1, 6]

log BCF = 0.20 · (log KOW )2 + 2.74 · log KOW − 4.72 log KOW ∈ (6, 10]

log BCF = 2.68 log KOW > 10

Box. 3.1.1: KOW-based equations.
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3.1.2 Descriptor-based models

More complex QSAR models (i.e. descriptor-based) were developed
in later stages, as a reflection of the improvements in machine-
learning/modelling techniques and of the increasing number of avail-
able molecular descriptors [59]. These factors allowed for the de-
velopment of more sophisticated and thoroughly validated models,
usually based on a larger number of data.

Nowadays, many QSAR models for BCF exist [48], some of which
have been implemented in freely-available software, targeting at non-
expert usage in regulatory contexts. Among them, we chose the most
widely-known ones, namely:

1. EPI Suite [60], developed by U.S. EPA (Environmental Pro-
tection Agency), which is considered the benchmark QSAR
software for environmental endpoints. EPI Suite implements
the Meylan BCFBAF model for BCF prediction.

2. VEGA [61], an open-source platform that integrates several
literature-based QSAR models, developed by Istituto Mario
Negri. VEGA contains three model for BCF prediction: Meylan,
CAESAR and Read-Across. Moreover, the platform integrates an
Applicability Domain assessment, quantified by the Applicability
Domain Index (ADI). ADI ranges from 0 (compound outside
the AD) to 1 (compound inside the AD) and takes into account
factors such as the presence of similar molecules in the training
set, the concordance of the prediction among similar molecules
and the model descriptor range.

In addition, a recently-proposed consensus model [62] between VEGA
CAESAR and VEGA Meylan was analysed. Details about the models
can be found below and a graphical scheme can be found in Fig.
3.1.

Meylan models EPI Suite BCFBAF and VEGA Meylan models derive
from the method of Meylan and co-authors [63]. Compounds are first
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classified as ionic or non-ionic: the formers are assigned a fixed BCF
value according to their KOW, while for the latter, BCF is predicted
using KOW and then corrected according to the presence of specific
structural fragments (see Box 3.1.2). Ionic compounds include car-
boxylic and sulfonic acids, salts of sulfonic acids, and charged nitrogen
compounds. All other compounds are classified as non-ionic. EPI Suite
and VEGA Meylan differ slightly in their training set and in the model
used to predict KOW.

CAESAR model CAESAR ([64], [65]) is an hybrid QSAR model,
based on the combination of two distinct sub-models, A and B. The
sub-models share their principal descriptors, which are related to
KOW: (1) MlogP, the octanol-water partition coefficient calculated by
Moriguchi model [66] and (2) BEHp2 [67], related to the atomic
polarizability and thus to hydrophobicity. Moreover, they both com-
prise 2D autocorrelation descriptors ([68], [69]), which describe the
distribution of a considered property along the molecular structure
(GATS5v and MATS5v for model A and B, respectively) and descrip-
tors referred to the presence and number of chlorine atoms (Cl-089
and SsCl for model A and B, respectively). Finally, model A com-
prises the descriptor AEige, a topological descriptor, while model
B comprises the descriptor X0sol, considered as a total measure of
the molecular electronegativity (the higher the electronegativity, the
greater the separation of molecular charge and therefore the greater
the hydrophilicity). The predictions are then combined according to
the arithmetic mean of the BCF values provided by the sub-models
(see Box 3.1.2).

VEGA consensus Gissi and co-authors [62] proposed a consensus
combination between VEGA CAESAR and VEGA Meylan for regulatory
purposes. Two criteria are used: the absolute difference between the
two predictions (∆BCF, in log units) and the ADI associated with each
prediction.

1. If ∆BCF ≤ 1: the predictions are similar and considered as reli-
able, thus the highest BCF is chosen (conservative approach).

2. If ∆BCF > 1: ADI is considered.
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• ADI ≥ 0.7 for at least one model: the prediction with the
largest ADI is used. In case of identical values, the largest
predicted BCF is chosen.

• ADI < 0.7 for both the models. No prediction is provided.

Since the model is not available online, the predictions of the single
VEGA models were combined in a MATLAB [70] workflow.

Meylan model

Non-ionic compounds
log BCF = 0.50 log KOW < 1
log BCF = 0.66 · log KOW +

∑
CF log KOW ∈ [1, 7]

log BCF = −0.49 · log KOW + 7.55 +
∑

CF log KOW > 7

Ionic compounds
log BCF = 0.50 log KOW < 5
log BCF = 1.00 log KOW ∈ [5, 6)
log BCF = 1.75 log KOW ∈ [6, 8)
log BCF = 1.00 log KOW ∈ [8, 9)
log BCF = 0.50 log KOW > 9

CAESAR model

log BCF = 0.94 · log BCF − 0.12 log BCF ≤ 1.36
log BCF = 1.00 · log BCFmin log BCF ∈ (1.36, 2.41]
log BCF = −1.05 · log BCF log BCF > 2.41

Box 3.1.2: Equations used to predict BCF by (i) Meylan model, CF
represents the numerical correction factor of Meylan, corresponding
to the presence of a given molecular sub-structure (detailed infor-
mation can be found in EPI Suite BCFBAF/VEGA user guides); (ii)
CAESAR model, logBCF and logBCFmin represent respectively the
arithmetic mean and the minimum predicted BCF values of CAESAR
sub-models.

VEGA Read-Across VEGA Read-Across is based on the similarity
principle, which states that similar molecules are likely to have similar
properties. In particular, the model is based on a similarity index (SI),
calculated on the basis of molecular extended fingerprints [71], some
constitutional information (number/type of atoms and number/type
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of bonds) and a smaller contribution of functional and heteroatoms de-
scriptors [72]. The experimental BCF values of the three compounds
most similar to the target according to SI are used to predict the BCF
as weighted average, using the SI as the weighting factor.
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Fig. 3.2: Graphical scheme of the chosen descriptor-based models.
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3.2 Data and curation

Two wet-weight BCF datasets were generated, namely: (1) a “merged"
dataset (1011 compounds), obtained from the training data of the
different tested models; (2) an “external" dataset (45 compounds),
comprising new molecules external to all models under investigation
(Fig. 3.3).
The merged dataset offered the advantage of using many compounds
to quantify the model performance. The external dataset, which was
manually-curated, offered the opportunity to test all the models on
the same set of unknown compounds and obtain directly comparable
statistics.
Some of the tested models were developed on wet-weight BCF data
of a single species (e.g. CAESAR), while others used BCF data of
different species. Since different authors reported no remarkable
difference between interspecific and intraspecific variability on BCF
data ([19], [63]) all the available data were used, regardless of the
species. Details about data curation steps can be found in the next
paragraphs and a simplified scheme is provided in Fig. 3.3.
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Fig. 3.3: Graphical scheme of data sources for merged and external
datasets.
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Merged set This dataset comprises 1011 compounds and was ob-
tained by merging the BCF datasets of VEGA models (CAESAR, Meylan
and Read-across). The workflow for data curation was the follow-
ing:

1. Multiple values were merged according to CAS number.

2. The match between CAS and structure was verified through
the Chemical Identifier Resolver [73]: in case of mismatch (50
compounds) the accordance between CAS and structure was
manually checked on PubChem [74] and ChemSpider [75].
Only records referred to the correct CAS-structure pair were
retained.

3. The arithmetic-mean of multiple BCF values for the same com-
pound was calculated, since it was not possible to check all the
original sources for the presence of duplicate records. This was
done with the exception of compounds contained in both VEGA
CAESAR and VEGA Read-across datasets, the latter containing
an updated version of CAESAR dataset. In this case, only VEGA
Read-across BCF values were retained.

Experimental KOW values were obtained from VEGA logP dataset.
If no experimental value was provided, a consensus KOW was pre-
dicted, as suggested by Cronin and Livingstone [76]. In particular, the
arithmetic mean was calculated from the predictions of: (1) Ochem
ALOGPs [77]; (2) Dragon AlogP (or MlogP for the 5 Sn-containing
compounds)[30]; (3) VEGA logP model (only predictions with ADI >
0.7). Moreover, experimental KOW values for 2 perfluorinated alkyl
acids(badly predicted by existing KOW models) were added.

External set This dataset consists of 45 compounds, external to
all the models. Values were obtained for environmentally relevant
classes of compounds: Synthetic Pyrethroids, Organophosphorous
Compounds, Perfluorinated Compounds, Personal Care Products and
Polychlorinated Biphenyls. Wet-weight BCF and KOW data were ob-
tained from: (a) the handbook of Mackay et al. [78]; (b) published
papers; (c) QSAR toolbox [79]; (d) complex molecular database
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for Environmental Protection [80]; (e) EURAS BCF Gold Standard
Database [81]; (f) LOGKOW database [82] ; (g) VEGA logP dataset
[61].

The data curation workflow was the following:

1. BCF values were retained according to two rules: (1) only
steady state values were accepted; (2) "common" species (e.g.
fathead minnow, bluegill, rainbow trout) were preferred to
"rare" species, if present.

2. For compounds with multiple values and a standard deviation
of the BCF larger than 0.25, original articles were checked.

3. A Q-test [83] was performed at the 95% confidence level to
remove outliers.

4. Median BCF value, which is a robust measure of central ten-
dency of data, was calculated. In this case, in fact, unlike the
merged dataset, every value came from a single experimental
campaign.

5. For KOW, recommended values, if present, were preferred, and
the median value was calculated for each compound. For 5
compounds, no experimental KOW value was found, thus a
consensus prediction was performed as for the merged set.

6. SMILES (Simplified Molecular-Input Line-Entry System) were
obtained from name, CASRN and InChI code, using the Chemi-
cal Identifier Resolver [73] of KNIME [84]. In case of mismatch,
SMILES were manually checked on PubChem [74] and Chem-
Spider [75].
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3.3 Results and discussion

Models were firstly evaluated for their global performance (Section
3.3.1) and then on compounds showing a significant deviation of the
experimental BCF from the KOW-driven BCF (Section 3.3.2).

3.3.1 Global Performance

For each model, its "complementary" set was built, namely the set
containing the compounds of the merged set not used to build or
validate that model. If the SMILES and/or CAS of a given record
were present in the training/test sets but they were not correctly
matched, the record was excluded from the complementary set of
that model. For VEGA consensus, the complementary set was built
taking into account the compounds belonging neither to CAESAR nor
to Meylan datasets. For KOW-based models (generally developed on
small training sets or without a training set, as for TGD) the entire
merged set was used. For VEGA models, only predictions with ADI ≥
0.70 were considered. Model predictive ability was quantified using
the Root Mean Square Error (RMSE), which can be expressed as
follows:

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (3.1)

where yi and ŷi are the experimental and predicted logBCF values,
respectively, and n is the number of compounds. RMSE was used
to evaluate the performance of models on unknown compounds, i.e.
those belonging to their complementary set and to the external set
(Table 3.1). When available, also the statistics on training and test
sets were reported for the sake of comparison.

On the complementary set, all descriptor-based models gave a lower
RMSE than the KOW-based equations. However, when VEGA consensus
and VEGA Meylan are compared with TGD, only a small difference
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in the prediction error can be noted. VEGA Read-across was the best
model both for RMSE (0.81) and percentage of compounds outside
its AD (1%). VEGA CAESAR predictions had a low RMSE (0.91),
but a large percentage of compounds was outside the AD (30%).
VEGA consensus did not improve the predictions with respect to VEGA
Meylan, but had fewer compounds outside the AD (1.2% less).

Despite the external set comprised only 45 molecules, it was useful to
evaluate the models on the same set of compounds. On the external
set, only VEGA Read-across gave better predictions than the TGD
and VEGA Meylan showed a RMSE similar to that of TGD. Again,
for CAESAR a large percentage of compounds were outside the AD
(62.2%). The RMSE of VEGA consensus had an intermediate value
between VEGA Meylan and VEGA CAESAR, with all the compounds
inside the AD.

3.3.2 Performance on critical compounds

The TGD model showed the lowest RMSE among the KOW-based
equations and, in most of the cases, its performance was comparable
with that of complex models. Hence, it was used to represent the KOW-
driven bioconcentration. The majority of compounds were correctly
estimated, while a large percentage was overestimated and a smaller
percentage was underestimated (Fig. 3.4).

Since KOW can be thought of as a proxy for lipid storage, the over-
and underestimation can be ascribed to the additional processes that
can influence the final BCF, such as biotransformation or additional
storage within non-lipid tissues. In some cases, the biotransformation
could lead to a bias in the measured BCF, even if the metabolites
are bioaccumulative in themselves. This could be a critical aspect to
consider when dealing with potentially metabolized compounds.
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Fig. 3.4: Experimental BCF vs BCF predicted by TGD equation. The
solid line represents the perfect fitting (logBCFexp = logBCFpred);
dashed lines represent a difference of ±1 log unit.

A systematic analysis of model performance on critical compounds
was performed, by assigning each chemical to one of the following
groups:

1. Correctly estimated compounds (789) if the experimental BCF
lays within ±1 log unit from the TGD-BCF. As they are correctly
predicted by KOW, their bioconcentration can be ascribed to
lipid storage.

2. Overestimated compounds (232), if the predicted BCF is sig-
nificantly larger (> 1 log unit) than the experimental BCF. For
these chemicals, we can suppose that metabolism or elimination
processes occur, leading to a decreased BCF with respect to that
based on affinity with lipids.

3. Underestimated compounds (35), if the predicted BCF is signif-
icantly smaller (more than 1 log unit) than the experimental
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BCF. For these compounds, it is possible to suppose that storage
in additional sites (e.g. proteins) leads to an increased BCF.

We aimed to understand how each model performs on critical com-
pounds (over- and underestimated) in comparison with TGD. To this
end, each model (with the exception of TGD, which lacks a proper
training set) was evaluated for its performance on unknown data, i.e.
complementary plus external data (Table 3.2 and Fig. 3.5).

Tab. 3.2: Model performance on critical compounds: Number of
chemicals (n), Root Mean Square Error (RMSE), and per-
centage of compounds out of AD (% out) are reported.

Class Model n RMSE % out

Corr. estimated

TGD 789 0.47 -
EPI Suite BCFBAF 254 0.70 -
VEGA Meylan 254 0.59 5.5
VEGA CAESAR 405 0.99 50.4
VEGA Read-across 141 0.84 0.7
VEGA consensus 194 0.77 3.6

Overestimated

TGD 232 1.98 -
EPI Suite BCFBAF 116 1.25 -
VEGA Meylan 116 1.43 3.4
VEGA CAESAR 151 0.74 62.9
VEGA Read-across 42 0.74 2.4
VEGA consensus 85 1.38 0.0

Underestimated

TGD 35 1.43 -
EPI Suite BCFBAF 24 1.89 -
VEGA Meylan 24 1.63 20.8
VEGA CAESAR 27 1.43 63.0
VEGA Read-across 14 1.00 0.0
VEGA consensus 19 1.53 0.0

On overestimated compounds, all models gave a lower RMSE than
TGD. VEGA CAESAR and VEGA Read-across had the best performance
and the latter has the broadest AD (only 2% outside the AD). Even
in this case, VEGA consensus showed an intermediate performance
between its sub-models, with all the compounds inside its AD.
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On underestimated compounds, only VEGA Read-across had better
performance than TGD. It is important, however, to highlight that 19
out of 35 underestimated compounds were used to train the model.
This is an important aspect, since Read-Across is based on a similarity
approach.
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Fig. 3.5: RMSE of descriptor-based models in comparison with TGD
RMSE (dashed line). Each bar is labelled by number of compounds
used to calculate RMSE and percentage of compounds out of the AD.
Values are reported in Table 3.2
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The tendency of underestimation and overestimation of TGD (Fig.
3.6) is also present for descriptor-based models models, especially
for underestimated chemicals, with the exception of VEGA Read-
across. This could suggest that, even when the prediction accuracy
improves with respect to TGD, the models take only partially into
account processes different from water-lipid partitioning, especially
those leading to an excess of bioconcentration.
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Fig. 3.6: Experimental vs predicted logBCF for compounds overes-
timated and underestimated by TGD (only compounds external to
model training sets). Models: (a) EPI Suite BCFBAF; (b) VEGA Mey-
lan; (c) VEGA CAESAR; (d) VEGA Read-across. Dashed lines represent
the perfect fitting (logBCFpred = logBCFexp).
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3.4 Conclusions

In this chapter, we compared the performance of four KOW based
models and five descriptor-based QSAR models on a dataset of wet-
weight BCF data for 1056 compounds. Models were tested first for
their global accuracy and then on critical compounds, i.e. those that
are badly predicted when only KOW is used.

Results highlighted a general improvement of the accuracy when
complex models are used instead of KOW-based equations. Moreover,
the AD assessment allows to improve the reliability of the predic-
tions. However, when the complex models were tested on critical
compounds, the majority of them showed the same weaknesses of
KOW-based predictions. The exception was VEGA Read-across, which,
however, is based on a local approach and thus can be applied only to
molecules similar to those of the training set. Moreover, Read-Across
lacks of a mechanistically interpretable model.

In conclusion, the complex models resulted to be generally more
accurate than KOW-based equations but not able to completely account
for the processes different from lipid-water partitioning that affect the
bioconcentration.
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4Mechanisms of
bioconcentration:
insights from QSAR
classification trees

„ That’s been one of my mantras – focus
and simplicity. Simple can be harder
than complex.

— Steve Jobs
CEO Apple Inc.

As shown in the previous chapter, some compounds can be predicted
well using KOW only. For these compounds, it can be hypothesized that
storage occurs within lipid tissues, while, for the others, additional
processes occur. The aim of this chapter is to build a classification
scheme to identify (1) compounds that can be predicted well using
KOW, (2) compounds that are underestimated by KOW and (3) com-
pounds that are overestimated by KOW. Our hypothesis is that this
behaviour is connected with different processes of bioaccumulation:
(1) main storage within lipid tissues, (2) storage within non-lipid
tissues, (3) metabolism/elimination. To our knowledge, the mech-
anisms that affect bioconcentration have never been investigated
extensively in a QSAR setting, and this could give the opportunity to
detect compounds with increased impact on biota.

Particular attention was posed to model simplicity and interpretability.
To this end, CART (Classification and Regression Trees) [85] was
chosen as machine-learning algorithm. CART is based on a recursive
partitioning of data using one variable at a time: at each univariate
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split, data are divided in two mutually exclusive groups (as homoge-
neous as possible) according to their variable values, and then the
splitting procedure is furtherly applied to each group separately. This
procedure leads to a model that is graphically representable as a de-
cision tree, where each node is a univariate split and leafs are the
predicted classes for the objects that fall in that leaf. In addition to
its simplicity and interpretability, CART technique is able to deal with
non-linear relationships between variables, thus being particularly
well suited for complex biological problems.

4.1 Materials and methods

4.1.1 Dataset

The BCF dataset of Chapter 3 consists of 1056 compounds, among
which 654 had known experimental KOW values. Since KOW served
to determine the classes, additional values were obtained from the
dataset of 16,998 compounds curated by Mansouri [86]. Experimental
values were retrieved according to structure and then the accordance
between CAS numbers was checked on online databases ([74], [75]);
only the correct records were retained. For compounds without ex-
perimental KOW value, the new experimental value was added. For
compounds with experimental KOW values already retrieved (599),
accordance between the values was checked. For 493 compounds,
the same values were found. For compounds with multiple values,
a test was performed on the standard error. In fact, the precision of
the experimental determination of KOW was found to decrease with
increasing KOW value [87], with an expected critical standard error
(SEcrit), expressed as:

SEcrit = 0.20− 0.09 · logKOW + 0.14 · (logKOW )2 (4.1)

We used this equation as a rule to check for anomalous KOW data.
SEcrit was compared with the observed standard error (SEobs). If SEobs

> SEcrit (46 compounds), values were manually checked on publicly
available KOW databases ([78], [88]–[90]) and wrong records were
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deleted. Finally, only compounds with known experimental KOW were
retained and the median KOW was calculated. This led to a final
dataset of 779 compounds with experimental BCF and KOW values.

4.1.2 Molecular Descriptors

3,763 molecular descriptors (0- to 2D) were calculated using Dragon
6 [30] and reduced by excluding those: (a) with at least one missing
value; (b) constant or near-constant; (c) with a standard deviation
less than 0.01; (d) with a pairwise correlation larger or equal to 0.98
with other descriptors. In total, 1495 descriptors were retained.

4.1.3 Modelling strategy

Classification trees were grown using the following methodology:

1. Modelling a two-class problem (i.e. one class at a time against
the others). This was done for class 2 and 3 and gave consider-
ably better results than the three-class approach.

2. Using an optimization approach, by varying (a) the misclassi-
fication cost (from 0 to 0.90 with a step of 0.10) and (b) the
splitting criterion (Gini diversity index and cross-entropy [85]).

3. Selecting the optimal tree complexity in cross-validation, by
varying the minimum number of objects per leaf from 1 to 100
with a step of 10.

4. Implementing CART classification into a Genetic Algorithms
setting. CART, in facts, selects the optimal subset of variables in
a stepwise manner. However, when a large number of variables
are available, not all of their possible interactions are exploited.

4.1 Materials and methods 47



4.2 Results and discussion

Classes were determined using the TGD equation, as in Chapter 3.
Each critical class (i.e. class 2 and class 3) was modelled in turn
against the other ones. The developed classification trees offered
mechanistic insights into the molecular features controlling the mech-
anisms of bioconcentration. The classification schemes were then
combined in a consensus manner to obtain the final predictions (Fig.
4.1). Details can be found in the next paragraphs.

class 2

class 1

class 3

lo
gB

C
F

logKOW

class 2
class 3

+
class 1

Mechanistic
Interpretation

1 Class definition

2 Modelling

3 Consensus 

class 3
class 2

+
class 1

class 1       class 2       class 3

Fig. 4.1: Schematic workflow of the modelling approach.
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4.2.1 Class definition

In analogy with the previous chapter, TGD equation was used as a
proxy for lipid-driven bioconcentration, as it resulted the most accu-
rate KOW-based equation among the four tested. Again, our hypothesis
was that compounds reliably predicted from KOW mainly accumulate
within lipids, while others could undergo additional processes.

In Chapter 3, we used a threshold of 1 log unit to divide compounds
within three groups as preliminary analysis. In this case, a data-driven
calibration of the threshold was performed. In particular, the threshold
was chosen as twice of the 95th percentile of the standard error of
multiple BCF values (0.24 log units). The chosen threshold was
±0.50 log units, which also resulted larger than the 99th percentile
of the standard error (0.47 log units). Classes were, then, defined as
follows:

1. Class 1 – Inert chemicals (460). Compounds whose experimen-
tal logBCF lays within ± 0.5 log units interval from predicted
logBCF. They mainly bioconcentrate within lipid tissues and
thus partitioning-related models can be used.

2. Class 2 – Specifically bioconcentrating chemicals (64); if ex-
perimental logBCF ≥ logBCFTGD + 0.5. For these compounds,
additionally to lipid storage, specific interactions with tissues
can be hypothesized, which lead to underestimation of BCF
when KOW or related parameters are used.

3. Class 3 – Less bioconcentrating chemicals (255 compounds): if
experimental logBCF ≤ logBCFTGD - 0.5. The observed deficit
of BCF can be connected with biotransformation, which leads
to a faster elimination and/or to a bias in the measured BCF.

We do not rule out that for some class 1 compounds, metabolism
and/or interactions with tissues occur, but deviations of less than
0.5 log units are not discernible from lipid-driven BCF. At the same
time, some of the observed deviations could be due to model error or

4.2 Results and discussion 49



data uncertainty. Hence, where possible, we rationalized the obtained
classifications through literature- and data-driven considerations.

The majority of compounds belong to class 1, while the 33% and only
the 8% to class 3 and 2, respectively (Fig. 4.2). Class 2 chemicals lay
mainly in logKOW > 0 region and have a higher relative abundance of
very bioaccumulative chemicals (logBCF ≥ 3.5), confirming that they
are a class of concern.
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Fig. 4.2: KOW vs BCF: solid line represents the predicted BCF across
the range of KOW according to TGD approach, while dashed lines
represent a ±0.5 log units interval from estimated BCF. Compounds
are coloured according to the assigned class.

The distribution within classes (Table 4.1) agrees with what known
about some environmental pollutants:

• Perfluorinated Alkyl Acids (PFAAs) are hypothesized to have
increased interactions with serum albumin, liver fatty acid-
binding proteins and phospholipids bilayers ([47], [91]–[94]).
Accordingly, they all were assigned to class 2. Perfluorooctane
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Sulfonate showed the largest residual of this chemical class
(2.35 log units).

• Some Synthetic Fragrances, Pyrethroids and Organophosphorous
compounds are known to be metabolized in fish ([95], [96]). All
of them are distributed within class 1 and 3, with the exception
of glyphosate and dimethyl phenyl phosphate.

• Polycyclic Aromatic Hydrocarbons (PAHs) are effectively biotrans-
formed into more hydrophilic compounds in fish liver and can
be easily excreted ([97], [98]). Furthermore, the influence of
metabolism on their final BCF has already been reported [99];
this agrees with their distribution in classes 1 (60%) and 3
(40%).

• Regarding Polychlorinated Biphenyls (PCBs), several studies re-
ported a selective metabolic clearance in fish for a large number
of congeners ([100], [101]) with no observed elimination for
hexa-, hepta- and octa-CBs ([102], [103]). These considera-
tions agree to some extent with data: 17 PCBs, in fact, belong
to class 2 and 14 of them are congeners with 6 to 8 Cl atoms.
This could suggest a general excess of BCF for PCBs, partic-
ularly evident for those that are not metabolized/eliminated.
Alternatively, biases could be ascribed to BCF-determination
methodology, as already hypothesized by Wang et al. [104].
Note that, for logKOW > 6, only PCBs (15 molecules) belong to
class 2 and, with the exception of two, they are all congeners
with 6 to 8 Cl atoms.

• Ionogenic Organic Compounds (IOCs) are a critical category of
chemicals, as their uptake and elimination depend on hydropho-
bicity, degree of ionization, electrostatic interactions and steric
factors of ionized and unionized forms; moreover, some IOCs
may interact with phospholipids or other macromolecules [91].
Despite a deviation from KOW-based BCF is conceivable, IOCs
are about the 40% of the total, with almost equal relative distri-
bution within the classes (Table 4.1). This means that no trend
of overestimation/underestimation based on KOW is directly
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associable with ionization. On this basis, ionizing compounds
were retained for model development, in order to maximize the
structural information available.

Tab. 4.1: Distribution within classes of some environmentally relevant
chemicals. (PCBs = Polychlorinated Biphenyls, PAHs =
Polycyclic Aromatic hydrocarbons)

Chemicals
Class

Total
1 2 3

Perfluorinated Alkyl Acids (PFAAs) 0 7 0 7
PCBs 27 17 1 44
Polybrominated Biphenyls (PBBs) 2 0 0 2
Synthetic Fragrances 1 0 2 3
Organophosphates 38 2 33 73
Synthetic Pyrethroids 4 0 12 16
PAHs 9 0 6 15
Ionogenic Compounds (IOCs)* 182 26 110 318

*Selected according to the presence of ionizing functional groups, as in the

work of Meylan et al. [63].

4.2.2 Classification results

Model evaluation and validation Compounds were randomly
split into a training set of 584 compounds (75%) and a test set
of 195 (25%), preserving the proportion between the classes.
Training set was used for variable selection, tree pruning (both
with 5-fold cross-validation), and model calibration. Test set
only served to validate the final pool of models. Model predic-
tivity was quantified using Sensitivity (Sn), Specificity (Sp) and
Non-Error Rate (NER), defined as follows:

Sn = TP

TP + FN
(4.2)

Sp = TN

TN + FP
(4.3)
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NER =
∑G

i=1(Sni)
G

(4.4)

where TP, TN, FP and FN are the number of true positives,
true negatives, false positives and false negatives of each class,
respectively; G is the number of classes. Tree pruning and GA
selection were performed in cross-validation.

Variable selection Each critical class (i.e. 2 and 3) was mod-
elled in turn against the remaining ones. In particular, for
each optimization setting (paragraph 4.1.3), we carried out
three step procedure: (1) GA selection on the whole pool of
descriptors; (2) GA selection on the most frequently retained
descriptors of step 1 (maximum 150); (3) generation of all the
possible combinations of the most relevant descriptors of step
2 (maximum 15). As fitness-function, we chose the geometric
mean between Sn and Sp, aiming at fostering the most balanced
models.

Applicability Domain In order to predict test compounds, we
characterized the model AD as an hyper-rectangle delimited
by maximum and minimum values of each descriptor, by what
is known as “bounding-box” approach [44]. Only compounds
within the AD were predicted.

Model selection Best models were chosen according to: (1)
performance in cross-validation and on the test set (in terms of
Sn, Sp and NER), (2) complexity (the fewer nodes, the better)
and (3) descriptor interpretability. This in order to produce
predictive/robust models and gather new mechanistic insights
about the structural features that characterize the classes.
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Final models The selected models (Table 4.2) are very simple,
comprising few univariate splits (i.e. nodes) and few variables.
In both cases, only one test compound (mirex and carbon disul-
fide for class 2 and 3 trees, respectively) was outside the AD.
Best performance was obtained on the most critical class. Class
2 compounds are, indeed, underestimated by KOW. On the con-
trary, class 3 is the less critical, since it comprises compounds
with reduced BCF. For this reason, the slightly lower perfor-
mance of T3 is acceptable. The selected classification trees are
analysed in depth and interpreted in the next paragraphs.

Tab. 4.2: Statistics of selected classification trees: characteristics of
the model (k = number of nodes, p = number of descriptors,
C = cost value for the target class) along with Sn, Sp and
NER in fitting, cross-validation and on the test set. For the
test set, number of compounds out of AD (n out) was also
reported.

ID Target Class k p C FIT CV TEST

T2 2 9 5 0.90 NER 0.85 0.75 0.75
Sn 0.94 0.80 0.75
Sp 0.76 0.71 0.75

T3 3 5 4 0.60 NER 0.73 0.72 0.78
Sn 0.70 0.70 0.69
Sp 0.76 0.75 0.68
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4.2.3 Model analysis and interpretation

1. Specifically bioconcentrating chemicals (T2)

Fig. 4.3 depicts T2 tree, targeting at the classification of class
2 compounds. According to what observed on PCBs, first split
regards those having 6 to 8 Cl atoms and KOW > 6, which are
assigned to class 2. T2 comprises additional 8 nodes based on 5
molecular descriptors resulting from GA selection. Descriptors
are briefly described below.

Fig. 4.3: Selected tree to discriminate class 2 compounds (orange)
from other compounds (white). Square boxes denote univariate splits
(i.e. nodes), while round boxes (i.e. leafs) denote the assigned class.
PCB*exc refers to PCBs with 6 to 8 Cl atoms and logKOW > 6. Other
nodes are labelled according to descriptor name.
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PCD
PCD [30] is a path count descriptor, based on graph theory:
the molecule is represented as a H-depleted molecular graph
whose vertices are non-H atoms and edges are bonds, which can
be characterized by paths (i.e., sequences of vertices without
repetition). PCD is defined as:

PCD = log
(
A+

∑
mPij

wij

TPC

)
(4.5)

where

wij =
m∏

b=1
π∗b (4.6)

A is the number of vertices in the H-depleted molecular graph;
mPij denotes a path of length m (m ∈ [0, 10]), from the ith to
the jth vertex; wij is the path weight, calculated by multiplying
the conventional bond order (π∗b )1 of all m edges of the path
mPij; TPC is the total number of paths of any length (from
0 to 10). PCD mainly relates to bond type/number and it
tends to increase with increasing the number of multiple bonds
(unsaturation) (Table 4.3).

X2Av
X2Av is the average valence connectivity index of order 2 [105],
calculated as follows:

X2Av =
∑K

j=1(
∏3

i=1 δ
V
i )

K
(4.7)

where j runs over all the K 2nd order paths of the molecular
graph. Each path is weighted by the product of the valence
vertex degree (δV ) of the 3 vertices involved in the path, which

1equal to 1, 2, 3 for single, double and triple bonds, respectively, and 1.5 for
aromatic bonds
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depends on the number of valence electrons (Zv) and hydrogen
atoms (h) bonded to an atom, as follows:

δV = Zv − h (4.8)

X2Av accounts for the presence of heteroatoms in the molecule
as well as double and triple bonds (Table 4.3). This index de-
creases when increasing (a) the density of adjacent triplets
of vertices with many valence electrons (e.g. F – C – F);
(b) the number of cycles (high K); (c) the density of unsat-
urated/aromatic bonds.

nHM
nHM is the number of heavy atoms (i.e., halogens, P, S, Si and
Sn in this dataset).

piPC09
piPC09 is the count of all the paths of length 9 in the H-depleted
molecular graph. It is influenced by molecular size and tends
to be higher for polycyclic aromatic molecules, which are char-
acterized by higher bond orders and more paths than aliphatic
molecules (Table 4.3).

MlogP
MlogP is the logKOW predicted by Moriguchi model [66], which
is based on a group contribution approach.
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Tab. 4.3: Examples of PCD, X2Av and piPC09 descriptor values for
some molecules of the dataset, sorted in ascending order.

PCD X2Av piPC09
Structure Value Structure Value Structure Value
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F
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F F
0.13 2.57

Cl

ClCl

Cl Cl

Cl 0.65

F
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O
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Cl

Cl

Cl

Cl

2.15

F

F

ClCl

FCl 0.23 9.32
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Mechanistic Interpretation To the left branch of T2 belong
molecules with a small number of multiple bonds (PCD < 1.41)
and among them, those with X2Av < 0.177 can show an excess
of BCF. Part of the information encoded within PCD and X2Av is
overlapping and opposite, since low values of PCD correspond
to few multiple bonds, while small values of X2Av to high den-
sity of multiple bonds. However, PCD is more influenced by
molecular dimension than X2Av is. In this leaf, therefore, lie
small molecules (i.e. low PCD), with high density of multiple
bonds, in particular aromatic rings. Aromatic rings could be
responsible of the excess of BCF, as they are involved in im-
portant biological intermolecular interactions, such as bonding
between aromatic amino-acid side chains of proteins and (het-
ero)aromatic rings of small ligands [106]. In this leaf, we also
find linear molecules, characterized by a high density of adja-
cent triplets/couples of heteroatoms and few multiple bonds. In
this case, the excess could be ascribed to increased molecular
flexibility (due to abundance of rotatable bonds), causing a
structural rearrangement within organisms, able to maximize
the interactions between heteroatoms and tissues [107]. To
this leaf belong 25% of class 2 compounds, e.g. all PFAAs,
some carbamates and other N/O/Cl rich compounds, meaning
that the structural features encoded by PCD and X2Av are rele-
vant for BCF excess. Among the 20 small monocyclic aromatic
compounds of this leaf, only the meta-substituted anilines and
2-aminopyridine show an excess of BCF.
Concerning the left branch (PCD < 1.41 and X2Av ≥ 0.177),
the underestimation by TGD is more likely for low MlogP values.
This could be related to errors of the TGD equation itself or to
preferential storage within organism water phases (e.g. blood)
([104], [108]).

To the right part of the tree (PCD≥ 1.41) belong large molecules
with many multiple bonds and a low number of heteroatoms.
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This branch is characterized by a small number of BCF-excess
compounds (19 out of 378) and this could be related with: (a)
molecular rigidity due to double bonds abundance; and (b) the
stabilizing effect of neighbouring carbon atoms, which could
limit the structural interaction with macromolecular targets and
tissues. In particular, molecules with PCD ≥ 1.41 and no heavy
atoms or 1.41 ≤ PCD ≤ 2.32 do not show an excess of BCF;
these nodes have a purity of 100% and 98.2%, respectively. The
remaining molecules (PCD ≥ 2.32 and nHM > 0) all have two
or more aromatic rings and 77 out of 88 contain Cl atoms. They
could show an excess of BCF if their piPC09 < 6.9. All the
molecules of this node (except 3) having (a) at least one O-Cl
at topological distance of 4, or (b) more than 3 circuits, have
piPC09 ≥ 6.9 and do not show an excess of BCF.
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2. Less bioconcentrating chemicals (T3)

T3 (Fig. 4.4) comprises 5 nodes and 4 molecular descriptors,
which are briefly described below.

Fig. 4.4: Selected tree to discriminate class 3 compounds (blue) from
other compounds (white). Square and round boxes denote univariate
splits (i.e. nodes) and the assigned class (i.e. leaf), respectively. Nodes
are labelled according to molecular descriptors acronyms, whose
description is given in the text.

ON1V
ON1V is the overall first-order modified Zagreb index [109],
defined as:

ON1V =
B∑

b=1
(δV

b(1) · δ
V
b(2))

−1 (4.9)

where B is the number of bonds, is δV the valence vertex degree
(Eq. 4.8) and b(1) and b(2) are the atoms connected by the bth
bond. ON1V increases when increasing the number of carbon
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atoms (Fig. 4.5) and reflects molecular dimension, branching
and presence of heteroatoms (Table 4.4).

0 . 0 8 0 0 0
0 . 1 3 3 0
0 . 2 1 6 3
0 . 3 4 4 6
0 . 5 3 7 5
0 . 8 2 1 1
1 . 2 2 8
1 . 8 0 0
2 . 5 8 6
3 . 6 3 9
5 . 0 2 0
6 . 7 9 07 . 3 0 0

0 5 1 0 1 5 2 0 2 5
0

1 0

2 0

3 0

4 0

5 0

nH

n C
 

 

Fig. 4.5: Variation of ON1V (colour map) according to the number
of carbon (nC) and hydrogen (nH) atoms. The lighter, the greater
ON1V values; dashed line delimits the region of ON1V < 2.698. Note
that nH is not influent in ON1V calculation (as it derives from an
H-depleted graph). However, nH represents the degree of branching,
aromaticity and ciclicity, which tend to decrease the total number of
hydrogen atoms bonded to carbon atoms.

F04[C-O] and B02[C-N]
F04[C-O] and B02[C-N] are 2D atom pairs descriptors [110].
F04[C-O] counts the occurrences of connected C and O atoms at
a topological distance of 4; B02[C-N] is equal to 1 when there
is at least one pair of C and N atoms separated by 2 bonds, and
0 otherwise.

N-072
N-072 is an atom-centered fragment [111], which counts the

62 Chapter 4 Mechanisms of bioconcentration: insights from QSAR

classification trees



occurrence of RCO-N<, RCS-N and >NCX=X (X being any
electronegative atom) in the molecule (Table 4.4)

Tab. 4.4: Examples of ON1V and N-072 descriptor values (in ascend-
ing order).

ON1V N-072
Structure Value Structure Value
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N
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O
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Mechanistic Interpetation Large and branched compounds with
few heteroatoms (ON1V ≥ 2.698) may show a reduced BCF.
This leaf, in fact, contains 75% of class 3 molecules (56), while
only 25% of class 1 (14) and 2 (5) compounds. The effect of
molecular size on bioconcentration has been being an object
of debate for the last decades. In fact, while several works as-
sert the influence of size on bioconcentration reduction ([112]–
[114] ), others ascribe the observed deviations to uncertain BCF
data [115] and/or to a decreased bioavailability due to sorp-
tion to particles of highly hydrophobic chemicals [116]. In our
case, however, 22% of class 3 compounds have ON1V ≥ 2.698
across the whole range of KOW, ostensibly supporting an effect
of molecular size and branching on the reduced bioconcentra-
tion. As already hypothesized [113], effective diameter controls
membrane permeability and, thus, large and branched com-
pounds could have a limited diffusion through cell membranes,
resulting in BCF values smaller than expected.

Among the molecules with ON1V < 2.698, the presence of C and
O at lag 4 is often associated with a deficit of BCF. The presence
of oxygen atoms has already been related to increased metabolic
rates in fish [117] and this is in agreement with our model. It is
important to note however that, among the 310 molecules with
F04[C-O] = 0, 46 belong to class 3. Among the molecules with
F04[C-O] > 1, those with B02[C-N] = 0 may show a deficit of
BCF. These molecules are characterized by an high abundance
of aromatic oxygen atoms, phosphate esters, aliphatic ethers
and aromatic/aliphatic ketones, fragments related to increased
biotransformation rates [117]. Among the compounds with
B02[C-N] = 1, half (56) contain at least one aromatic nitro-
group and 46/56 belong to class 1, while the remaining to
class 3 with small residues (< 0.90 log units). Hence, it can be
stated that these structural features are related with small or no
biotransformation. This is in contrast with the study of Arnot
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and co-authors [117]. It is important to note, however, that this
structural feature regards only compounds with ON1V < 1.724
and F04[C-O] > 1.

The terminal split of the right branch (N-072), in analogy with
the left side of the tree, is based on an N-related descriptor.
Even in this case, molecules without N-072 fragments may be
metabolized, but no shared structural characteristics are evident.
All PAHs lying in this leaf (5 out of 6) are correctly classified.
T3 misclassifies all PFAAs.
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4.2.4 Consensus model

T2 and T3 trees perform well on the individual class level; how-
ever, in order to allow for model application, one has to be
able to classify a given compound into one of the three classes.
To this end, we tested the combination of trees in a consensus
manner, i.e. by assigning a compound to a class if and only
if both models agree on it. In case of conflict (i.e. compound
predicted as both belonging to class 2 and 3), no class was
assigned and the compound was discarded. This allowed also
to assign compounds to class 1, i.e. when they were predicted
as both non-excess and non-deficit (Fig. 4.6)

2

T2 T3 Cons.

x

3x

1

xx

+
+
+
+

Fig. 4.6: Simplified scheme of the consensus model. If a compound
is assigned to class 2 by T2 and not to class 3 by T3, it is predicted
as belonging to class 2. If it is assigned to class 3 (T3) and not to
class 2, it is assigned to class 3. If it is predicted as not belonging to
class 2 nor to class 3, it is assigned to class 1. If the predictions are in
disagreement, the compound is discarded.
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The resulting consensus model (Table 4.5) shows an increased
Sp for class 3 compounds, meaning that it identifies well the
compounds external to this class. This is a prominent character-
istic, as class 3 is characterized by a decreased bioaccumulation
potential. On class 2 compounds, Sp increases with respect
to T2, with a slight decrease of Sn. On the training set, this
is mainly caused by the misclassification of PFAAs by T3 and
their consequent non-prediction, while on the test set, by the
rejection of two class 2 compounds (correctly predicted by T2).
Despite class 1 was not modelled, the consensus model shows
acceptable statistics, especially when considering Sp values.

Tab. 4.5: Statistics of the consensus classification for each class on
training and test set: NER, Sn, Sp and number of non-
predicted compounds (np) are reported.

Class
Training Test set

NER Sn Sp np NER Sn Sp np

1 0.69 0.62 0.76 20 0.62 0.57 0.66 9
2 0.87 0.90 0.84 17 0.76 0.71 0.81 2
3 0.74 0.65 0.83 28 0.66 0.58 0.74 16

4.3 Conclusions

This chapter presented a scheme to identify compounds that
are: (1) mainly stored within lipids (predicted well by KOW),
(2) affected by additional interactions with non-lipid tissues
(underestimated by KOW), or (3) metabolized and/or eliminated
(overestimated by KOW). The scheme is based on two QSAR
classification trees, whose salient features are simplicity, easy
applicability, and interpretability.

Particular attention was given to the mechanistic interpreta-
tion of the molecular descriptors, which was integrated with
literature-based biological and chemical knowledge. This al-
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lowed gathering new insights into the structural features con-
nected with the mechanisms of bioconcentration.

CART was chosen for its simplicity at the expense of high model
performance. Complex modelling strategies and/or complex
molecular descriptors could lead to higher performances, but
with a loss of interpretability and applicability. Because we
aimed to investigate the mechanisms of bioconcentration, reach-
ing high-performance classification by losing model/descriptor
interpretability was beyond the scope of this work. Nonetheless,
despite the simplicity of the selected trees and descriptors, the
performances were adequate.

The best classification performance was shown for compounds
with potential increased interactions with tissues (class 2).
Structural features connected with their increased BCF are
molecular flexibility and heteroatom density, or the presence
of aromatic rings in small molecules. The tree for metabo-
lized/eliminated compounds (class 3) showed a high capabil-
ity of rejecting false positives. This characteristic allows for
a cautionary approach, because these compounds show a re-
duced BCF due to metabolic clearance. Key structural features
related to the deficit of BCF resulted are the molecular branch-
ing/dimension, and the presence of aromatic oxygen atoms,
phosphate esters, aliphatic ethers and aromatic/aliphatic ke-
tones. Importantly, the trees can be combined into a consensus
classification scheme, which can serve to assess the reliability of
KOW-based predictions of BCF.
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5Expert system to
predict BCF for
regulatory purposes

„ Knowledge without application is
like a book that is never read.

— Anonymous

Chapter 4 offered a theoretical basis to investigate the mecha-
nisms that influence the bioconcentration. However, a promi-
nent feature of QSAR models is their potential to save time
and money and minimize the use of animal testing. Thus, the
application of QSAR models beyond the boundaries of the pure
research is a field of interest of both industry and regulatory
agencies.

This chapter aims to apply what known on the defined classes
(e.g. that class 1 compounds are predicted well by KOW) to the
regulatory prediction of BCF within an expert system architec-
ture. An expert system is a formalized integration of several
models based on the knowledge about their drawbacks and
advantages. Expert systems have been successfully applied to
many QSAR challenges, such as the prediction of carcinogenic
potential [118], of estrogen receptor binding [119] and of mech-
anisms of toxic action [120]. In particular, the classification
scheme was used as the starting basis to choose the optimal
model for each class. Four BCF models - the TGD approach,
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VEGA CAESAR, VEGA Meylan and VEGA Read-Across - were
analysed for their advantages and drawbacks on each predicted
class, with the aim of developing the optimal expert system.

As the final target was the regulatory application, the OECD
principles were taken into account along with other factors
that influence the application and acceptance of QSAR mod-
els, namely the model simplicity, transparency and ease of use
[121].

5.1 Materials and Methods

5.1.1 Datasets

In analogy with Chapter 3, each model was tested on (1) its
training and test sets and (2) on the external data. The starting
point was the BCF dataset of Chapter 3, consisting of 1056
compounds, which was the source of external data for each
model.

5.1.2 Class prediction

Class was predicted for each compound using the consensus
classification scheme proposed in Chapter 4. No class was
assigned to compounds that: (a) were out of the AD of at least
one classification tree or (b) were predicted with disagreement
by the two trees (i.e. as belonging to both classes 2 and 3).
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5.2 Results and Discussion

5.2.1 Approach refinement

The classification scheme of Chapter 4 was calibrated using
experimental KOW data. However, in order to fully quantify
the model predictive ability, we wanted to test its performance
when predicted KOW is used. Moreover, often no experimental
KOW is available for new, non-tested chemicals.

The first step was to test software-based models for KOW for
their prediction accuracy. To this end, we chose three of the
most-widely known models for KOW prediction:

• KOWWIN, based on the Atom/Fragment contribution method
proposed by Meylan and Howard [122];

• AlogP, based on the hydrophobicity contribution of 120
atom types as proposed by Ghose and Crippen [123];

• MlogP, which consists of a regression equation based on
13 structural parameters [66].

Amongst the available tools for KOW prediction, we chose VEGA
platform [124] because it includes an applicability domain as-
sessment, which is essential for model application in regulatory
contexts. In analogy with BCF models (see Paragraph 3.1.2),
the reliability of the prediction is expressed by the Applicability
Domain Index (ADI), which ranges from 0 (prediction unreli-
able) to 1 (reliable prediction). Moreover, recently, VEGA KOW

models resulted to be the most accurate among the several
models tested [125] because of their AD assessment.
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KOW values were predicted for Chapter 4 dataset, comprised
of manually curated experimental KOW values for 779 com-
pounds. Only compounds inside the model AD (ADI > 0.75)
were considered. A consensus between the predicted KOW was
also performed, by using the arithmetic mean of the KOW values
of the three models (only those for which the compound was in-
side the AD). Predicted and experimental values were compared
and the prediction accuracy was quantified using the Root Mean
Squared Error (Eq. 3.1). RMSE represents the average model
error and is in the same measuring units of the experimental
response. Results are reported in Table 5.1.

Tab. 5.1: Performance of KOW models on the training set of 779 com-
pounds. (n = number of compounds, nin = number of
compounds within the AD.)

KOW model n nin RMSE

VEGA MlogP 779 543 0.59
VEGA AlogP 779 654 0.60
VEGA KOWWIN 779 654 0.45
VEGA Consensus 779 730 0.55

Amongst the tested models, VEGA KOWWIN had the highest
accuracy (lowest RMSE) and it was chosen as the benchmark
model for KOW prediction.

5.2.2 Analysis of the method

Once VEGA KOWWIN was selected as the optimal KOW model,
it was used to predict KOW for all the available molecules. The
predicted values were used as the input for the TGD equation
(Box 3.1.1). Only reliable KOW predictions (ADI > 0.75) were
retained. The CART scheme was then used to assign each
compound to a class, as explained in Section 5.1.2. The accuracy
of the TGD approach was then tested on (1) the training and test
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sets used to develop the classification scheme (779 compounds)
and (2) an external dataset comprised of the remaining 277
compounds (Table 5.2).

Tab. 5.2: Statistics of TGD model on the training and the external
sets for all compounds, for each class and for non-predicted
compounds (np); n = number of compounds, nin = number
of compounds within the AD of KOWWIN.

Set Class n nin RMSE

Training all 584 495 0.82
1 246 230 0.52
2 112 91 0.74
3 161 125 1.13
out 65 49 1.12

Test all 195 159 0.84
1 77 64 0.54
2 30 27 0.71
3 61 47 0.98
out 27 21 1.27

External all 277 104 1.18
1 54 27 0.54
2 30 11 0.97
3 149 57 1.46
out 44 9 0.77

For all the sets, the TGD approach is more accurate on class 1
compounds than on:(a) all compounds and (b) on class 2 and
3 compounds. Moreover, the RMSE for class 1 is comparable
on all the sets, indicating that the approach is stable towards
unknown molecules. The results show that: (a) the proposed
approach works also when predicted KOW is used instead of
experimental KOW; (b) the underlying hypothesis (i.e. that class
1 compounds can be predicted well by KOW) is satisfied also for
molecules not used to train the classification scheme.
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5.2.3 Comparison with benchmark BCF models

To further test the predictive ability of the proposed scheme, the
predictions were compared with VEGA BCF models of Chapter
3: (a) VEGA CAESAR, (b) VEGA Meylan, (c) VEGA Read-across.
Also in this case, we chose VEGA platform because of its ap-
plicability domain assessment. Each model was evaluated on
its training and test sets and on external compounds. As for
Chapter 3, only predictions within the AD were considered, but
in this case a more restrictive threshold was chosen, i.e. ADI >
0.75, accounting only for highly reliable predictions. Prediction
accuracy was quantified through the RMSE (Table 5.3).

In most of the cases, VEGA models perform better on class 1
than on all compounds and this is coherent with what observed
previously (Chapter 3). Moreover, on external compounds, the
TGD approach is more accurate on class 1 than the benchmark
models are on all compound. This suggests that the classification
scheme could be used as a filter to choose the molecules to
be predicted by KOW only without the need of an increased
complexity.

On a class-basis, one can note that no model always outperforms
the others. Nonetheless, some models have a similar behaviour
on all the datasets, keeping a constantly low RMSE: TGD on
class 1 (RMSE from 0.52 to 0.54), Meylan on class 2 (RMSE
from 0.43 to 0.52) and Read-Across on class 3 (from 0.46 to
0.55). In all other cases, the RMSE has a larger variance. On
class 1 compounds, the TGD approach was chosen as the op-
timal model, since its simplicity outweighs the slightly better
performance of the other models on their training/test sets. For
the other classes, the model comparison was refined through a
multi-criteria decision-making strategy, also taking into account
the percentage of compounds inside the AD.
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5.2.4 Expert-based system

Read-Across and Meylan models have a stable performance on
class 2 and class 3, respectively. However, despite their having
a low RMSE on these classes, they do not always outperform
the other models in terms of RMSE and percentage of com-
pounds within the AD. Thus, a refined model comparison was
performed by applying the recently proposed wR-Hasse tech-
nique [126], a modified version of the well-established Hasse
Diagrams [127].

Hasse Diagrams order the alternatives according to their vari-
able values: When one alternative has better (or equal) values
for all its criteria than another one, the two alternatives are
comparable and an order can be set, otherwise the objects are
incomparable and the ordering is not possible. The relation-
ships are represented through a graph, whose vertices are the
alternatives and edges are the ordering relationships. Hasse Di-
agrams are very powerful but often ineffective on datasets with
many criteria, where a large number of incomparabilities may
be observed. The recently proposed wR-Hasse overcomes this
issue by setting an order when an alternative is better than an-
other one for at least a given percentage of criteria (threshold).
In this way, the number of incomparabilities can be sensibly
reduced. Moreover, unlike the original version, the criteria can
be weighed according to their relevance. When a weighting
scheme is adopted, one object dominates over the other when
the weights of the criteria for which it is better sum up to the
threshold value.

The RMSE was considered as the most relevant parameter but
also the percentage of compounds within the AD was taken into
account (the higher, the better). Moreover, the performance
on unknown data (test and external sets) was considered more
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relevant than that on training data. Thus, a total weight of
0.80 was assigned to the RMSE and 0.20 to the percentage of
compounds within the AD. Within each group, variables referred
to the training set were weighted 1/6 of the total weight, while
those referred to the test and the external set were weighted
2/6 and 3/6 of the total, respectively (Table 5.4).

Tab. 5.4: Chosen weights according to variable type and considered
set. (%in = percentage of compounds within the AD)

Type Total Weight Set Weights

%in 0.20 Training 0.03
Test 0.07
External 0.10

RMSE 0.80 Training 0.13
Test 0.27
External 0.40

Fig. 5.1: wR-Hasse Diagrams for the selected BCF models on: (a) class
2 compounds (threshold = 0.80), (b) class 3 compounds (threshold
= 0.60).

5.2 Results and Discussion 77



The wR-Hasse technique was applied separately on the results
of class 2 and 3, using the weights of Table 5.4. The threshold
was chosen on a case-by-case basis, as the largest one leading
to an effective representation (Fig. 5.1). As highlighted by the
resulting diagrams, the optimal models are VEGA Meylan and
VEGA Read-Across for class 2 and 3, respectively. These results
confirm what was already observed when considering model
stability.

According to these considerations, the expert system was built
as follows (Fig. 5.2): (1) TGD for class 1, (2) VEGA Meylan
for class 2, (3) VEGA Read-Across for class 3. The resulting
expert system had a satisfactory performance on all the datasets,
with a higher accuracy towards unknown chemicals than the
individual models (Table 5.5).

Tab. 5.5: Statistics of the proposed expert system on training, test
and external data. Number of compounds for each set (n),
number of compounds inside the AD (nin) and Root Mean
Squared Error (RMSE) are reported.

Set Class Model n nin RMSE

Training 1 TGD 247 230 0.52
2 Meylan 71 55 0.43
3 Read-Across 233 195 0.53
all Expert System 551 480 0.52

Test 1 TGD 77 64 0.54
2 Meylan 34 20 0.51
3 Read-Across 63 51 0.55
all Expert System 174 135 0.54

External 1 TGD 54 27 0.54
2 Meylan 73 20 0.45
3 Read-Across 78 36 0.51
all Expert System 205 83 0.51
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Fig. 5.2: Simplified scheme of the final expert system

5.3 Conclusions

In this chapter, the classification scheme of Chapter 4 was used
for BCF prediction within an expert system setting.

The simplicity of a KOW-based approach (TGD) was combined
with the advantages of two more sophisticated VEGA mod-
els (Read-Across and Meylan), which are freely available and
integrate the OECD principles for QSAR validity, such as the
applicability domain assessment.
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Our major goal was to provide a simple and transparent ex-
pert system, with a satisfactory performance on unknown data,
because QSAR models are needed at most for data gap filling.
The resulting expert system had an increased performance on
external data with respect to the analysed models, with an im-
provement of RMSE up to 0.67 log units.
Since reaching high performance was secondary to keeping
the model as simple and as transparent as possible, the TGD
equation was chosen for compounds with lipid-driven biocon-
centration, whose BCF can be reliably predicted by KOW only.

The expert system can be applied within REACH framework,
as (1) it models a defined endpoint through an unambiguous
algorithm, (2) it is properly validated, (3) integrates an applica-
bility domain assessment. Moreover, a mechanistic explanation
is available for each class.

As the use of QSAR also depend on the model availability and
transparency, the approach will be soon implemented as a KN-
IME [84] workflow.
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Part III

Dietary Bioaccumulation





6Biomagnification factor:
critical comparison with
KOW and BCF

„ It is a capital mistake to theorize
before one has data. Insensibly one
begins to twist facts to suit theories,
instead of theories to suit facts.

— Sir Arthur Conan Doyle
Writer

The BCF is the criterion requested by regulatory agencies for
bioaccumulation assessment. Despite this, it is known that it
can be sometimes a poor descriptor for biomagnification within
food webs, as it does not include dietary exposure [20]. A study
of Arnot and Gobas compared fish BCF and BAF data, report-
ing that, in some cases, the BAF can be more than 1 order of
magnitude greater than BCF due to storage through diet [20].
Thus, the authors recommend to consider other diet-including
parameters, such as BAF, BMF or TMF, especially for regulatory
purposes.
Despite these evidences, only few analyses can be found in the
scientific literature that compare the BCF with other aquatic
bioaccumulation criteria and this is ostensibly due to data avail-
ability.
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In light of these considerations, this chapter aims to critically
understand in which cases the dietary exposure information is
relevant in addition to the BCF to fully account for the bioaccu-
mulation profile of chemicals.
We chose the Biomagnification Factor (BMF) as the measure of
dietary bioaccumulation, which can be determined in a labora-
tory setting, thus being less affected by environmental variability
and less expensive to determine than other criteria such as TMF
or BAF. Moreover, the BMF is the complementary value of the
BCF (only dietary exposure vs only non-dietary exposure) and it
allows to analyse the two bioaccumulation routes separately.

A dataset of laboratory fish BMF values for 214 organic chem-
icals was collected and manually curated. BMF values were
compared with KOW and BCF for: (a) their bioaccumulation
assessment on the basis of screening thresholds, and (b) their
agreement in quantifying the bioaccumulation behaviour of
chemicals. Finally, relevant classes of chemicals were analysed,
highlighting interesting and different patterns of bioaccumu-
lation on a case-by-case basis, which can be reconducted to
different biological mechanisms.

6.1 BMF Dataset

BMF database Laboratory BMF values were retrieved from
the database recently developed by Arnot and Quinn [128].
The database is comprised of 3,032 aquatic endpoint values
for 19 fish species and 477 chemicals. Literature data were
screened for their quality and their compliance with OECD
testing guidelines [129]. Each value is provided with a reliability
score, i.e. H (High) > M (Medium) > L (Low), assigned on
the basis of several factors, such as diet type, feeding rates,
exposure duration, experimental design, growth correction and
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analysed tissues. Records are univocally identified with name,
CAS and SMILES.

Structure curation Since SMILES are fundamental for descrip-
tor calculation and model development, particular attention
was given to their curation, despite they were provided by the
authors. Thus, for each compound, SMILES were obtained from
CAS and name using KNIME CIR node [73]. All the records
leading to different structures from the used identifier were re-
moved. If the SMILES was not retrieved by name, CAS, or both,
they were manually searched from benchmark online databases:
ChemSpider [75], Scifinder [130] and PubChem [74]. Even-
tually, the SMILES obtained by CAS and name were compared
with those provided by the authors. Further mismatches (e.g.
due to specified/unspecified stereochemistry) were manually
resolved, if possible. Records with conflicting structures were
removed.

Experimental BMF curation Once the final set of CAS, name
and SMILES was obtained, multiple BMF values were merged
according to CAS number. Single-valued compounds with a
lowly reliable (L) BMF were removed. For the other compounds,
an outlier analysis was performed by checking for anomalous
standard deviations. In particular, the pooled standard devia-
tion was calculated using H and M records (equal to 0.67) to
be regarded as the reference, since it was comparable to that
obtained by H records only (0.53). If for a given compound
the standard deviation was above the calculated threshold and
contained L records (29 compounds), they were removed and
the standard deviation was recalculated. If again the values
were above the threshold (6 compounds), also M records were
deleted. If the standard deviation was above again, the chemical
was excluded from the preliminary analysis phase. Record with
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only L values and a standard deviation larger than the threshold
were also removed. For each compound, the median BMF value
was used as reference value, as it is a robust estimator. The final
dataset contained 214 compounds.

6.2 Results and Discussion

For the BMF dataset compounds, KOW and BCF data were ob-
tained from the datasets of Chapters 3 and 4. Data gaps were
filled using: (1) the expert system of Chapter 5 for BCF and
(2) VEGA KOWWIN for KOW, for the reasons stated previously.
Compounds out of the AD of the BCF model or of KOWWIN
model were not considered, obtaining a total of 168 compounds
with known KOW, BCF and BMF values (Fig. 6.1).

As already noticed, KOW can often overestimate or underes-
timate the BCF, because of biotransformation and non-lipid
storage. The same could happen if KOW is used to assess the
dietary bioaccumulation. Finally, if for a given compound the
main bioaccumulation route is through diet, also the BCF will
lead to the underestimation of the real bioaccumulation process.
That being said, the criteria were firstly compared for their co-
herence in detecting bioaccumulating compounds and then for
their correlation. Finally, they were compared on specific chem-
ical classes of compounds, to test whether relevant trends can
be seen.

6.2.1 Classification of bioaccumulative compounds

This paragraph aims to test whether the bioaccumulation crite-
ria are coherent in identifying bioaccumulative compounds. For
the sake of simplicity, the REACH criteria on BCF and KOW were
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Fig. 6.1: Distribution of KOW, BCF and BMF values. Boxplots show
median, 1st and 3rd quartiles (solid lines), mean (black dots) and 5th -
95th percentiles (whiskers). Dashed red lines represent the thresholds
generally used for bioaccumulation screening (logKOW = 5, logBCF =
3.3, logBMF = 0.)

used, namely logBCF ≥ 3.3 and logKOW ≥ 5. For BMF, the gen-
erally accepted threshold is BMF ≥ 1 (logBMF ≥ 0) [128]. The
mentioned thresholds were applied to the dataset, highlighting
that the number of compounds identified as bioaccumulative
varies according to the criterion looked at, being nKOW > nBCF

> nBMF (Table 6.1).

Moreover, a KOW-based assessment identifies more false nega-
tives for compounds that bioconcentrate (11) than for those that
accumulate through the diet (Table 6.2). The opposite occurs
for false positives, which are larger for compounds bioaccumu-
lating through the diet.
The BCF identifies 41 compounds that are potentially bioaccu-
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Tab. 6.1: Classification matrix of the bioaccumulation assessment
according to the criteria. Thr = threshold used, n = number
of compounds, % = percentage of compounds. Compounds
are considered as Bioaccumulative if logKOW ≥ 5, logBCF ≥
3.3 or logBMF ≥ 0.

Criterion Thr
non Bioaccumulative Bioaccumulative

n % n %

logKOW 5 46 27 122 73
logBCF 3.3 92 55 76 45
logBMF 0 131 78 37 22

mulative without accumulating through the diet (Table 6.2),
while the opposite occurs only for 2 compounds.

Tab. 6.2: Contingency tables of the bioaccumulation assessment ac-
cording to different criteria (KOW and BCF). The thresholds
used for bioaccumulation screening are logKOW = 5, logBCF
= 3.3, logBMF = 0. N = negative (non-Bioaccumulative),
P = positive (Bioaccumulative).

logKOW
logBCF logBMF

logBCF
logBMF

N P N P N P

N 35 11 45 1 N 90 2
P 57 65 86 36 P 41 35

In other words, this first analysis shows that the KOW-based
assessment of bioaccumulation has more pitfalls for compounds
above the bioconcentration threshold than for those that accu-
mulate through diet. At the same time, the bioconcentration
factor seems a good criterion for detecting compounds that
bioaccumulate.

These considerations are founded on a threshold-based ap-
proach only, which has several limitations: (1) it gives only
partial information about the bioaccumulation process, because
it neglects the continuous values of the criteria; (2) small vari-
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ations of the chosen threshold can lead to different outcomes,
especially for borderline compounds. For these reasons, the
next paragraph focuses on comparing the continuous values of
the criteria.

6.2.2 Continuous values comparison

This paragraph compares the experimental BMF values with the
BCF and KOW values (Fig. 6.2).
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Fig. 6.2: Comparison between BMF data and: (a) KOW, (b) BCF.
Dashed lines represent the ordinary least squares model,
whose equation and parameters are reported in the graph.

Despite KOW and BMF are coherent in the threshold-based bioac-
cumulation assessment, they are not much correlated (Fig.
6.2a). Therefore, the estimation of the BMF based on KOW

would lead to underestimations/overestimations of several or-
ders of magnitude.
The fit improves when the BCF is used (Fig. 6.2b), but also in
this case, some compounds would be largely under- or over-
estimated in a regression-based approach. These observations
suggest that the bioaccumulation through diet can be uncoupled
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from the bioconcentration process, despite their being reason-
ably correlated. For this reason, in the next paragraph, the
bioaccumulation criteria were compared on specific chemical
classes.

6.2.3 Cluster Analysis

The previous sections showed that, in some cases, KOW and BCF
are not able to fully account for the bioaccumulation processes
and that some compounds may have a BMF larger than the esti-
mates. This paragraph analyses the bioaccumulation of specific
classes of chemicals in a multi-variate manner. In particular, a
Self-Organizing Map (SOM) [131] was trained using KOW, BCF
and BMF as the input variables.

SOMs mimic the action of a neural network of neurons, where
each neuron accepts different signals from neighbouring neu-
rons and processes them in a self-organising manner. The SOM
map is a squared space, consisting of a grid of N2 neurons. Each
neuron contains p elements (weights), p being the number of
variables. The weights of each neuron are randomly initialised
between 0 and 1 and updated on the basis of the input sam-
ples. Each weight represents the contribute of the variable in
determining the value of that neuron. In each training step,
samples are projected on the network, one at a time, and as-
signed to the most similar neuron on the basis of the Euclidean
distance. Then, the weights of each neuron are updated taking
into consideration the values of the introduced sample. This is
reiterated for all objects and all the training epochs. In this way,
objects will reorganize within the map and cluster according to
their similarity. The data structure can be easily visualised and
interpreted and the role of the experimental variables can be
elucidated through the Kohonen weights.
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A non-toroidal SOM was trained for 20 epochs on the 168
compounds described by the 3 parameters, with a size of 12 ×
12 neurons to potentially allow each compound to occupy one
neuron (Fig. 6.3).
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Fig. 6.3: Self Organizing Map using KOW, BCF and BMF as descriptors:
(a) neuron weights for the variables, from 0 (white) to 1 (black); (b)
distribution of the compounds on the map; the most represented
classes of compounds of the dataset were plotted separately. Color
map represents the number of compounds in each neuron (yellow =
one, orange = two, red = three).
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Data structure can be understood through the weights (Fig.
6.3a), which can be directly compared with the object positions
in the map (Fig. 6.3b), as follows:

• The bottom-left side of the map is characterized by high
values of all the variables. Compounds that lie here bioac-
cumulate both trough dietary (high BMF) and non-dietary
routes (high BCF), mainly because of lipid storage (high
KOW). In these neurons lie the PCBs. They distribute in the
region of highest BMF values, even those with relatively
low BCF.

• The top-left side contains compounds with low KOW, BCF
and BMF values. These compounds are not lipophilic
and not bioaccumulative. In this part of the map lie all
the triazoles, which are rapidly metabolised in fish [132].
Here also lie some herbicides (napropamide, diflufenican)
and one synthetic musk fragrance (musk xylene).

• To the top-right neurons belong compounds with high KOW

values but smaller BCF and BMF values. In analogy with
Chapter 4, these compounds are probably metabolised,
resulting in a faster elimination (or in a bias in the ob-
served concentration). The BMF values are larger than
BCF, suggesting that the dietary bioaccumulation could
be more relevant in this case. To these neurons belong
the majority of the hydrocarbons, especially PAHs. This is
coherent with the observations of Chapter 4.

• To the bottom-right part of the map belong compounds
that have BCF and BMF larger than KOW. Perfluorinated
Alkyl Acids (PFAA) lie in this region, meaning that the
hypothesized non-lipid storage could be relevant also for
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dietary routes. Note that the weight of BMF is higher than
that of BCF in this region.

• The central part of the SOM hosts compounds with inter-
mediate behaviour, which have similar (and moderate)
values of KOW, BCF and BMF.

6.3 Conclusions

This chapter compared fish BMF with KOW and BCF for their
identification of bioaccumulative compounds. A general agree-
ment was found in the threshold-based screening.

However, the correlation of the continuous KOW, BCF and BMF
values resulted sub-optimal. In some cases, in fact, the predic-
tion of the BMF based on KOW/BCF would lead to underesti-
mation or overestimations of several orders of magnitude of
the real dietary bioaccumulation and, as a consequence, of the
actual biomagnification potential. Given these considerations,
specific classes of compounds were analysed with the aid of a
self-organizing map. Results highlighted that for some classes of
compounds, e.g. PFAAs and PCBs, the dietary bioaccumulation
could be even more relevant than the bioconcentration.

In conclusion, this chapter highlighted the relevance of consid-
ering also the BMF in addition to the BCF in order to account
for the potential to biomagnify in the food web. Unlike the BCF,
however, not many BMF data are available and, to the best of
our knowledge, no QSAR model developed on heterogeneous
chemicals currently exists. To this end, we set out to model
the BMF in a QSAR setting, the model to be used as a side tool
for the bioaccumulation assessment. Procedure, results and
mechanistic insights are fully described in the next chapter.
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7Modelling the dietary
bioaccumulation

„ The purpose of models is not to fit
the data but to sharpen the
questions.

— Samuel Karlin
Mathematician

The previous chapter showed that, for some chemicals, the
dietary bioaccumulation could be more relevant than the bio-
concentration. Thus, the BMF can be useful to detect hazardous
compounds. To our knowledge, no global models to predict
the BMF exist and only a few target specific chemical classes
(e.g. [50]). Therefore, the dataset of Chapter 6 was used to
calibrate a QSAR model in compliance with the OECD principles
for QSAR validation, to allow for its regulatory application.

After a screening phase to find the optimal regression and vari-
able selection techniques, the most promising settings were
used to obtain two QSAR models, one local and one linear. The
models were combined in a consensus manner, increasing the
prediction performance. Particular attention was posed to AD
assessment, model validation and mechanistic interpretation.
The models revealed that, while some of the structural features
underlying the dietary bioaccumulation are shared with the
bioconcentration process, others are different; this explains the
presence of preferential bioaccumulation routes.
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This chapter firstly describes the optimization phase, and then
gives in depth details about the models, with a special focus
on the explanation and the mechanistic interpretation of the
selected molecular descriptors.

7.1 Materials and methods

7.1.1 Dataset

The BMF dataset of Chapter 6 was used, consisting of 214
organic compounds. Since some compounds had spikes in their
response values (Fig. 7.1a), BMF was log-transformed to have
an optimal value distribution (Fig. 7.1b).
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Fig. 7.1: Distribution of experimental values: (a) BMF, (b) logBMF.
Dashed lines represent the threshold for compounds that bioaccumu-
late through diet (BMF = 1, logBMF = 0).
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7.1.2 Molecular Descriptors

Dragon 6 [30] molecular descriptors were calculated from 0-
to 2D and reduced by excluding those: (a) with at least one
missing value; (b) constant or near-constant; (c) with a standard
deviation less than 0.001; (d) with a pairwise correlation larger
or equal to 0.95 with other descriptors. The final number of
descriptors was 788, divided in 18 logical groups, based on
the type of encoded chemical information (e.g. connectivity,
presence of functional groups, molecular properties).

7.1.3 Variable selection

Each variable selection method is, in general, characterized by a
peculiar capability to explore/exploit the variable space. More-
over, on a given set of variables, different regression methods
can lead to highly different prediction outcomes.

On these bases, two variable selection strategies were chosen
to identify the most relevant molecular descriptors, namely the
Genetic Algorithms (GA) [32] and the Reshaped Sequential
Replacement (RSR) [36]. In a recent study [39], these methods
resulted to have a very different exploration ability, sharing,
at the same time, the capability of finding highly relevant sub-
sets of variables. They were combined with several regression
methods.
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7.2 Results and Discussion

7.2.1 Modelling strategy

Model evaluation and validation

Compounds were randomly split into a training set of 160 com-
pounds (75%) and a test set of 54 compounds (25%).

The training set was used to choose the best regression approach,
select the variables and obtain the final models. As measure of
model predictivity, the Q2 in cross-validation was used:

Q2
cv = 1−

ntr∑
i=1

(yi − ŷi/i)2

ntr∑
i=1

(yi − ȳtr)2
(7.1)

where ntr is the number of training compounds, ŷi/i is the
value of the ith object predicted by the model in which the
ith object was not taken into consideration, while yi is the real
response; ȳtr is the arithmetic mean of the response (over all the
training data). A 5 fold Venetian blind resampling technique was
used to obtain comparable and consistent Q2

cv for the different
calculated models. The Q2

cv differs from the more known R2,
which only quantifies the ability of the model to describe the
training data and is defined as follows:

R2 = 1−

n∑
i=1

(yi − ŷi)2

n∑
i=1

(yi − ȳ)2
(7.2)
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where ŷi is the calculated response of the ith object when it is
used for model calibration and the other parameters are those
of Eq. 7.1.

The test set was used only to validate the final pool of models
and not used for model selection/calibration [133]. Compounds
of the test set were predicted using the final models and the
predictivity was quantified through the Q2

ext parameter proposed
by Consonni et al. [134]:

Q2
ext = 1−

nts∑
j=1

(yj − ŷj)2

 /nts(
ntr∑
i=1

(yi − ȳtr)2

)
/ntr

(7.3)

where nts is the number of objects of the test set; yj and ŷj are
the real and the predicted response of the jth test compound,
respectively; ntr and nts are the number of training and test
compounds, respectively.

R2
cv, Q2

cv and Q2
ext range from 0 (poor performance) to 1 (best

performance). When these values are high and similar, they indi-
cate model stability and predictivity towards new compounds.

Strategy optimization

In order to identify the best strategy for model development,
two variable selection methods (GA and RSR) were combined
with 6 regression techniques, as shown in Table 7.1.
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Tab. 7.1: Regression methods and variable selection techniques used
in the exploratory phase.

Regression method ID GA RSR

Ordinary Least Squares OLS • •
Principal Component Regression PCR •
Partial Least Squares PLS •
Least Abs. Shrinkage and Sel. Operator LASSO •
Nearest Neighbour Regression NNR • •
Binned Nearest Neighbour Regression BNNR •

The tested regression methods were chosen on the basis of two
criteria:

• Simplicity and interpretability. Since one of the major goals
was to understand the influence of molecular descriptors
on the dietary bioaccumulation, only easily interpretable
regression approaches were considered. For this reason,
high-performing but very complex strategies such as sup-
port vector regression [135] were not considered.

• Implementation within the variable selection algorithm. GA
and RSR have a very different behaviour, the former be-
ing very fast, while the latter being more exploitative but
slower. For this reason, some regression techniques are
more suitable for one method than they are for the other
or vice versa. Because of the preliminary character of this
phase, only the methods already implemented were con-
sidered, with the exception of LASSO and BNNR, which
for this study were firstly implemented within the GA
architecture. Because they did not outperform existing
methods, they were not implemented also within RSR
strategy.
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Regression techniques Some details about the tested regres-
sion techniques can be found below:

• Ordinary Least Squares (OLS). The Ordinary Least Squares
approach is the most intuitive and well-known regression
technique [136]. Given a set of p variables, the response
(ŷ) is predicted as follows:

ŷi = b0 +
p∑

j=1
bj · xij (7.4)

where b0 is the intercept, bj is the regression coefficient
for the jth variable and xij is the value of the jth variable
for the ith object. The coefficients are determined by
minimizing the residuals sum of squares:

∑n
i=1(yi − ŷi)2.

• Principal Component Regression (PCR) shares a similar
logic of OLS [136], but the regression inputs (Eq. 7.4) are
obtained by linearly combining the original p variables
into M new orthogonal variables explaining the largest
data variance (Principal Components).

• Partial Least Squares (PLS). PLS technique also constructs
a set of linear combinations of the variables (latent vari-
ables), but unlike PCR, it uses y in addition to X for their
construction [137].

• Least Absolute Shrinkage and Selection Operator (LASSO).
LASSO [138] shrinks the coefficient of OLS (Eq. 7.4)
through a parameter λ, as follows:

ŷi = b0 +
p∑

j=1
(bj + λ|bj |) · xij (7.5)
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When λ = 0, the model is an OLS model, while λ = 1
corresponds to the maximum shrinkage.

• Nearest Neighbour Regression (NNR) is a local approach
that uses the k most similar compounds (nearest neigh-
bours) to predict the response of unknown objects [139]
as the arithmetic mean of the neighbours’ response or the
weighted mean (using the similarity as the weighting fac-
tor). In this study, the dissimilarity was quantified through
the Manhattan distance, which resulted to have the best
average performance among 110 metrics compared [140]
and can be expressed as follows:

Dst =
p∑

j=1
|sj − tj | (7.6)

where s and t are the two objects under analysis, j runs
over the p variables and sj (tj) is the value of the jth
variable for s (t). Both the unweighted and the weighted
versions were tested.

• Binned-Nearest Neighbour Regression (BNNR) derives from
the classifier recently proposed by Todeschini et al. [141].
BNNR takes inspiration from NNR, but the number of
neighbours varies for each object, according to predefined
similarity intervals (bins), optimized through a parameter
α. All the neighbours falling into the largest similarity bin
of a new object are considered for the prediction of its
response as the arithmetic mean. Also in this case, the
Manhattan distance was used.

All the regression parameters (k, α, λ, number of latent variables
and of components) were optimized in cross-validation.
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Variable selection GA were run 100 times with 100 steps of
evolution each, as proposed by Leardi et al. [142]. The most
frequently selected variables (up to a maximum of 15) were
used for model calibration. For RSR, models from 2 to 15 vari-
ables were generated. The best models for each combination
between VS method and regression technique were chosen as
the optimal compromise between model complexity (i.e. num-
ber of included variables) and Q2

cv. Results were then compared
to identify the most promising methods for the endpoint of
interest.

Preliminary Results The most promising strategies resulted
to be GA coupled with NNR and RSR in combination with
linear models (OLS, PCR). OLS was preferred to PCR for its
simplicity, given their comparable performance. Because of the
complementary nature of the best performing variable selec-
tion/regression methods (GA vs RSR and local vs linear), they
were both used in the phase of model development.

7.2.2 Model Development

Variable selection The optimal combinations between variable
selection and regression methods obtained in the previous phase
were used for model development, as follows:

• Genetic Algorithms were run in combination with NNR
in a two-step procedure: (1) on each logical block of
descriptors, (2) on the best descriptors of each block (up
to a maximum of 150). Finally, an All Subset Selection
was performed on the best descriptors of phase 2 (15).

• RSR was combined with OLS; a population of 3 models for
each dimension (from 2 to 10 variables) was generated.
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RSR was run (1) on each logical block of descriptors, (2)
on the best descriptors of phase 1.

Model Selection The models were first screened according
to a set of criteria: (1) Q2

cv (the higher, the better), and (2)
number of variables (the lower, the better). Selected models
were then validated on the test set and chosen according to (1)
Q2

ext (the more similar to Q2
cv, the better), and (2) descriptor

interpretability (the higher, the better). Unlike Chapter 4, only
a few satisfactory models included simple descriptors; thus,
attention was given to descriptor interpretation. The selected
models are reported in Table 7.2. In addition, the arithmetic
mean of the predictions of the two models was calculated. The
obtained consensus model had better performance than the sub-
models alone (Table 7.2). The models will be discussed in depth
in the next paragraphs.

Tab. 7.2: Performance of the selected models in fitting, cross-
validation and on the test set. VS = Variable Selection,
Reg = Regression Technique, p = number of variables.

ID VS Reg p FIT CV TEST
RMSE R2 RMSE Q2 RMSE Q2

M1 GA NNR 4 0.52 0.77 0.55 0.74 0.54 0.75
M2 RSR OLS 7 0.53 0.76 0.55 0.74 0.57 0.72
Consensus 0.47 0.80 0.50 0.78 0.46 0.82

7.2.3 Model Analysis

1. Model M1

M1 is a NNR model comprised of 4 variables. The optimal k
value, optimized in cross-validation, was 9. For each compound,
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the 9 most similar objects were used to predict the response in
a weighted manner, according to their distance, as follows:

ŷs =
k∑

t=1
wt · yt (7.7)

wt =
∑k

t=1Dst

0.1 +Dst
(7.8)

where Dst is the Manhattan distance between the compounds
s and t (Eq. 7.6), and yt and wt are the experimental response
and the weighting parameter of the t-th neighbour, respectively;
ŷs is the predicted response of s.

The model was analyzed by a multi-dimensional scaling, which
projects the distances between chemicals on a bi-dimensional
plane [143]. Compounds with similar BMF values lie close to
each other in the descriptors space (Fig. 7.2). This explains why
a local approach gives good results.
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- 1 . 6 5 0
- 1 . 0 8 0
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0 . 0 6 0 0 0
0 . 6 3 0 0
1 . 2 0 0

Fig. 7.2: Multi-Dimensional scaling on M1 descriptors, using the
Manhattan distance. Compounds are coloured according to logBMF.
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M1 has all interpretable and simple descriptors, namely: MlogP2,
nBT, F06[C-C], B02[N-O], which are briefly described below.

MlogP2
MlogP2 is the squared MlogP descriptor (Section 4.2.3), which
is the logKOW predicted by the Moriguchi model [66].

nBT
nBT is a constitutional descriptor that quantifies the total num-
ber of bonds. It is mainly related to molecular dimension (the
higher the dimension, the higher nBT), but also to molecular
cyclicity and to the presence of multiple bond/heteroatms (Fig.
7.3).

nBT = 31

nBT = 25 nBT = 29

nBT = 19

nAT = 32
nC = 10

nAT = 26
nC = 10

nAT = 18
nC = 10

nAT = 26
nC = 19

a c

b
OH

Fig. 7.3: Factors that influence nBT descriptor, given a molecule
with 10 non-H atoms: (a) presence of multiple bonds, (b) molecular
cyclicity, (c) presence of heteroatoms. Total number of atoms (nAT)
and of carbon atoms (nC) are also reported.
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B02[N-O]
B02[N-O] [110] is equal to 1 if there is at least one pair of N
and O atoms separated by 2 bonds.

F06[C-C]
F06[C-C] is a 2D atom pairs descriptor [110], which counts the
occurrence of C atoms separated by 6 bonds. It depends on
molecular dimension, branching and presence of heteroatoms
(Fig. 7.4).

F06[C-C] = 3
a

c

b

nSK = 10
nC = 09

OH

F06[C-C] = 4

nSK = 10
nC = 10

F06[C-C] = 6

nSK = 12
nC = 12

F06[C-C] = 0

nSK = 12
nC = 12

Fig. 7.4: Effect on F06[C-C] descriptor of: (a) presence of heteroatoms,
(b) molecular dimension, (c) molecular branching. Total number of
non-H atoms (nSK) and of carbon atoms (nC) are also reported.

Mechanistic Interpretation An easy model interpretation was
allowed by a Principal Component Analysis (PCA [144]), a mul-
tivariate technique for data visualization and dimensionality
reduction. PCA linearly combines the variables into new or-
thogonal ones (Principal Components, PCs), such that the first
PC explains the largest data variance, the second one (orthogo-
nal to the first) the second largest variance and so on. In this
way, one can observe and interpret the relationship among the
variables, the objects and the PCs.
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Fig. 7.5: PCA on M1 descriptors + experimental response: (a) loading
plot, (b) score plot. Compounds are coloured according to logBMF
(from white to black).

To perform the PCA, the compounds were described by the 4
model variables plus the logBMF, which was added to stretch the
results along the direction of experimental response variation.
The 80% of the variance was explained by the first two PCs,
which were thus analysed in depth. The other PCs contain only
marginal information, as they explain less than 13% of variance
each.
The contribution of each variable to each PC is quantified by the
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loadings (Fig. 7.5a), the higher (in absolute value), the greater
the contribution. In particular:

• MlogP2 is relevant for both the PCs. It increases from the
bottom-right to the top-left part of the PC1-PC2 space and
it is the variable mostly correlated with logBMF.

• F06[C-C] and nBT are high for high values of PC1 and PC2,
i.e. they increase from the bottom-left to the top-right part.
This corresponds to an increase of branching/cyclicity,
number of heteroatoms and of multiple bonds, while
molecular size dimension increases in the opposite di-
rection;

• Non-null B02[N-O] correspond to positive values of PC1
and negative values of PC2. Thus, compounds with B02[N-
O] will lie in this portion of the PC space.

The logBMF decreases from the top left to the bottom right part
of the score plot, in the same direction of MlogP2 variation. As
for the bioconcentration, the dietary bioaccumulation is directly
proportional to the lipophilicity, since affinity with lipids is
responsible for uptake/storage within lipid tissues. However,
unlike the bioconcentration, the logBMF is proportional to the
squared KOW value. This means that the compounds with very
small negative MlogP and those with very large positive MlogP
will have similar BMF values. In other words, also compounds
that are very hydrophilic can have high BMF values and this
can be ascribed to a preferential storage within organism water
phases, such as blood ([104], [108]).

The variation of nBT and F06[C-C] (Fig. 7.5b) indicates that
the logBMF tends to be higher for small molecules, with a high
density of heteroatoms/multiple bonds and a high degree of
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branching/cyclicity. This suggests that increasing molecular size
reduces the dietary bioaccumulation, as already hypothesized
for the bioconcentration ([112], [113], Chapter 4). The increase
of BMF with increasing heteroatoms/multiple bonds density
may be connected to increased interactions with tissues.

Finally, the presence of at least one pair of N and O at lag 2
(B02[N-O] = 1) leads to a remarkable decrease of the BMF. All
the compounds with B02[N-O] = 1 have very low BMF values
(logBMF < −1.92), in agreement with what found by Arnot
and co-authors [117], which identified several fragments with
N and O at lag 2 as responsible for a significant increase of fish
biotransformation rates.

Applicability Domain Assessment One of the most common
ways to define the model AD is to use a distance-based approach,
i.e. to delimit the model chemical space through a threshold on
the distance of new compounds from the training data. Chemi-
cals falling within the delimited space are hypothesised to be
sufficiently similar to the model data to meet its theoretical
assumptions, while too diverse compounds will be probably
unreliably predicted.

M1 is based on a distance approach in itself and, thus, its set-
tings were used for AD assessment. The average Manhattan
distance of each compound from its k (9) neighbours was used
to quantify its similarity to the bulk of the training data. The
threshold was optimized in cross-validation as the best com-
promise between Q2

cv and number of non-predicted compounds
(Fig. 7.6). The chosen threshold was 4.3, which (1) improved
the statistics on the test set and (2) led to better results than
the maximum and minimum distance values (Table 7.3).
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Tab. 7.3: Applicability Domain assessment for M1 according to a
threshold on average (Aver), minimum (Min) and maxi-
mum (Max) distance from the k neighbours; d* = selected
threshold.

Criterion CV TEST
Rule d* RMSE Q2

cv %out RMSE Q2
ext %out

None – 0.55 0.74 – 0.54 0.75 –
Aver 4.3 0.53 0.75 3.00 0.48 0.80 7.41
Min 0.8 0.53 0.76 8.13 0.48 0.81 14.81
Max 2.1 0.53 0.75 2.50 0.51 0.77 1.85
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Fig. 7.6: Model M1: AD assessment. Black lines denote Q2
cv and

percentage of training compounds outside the AD (% out) according
to the average Manhattan distance from the k neighbours (threshold).
The vertical line represents the chosen threshold (4.3). Statistics on
the test set (grey lines) are also reported.
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2. Model M2

M2 is an OLS model selected by RSR and it is comprised of 7
molecular descriptors. The model can be expressed as follows:

logBMF = + 1.66 ·X0Av − 0.33 ·X1Per − 0.11 · SaaaC

+ 0.89 · V E1_B(m) + 0.04 ·MLOGP2

− 1.26 ·B02[N-O]− 1.42 ·B03[N-Cl]− 4.60
(7.9)

M2 shares two of its descriptors with M1 (MlogP2 and B02[N-
O]). This suggests the relevance of these variables to model the
BMF, as they were found independently by the two approaches.
The other descriptors are briefly described below.

X0Av
X0Av is the average valence connectivity index of order 0 [105],
calculated as follows:

X0Av =
∑K

j=1(δV
j )1/2

K
(7.10)

In analogy with X2Av (Eq. 4.7), j runs over all the K paths of
order 0, i.e. on the K non-hydrogen atoms; δV is the atomic
valence connectivity index (Eq. 4.8). X0Av is the mean atomic
valence connectivity index of the molecule.
This descriptor accounts for molecular shape, presence of het-
eroatoms, as well as of double and triple bonds. In particular,
X0Av tends to increase when increasing molecular and branch-
ing and decreases when increasing the number of heteroatoms
and multiple bonds (Fig. 7.7). Being an average value, it is not
much sensitive to molecular dimension.
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X1Per
X1Per is a perturbation connectivity index [145] that uses the
perturbation delta value (δp) instead of δV , as follows:

X1Per =
K∑

j=1

n∏
i=1

(δp
i )1/2

j (7.11)

where δp
i is the perturbation delta value, which is the valence

vertex degrees δV modified by the atomic environment, as fol-
lows:

δp
i = δV

i + 0.1 ·
nSK∑
j=1

aij · δV
j (7.12)

aij is the element of the adjacency matrix (equal to one only for
adjacent vertices and zero otherwise) and nSK is the number
of non-H atoms. Thus, the perturbation term of an atom is the
sum of the valence vertex degrees of its first neighbours. In
analogy with X0Av, X1Per is sensitive to heteroatoms, shape and
presence of multiple bonds. In particular, it decreases when
increasing the branching, the number of heteroatoms and of
multiple bonds and increases when increasing the molecular
dimension (Fig. 7.7).

SaaaC
SaaaC is the sum of the electrotopological state of the atoms of
type --C(--)-- [146]. For each atom, the electrotopological state
is defined as follows:

Si = Ii + ∆i = Ii +
nSK∑
j=1

Ii − Ij
(dij + 1)k

(7.13)

where Ii is the intrinsic state of the ith atom (Eq. 7.14) and
∆i is the perturbation of all other atoms on the ith atom; dij

is the topological distance between the ith and the jth atoms;
nSK is the number of non-hydrogen atoms in the molecule.
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X0Av  = 0.854
X1Per = 1.639

nSK = 4
nC = 4

nSK = 6
nC = 6

X0Av  = 0.859
X1Per = 2.161

nSK = 6
nC = 6

X0Av  = 0.833
X1Per = 1.794

HO

nSK = 6
nC = 5

X0Av  = 0.741
X1Per = 1.567

HO

X0Av  = 0.733
X1Per = 2.463

nSK = 8
nC = 7
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nSK = 8
nC = 7

X0Av  = 0.753
X1Per = 2.325
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d a

c

Fig. 7.7: Variation of X0Av and X1Per according to: (a) increasing
molecular size, (b) presence of multiple bonds, (c) presence of het-
eroatoms, (d) branching.

The exponent k tunes the influence of distant atoms; here k =
2. The intrinsic state (Ii) is defined as follows:

Ii = (2/Li)2 · δV
i + 1

δi
(7.14)

where Li is the principal quantum number, δV is the number
of valence electrons (valence vertex degree, Eq. 4.8) and δ

is the number of sigma electrons (simple vertex degree) of
the ith atom in the H-depleted molecular structure. SaaaC is
influenced by the presence of multiple bonds and heteroatoms
and has non-zero values for highly branched and/or polycyclic
compounds.
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VE1_B(m)
VE1_B(m) is a 2D matrix based [147] descriptor, derived from
a Burden matrix weighted by mass (B(m)). B(m) derives from
a H-depleted molecular graph as follows: (1) the diagonal
elements are atomic carbon-scaled masses (mi/mC); (2) the
off-diagonal elements corresponding to pairs of bonded atoms
are the square roots of conventional bond orders1; (3) entries
corresponding to terminal bonds are augmented by 0.1; all
other matrix elements are set at 0.001. The eigenvalues of the
matrix are then computed to calculate the descriptor, as follows:

V E1_B(m) =
nSK∑
i=1
|li| (7.15)

where li is the ith coefficient of the last eigenvector of B(m) and
nSK is the number of non-H atoms. VE1_B(m) depends in a
complex way from molecular size, shape, presence of heavy het-
eroatoms and of multiple bonds. In particular, (1) the presence
of heavy heteroatoms will increase the value of the diagonal
elements of B(m), (2) molecular size will increase the size of
B(m), (3) the other features will increase the off-diagonal values
(Fig. 7.8).

B02[N-O] and B03[N-Cl]
B02[N-O] and B03[N-Cl] are 2D atom pairs descriptors [110],
the former is equal to 1 if there is at least one pair of N and 0
atoms separated by 2 bonds, and 0 otherwise; the latter is 1 if
there is at least one pair N-Cl separated by three bonds.

1equal to 1, 2, 3 for single, double and triple bonds, respectively, and 1.5 for
aromatic bonds
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B(m) = 

OH

VE1_B(m) = 2.368 VE1_B(m) = 2.111

VE1_B(m) = 2.152 VE1_B(m) = 2.137

a. b

c. d.

.

B(m) = B(m) = 

B(m) = B(m) = 

VE1_B(m) = 2.172

Atoms C C C C C
C 1 1.1 0.001 0.001 0.001
C 1.1 1 1 0.001 0.001
C 0.001 1 1 1 0.001
C 0.001 0.001 1 1 1.1
C 0.001 0.001 0.001 1.1 1

Atoms C C C C C C
C 1 1.1 0.001 0.001 0.001 0
C 1.1 1 1 0.001 0.001 0
C 0.001 1 1 1 0.001 0
C 0.001 0.001 1 1 1 0
C 0.001 0.001 0.001 1 1 1.1
C 0.001 0.001 0.001 0.001 1.1 1

Atoms C C C C C
C 1 1.1 0.001 0.001 0.001
C 1.1 1 1 0.001 0.001
C 0.001 1 1 1.414 0.001
C 0.001 0.001 1.414 1 1.1
C 0.001 0.001 0.001 1.1 1

Atoms C C C C C
C 1 1.1 0.001 0.001 0.001
C 1.1 1 1 0.001 0.001
C 0.001 1 1 1.1 1.1
C 0.001 0.001 1.1 1 0.001
C 0.001 0.001 1.1 0.001 1

Atoms C C C C O
C 1 1.1 0.001 0.001 0.001
C 1.1 1 1 0.001 0.001
C 0.001 1 1 1 0.001
C 0.001 0.001 1 1 1.1
O 0.001 0.001 0.001 1.1 1.332

Fig. 7.8: Factors that influence B(m) matrix and the corresponding
VE1_B(m) descriptor: (a) molecular size, (b) multiple bonds, (c)
heteroatoms, (d) branching.

Mechanistic Interpretation In the case of OLS models, the con-
tribution of the descriptors can be easily interpreted through the
standardized regression coefficients (Fig. 7.9), which quantify
(a) the relevance of each descriptor (the higher the absolute
value, the more relevant), (b) the proportionality with the mod-
elled response (direct proportionality for positive coefficient
values and inverse proportionality for negative values).
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Fig. 7.9: Standardized regression coefficients of M2 descriptors,
sorted according to their relevance (the higher the absolute value, the
more relevant).

The most relevant descriptor is X1Per, which is inversely pro-
portional to the logBMF (negative coefficient). X1Per decreases
when increasing the molecular branching/cyclicity, the number
of heteroatoms and of multiple bonds. According to the coeffi-
cient, these factors lead to increased logBMF values. This is in
agreement with what noted for model M1. The second most rel-
evant descriptor is MlogP2, leading to the same considerations
of the previous paragraph.

Despite VE1_B(m) and X1Per have a similar chemical meaning
(i.e. they decrease when increasing molecular branching and
number of multiple bonds), they have opposite standardized
coefficient. VE1_B(m) is more sensitive to molecular linearity
and to the presence of atoms with high mass, as it is based on a
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Burden matrix weighted by mass. All the molecules have similar
VE1_B(m) values, with median and standard deviation equal
to 3.587 and 0.575, respectively, but this descriptor has spikes
for linear siloxanes and perfluorinated alkyl acids (PFAAs). The
former also have high values of X1Per, while the latter have low
X1Per values. This means that for siloxanes, high VE1_B(m) val-
ues are counterbalanced by high X1Per values, while PFAAs have
low X1Per values and, correspondingly, high logBMF. These con-
siderations suggest that the structural features encoded within
X1Per and VE1_B(m) are relevant to understand the bioaccu-
mulation behaviour of PFAAs.

The increase of SaaaC value leads to a decrease of logBMF.
Only 31 molecules have SaaaC larger than 0 and all have at
least two aromatic rings. 28 out of 31 are polycyclic aromatic
hydrocarbons (PAHs), and this in agreement with what observed
in Chapters 4 and 6. In other words, as for the bioconcentration
[99], the fish metabolism affects their final BMF.

Non-null values of N-O at lag 2 and of N-Cl at lag 3 lead to a
remarkable decrease of the logBMF, of 1.26 and 1.42 log units,
respectively (Eq. 7.9). Similarly to B02[N-O], the relevance
of the fragment B03[N-Cl] could be related to a destabilizing
effect of N and Cl at topological distance of 3, which could lead
to a faster biotransformation.

Part of the information encoded within X0Av overlaps with
X1Per, but their coefficients are opposite. In particular, they
differ for their sensibility to: (a) molecular size, which leads to
an increase of X1Per but not of X1Av, and (b) branching, which
increases X0Av and decreases of X1Per. This confirms that the
logBMF tends to increase with increasing branching and agrees
with what noticed on M1 descriptors.
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Applicability Domain Assessment As for M1, a distance-based
approach was used to assess the AD. The distance of a given
chemical from the center of an OLS model can be quantified by
the leverage. The leverage matrix (H) is calculated as follows:

H = Xᵀ(Xᵀ
trXtr)−1Xᵀ (7.16)

where Xtr is the model matrix; X can be the model matrix or a
matrix of external data. The diagonal elements of H (hi,i) are
the leverage values of the ith chemical. There is no general rule
for the determination of the threshold leverage. A warning value
is generally three times the average of the training set leverages
[44]. Here, a data-driven threshold was optimized from 1.5
to 20 times the average leverage. The lowest threshold giving
the highest Q2

cv was chosen (10.5 times the average leverage)
and the Q2

ext increased from 0.72 to 0.74, by discarding one test
compound (Fig. 7.10).
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Fig. 7.10: Williams plot for model M2. Standardized residuals in
prediction are compared with the leverage. The vertical line is the
optimized warning leverage (h* = 0.525). Horizontal lines are ±σ.
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3. Consensus model

The consensus predictions were obtained as the arithmetic mean
of the values predicted by M1 and M2. The consensus counter-
balances the weaknesses of the single sub-models, resulting in
an increased performance (Fig. 7.11).

- 4 - 2 0 2

- 4

- 2

0

2
log

 BM
F pre

d

l o g  B M F e x p

 M 1
 M 2
 C o n s

 

 

log
 BM

F pre
d

l o g  B M F e x p

 M 1
 M 2
 C o n s

- 4 - 2 0 2

- 4

- 2

0

2
a                                      b

 

Fig. 7.11: Consensus model predictions, experimental vs predicted
BMF. Predictions are compared with those of the sub-models (M1 and
M2) on: (a) training set compounds, (b) test set compounds. Dashed
lines represent the perfect fit (experimental = predicted).

The AD of the sub-models can be used to assess a global AD for
their consensus. In general, one can think that:

• Compounds within the AD of both the models will be the
most reliably predicted by the consensus(Table 7.4a).

• Compounds within at least one of the two ADs will be less
reliably predicted, and the response to be used is that of
the model with the appropriate AD (Table 7.4b).
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• The predictions of compounds outside both models ADs
should not be considered.

The performance of the consensus improves on the test set when
only the compounds inside the AD of both models are consid-
ered. On the training set, no improvement occurs, as all the
compounds are inside the AD of M2. The predictions on the
compounds within the AD of at least one model are slightly
worse, as they rely only on the predictions of one model (Table
7.4b). Thus, the chosen option was the strictest, i.e. to retain
compounds within the AD of both the models.

Tab. 7.4: AD assessment for the consensus model. Statistics are re-
ported for (a) compounds within the AD of both the models,
(b) for the compounds within the AD of at least one model,
in comparison with those without AD assessment (c). RMSE,
R2, Q2 and percentage of compounds outside the AD (%o)
are reported.

FIT CV TEST
RMSE R2 %o RMSE Q2 %o RMSE Q2 %o

a 0.48 0.80 2 0.50 0.78 3 0.43 0.84 9
b 0.47 0.80 0 0.50 0.79 0 0.47 0.81 0
c 0.47 0.80 – 0.50 0.78 – 0.46 0.82 –

7.3 Conclusions

This chapter presented a set of QSAR models to predict the
fish BMF of organic chemicals. The models were thoroughly
validated and assessed for their applicability domain, in order to
allow for a reliable application, especially in regulatory contexts.
The models have a satisfactory performance and a mean error
comparable with the experimental BMF error, confirming their
potential to be used as additional tool for bioaccumulation
assessment.

7.3 Conclusions 121



Special attention was posed to understanding the selected molec-
ular descriptors, in order to derive insights into the bioaccumu-
lation through dietary routes.

The most important descriptor was MlogP2, i.e. the squared
KOW predicted by the model of Moriguchi [66]. This is the
biggest difference with BCF models, which mainly rely on KOW.
The fact that MlogP2 is the principal descriptor highlights that
also compounds with very negative KOW values can accumulate
through diet. It means that dietary bioaccumulation can occur:
(a) for very hydrophobic compounds, probably within lipid tis-
sues, and (b) for very hydrophilic compounds, probably through
the organism aqueous phases, such as blood.

In analogy with the BCF, the molecular size seems to be a
limiting factor for the BMF and it is probably linked to a reduced
membrane permeation. However, unlike BCF, the branching
leads to an increase of accumulation through diet for small
molecules.

Some N-containing structural fragments (B02[N-O] and B03[N-
Cl]) resulted to be relevant for a decreased BMF, probably due
to increased biotransformation rates, as well as the presence of
many condensed aromatic rings.

Finally, the increase of the number of heteroatoms and multi-
ple bonds leads to an increased bioaccumulation through diet,
potentially due to increased interactions with tissues.
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Part IV

Conclusions





Conclusions

This thesis melded some well-established QSAR and chemomet-
ric techniques with some newly developed tools to target the
in silico prediction of aquatic bioaccumulation. The aim was to
detect, analyse and address some of the current open problems
in the field. Fish were chosen as the model organism because
of their key role in the food chain (e.g. as a food source for
humans) and the availability of multi-species data.

The project was structured in two parts, addressing (1) the bio-
concentration of chemicals, which, despite its being extensively
modelled, still has several limitations, (2) the dietary bioac-
cumulation of chemicals, for which there is a general lack of
models.

The analysis of nine benchmark models for BCF revealed that,
in most of the cases, only lipid-driven bioconcentration is pre-
dicted well and that other mechanisms affecting the biocon-
centration could be neglected. This offered the opportunity to
investigate the mechanisms of bioconcentration, by developing
a data-driven classification scheme. The developed tool was
then used to combine the advantages of existing models on each
mechanistic class, in order to maximize the accuracy of BCF
prediction towards unknown data.
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The comparison of BCF and BMF data highlighted that, in some
cases, the BMF could be relevant in assessing the biomagnifi-
cation potential of chemicals within the food chain. For this
reason, the BMF was modelled in a QSAR setting, in compli-
ance with the OECD principles for QSAR validity and regulatory
acceptance. To the best of our knowledge, this is the first BMF
model for heterogeneous sets of chemicals.

The mechanistic interpretation of the selected molecular de-
scriptors allowed to investigate and rationalize the structural
features that may be responsible for the biomagnification of
organic chemicals within the food web. This could offer a
theoretical basis for predicting the environmental fate of emerg-
ing contaminants, such as Perfluorinated compounds. Salient
features of the developed approaches are simplicity and inter-
pretability, which can allow for a widespread and transparent
application, especially for regulatory purposes.

The future perspectives will be to refine the developed models
further. One possibility will be to combine the classification
scheme of Chapter 4 with some metabolism-related models,
in order to take into account the BCF of the metabolites, if
known. Another perspective will be to combine the biocon-
centration and the dietary bioaccumulation assessments. For
instance, the approach of Chapters 4 and 5 could be used to
understand which bioaccumulation route is more relevant for
a given compound. This could improve the understanding of
the biomagnification process and of associated hazards, and the
regulatory assessment of bioaccumulation.
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