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Abstract: The current definition of a conditional probability enables one to update probabilities only
on the basis of stochastic information. This paper provides a definition for conditional probability
with non-stochastic information. The definition is derived by a set of axioms, where the information
is connected to the outcome of interest via a loss function. An illustration is presented.
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1. Introduction

The theory of conditional probability is a well-established mathematical theory that provides
a procedure to update probabilities by taking new information into account. The new work in this
paper is motivated by the fact that such a procedure is available only if the information which is used
to update the probability concerns stochastic events, that is, events to which a probability is assigned.
In other words, such information needs to be already included in the probability model. The statistical
implications are most pertinent to Bayesian inference where non-stochastic information, obtained by
experts for example, is often employed.

To set the scene, Ω denotes the set of possible outcomes of an experiment, which we assume is
finite, p(ω) is a probability mass function on Ω, and I is an arbitrary piece of information about the
unknown outcome of the experiment, i.e., information for which one would consider revising p(ω).
We argue that there must be a formal way to derive the updated probability mass function, which
we write as pI(ω). For example, Ω might represent a horse race and a bookmaker has set p. It starts
to rain, so I = “it is raining”, and the bookmaker revises p to pI . One imagines that the bookmaker
does so from experience and uses no formal rule to implement the change. This lack of a formal rule
then questions the extent of the relevance of subjective probability if one can appeal to no formal
mechanism for revising belief distributions with arbitrary, yet relevant, information. Recall that the
formal Bayes conditional probability rule requires the specification of p(I|ω) for all possible pieces of
information I that one could receive–to us, at least, this is an impossible task.

It is impossible to set the probabilities p(I|ω) a priori for all possible I, yet this is required for the
validation of the mathematical implementation of the Bayes rule. However, setting a loss function
l(ω, I) once I has been received, is, we argue, a totally viable task. This would establish the loss,
on some scale, e.g., monetary, if the elementary event ω occurs once I has been received. Our formal
updating rule relies on the construction of such l(ω, I).

I is a piece of information for which it is possible to construct a loss function l(·, I) on Ω that is
valued into [0, ∞] and is not identically infinite. So, l(ω, I) is the loss that the experimenter assigns
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to the outcome ω in Ω when holding the piece of information I. We look at an illustration involving
such l(ω, I) later on in the paper. Once I has been received, the probability of updating is P, where
P(B) = ∑ω∈B p(ω) for every B ⊂ Ω.

For example, if I is the information “event B ⊂ Ω has occurred” and

l(ω, I) =


∞ ω /∈ B

0 ω ∈ B
(1)

then our formal rule will coincide with the usual definition of conditional probability.
When the standard definition of conditional probability does not apply, e.g., I is not such

a statement or B is not a subset of Ω, for example, an alternative definition based on a mathematical
decision theoretic framework can be used. When information received is non-stochastic, but relevant
to an outcome of interest, we cannot use a probability distribution and so we need an alternative way
to connect the information I with the outcome of interest ω. We do so using loss functions and a set
of axioms.

This paper provides a definition for conditional probability on the basis of I. Reference [1]
addressed this issue considering the minimization of a cumulative loss function which involved
g-divergences. In this paper, instead, the definition of conditional probability is solely based on a set
of axioms. This idea was developed by reference [2] who defined a framework for general Bayesian
inference and discussed its application to important statistical problems. The present paper also
addresses the issue of calibrating the conditional probability with non-stochastic information.

1.1. Relationship to the Literature

In the literature, alternative definitions of conditional probability, such as the Jeffrey’s Rule of
conditioning, are given where new information is not put in terms of the occurrence of an event
included in the model. These definitions rely on the assumption that information can be given in the
form of a constraint on the probability. Constraints considered are of the type

∑
ω∈Ω

g(ω)pI(ω) > 0, (2)

where g is a measurable real function on Ω, and pI is the updated probability function. The idea
is to minimize the Kullback–Leibler divergence subject to the constraint (2), which represents the
information I. This problem can be solved using Lagrange multipliers.

For more detail about conditionalization based upon constraints on the conditional distribution,
see references [3–8]. Our approach is different as we can deal with more types of information. On the
other hand, our definition can encompass potentially arbitrary information about the outcome; all we
need is to construct a loss function l(ω, I) for each ω in Ω once I has been received.

1.2. Motivation

The need for a definition of conditional probability outside of the usual set-up is the avoidance of
paradoxes where one knows event B has occured yet is not a subset of Ω. Paradoxes arise when B is
not deemed to be part of the stochastic model yet is subsequently forced to be so.

Such difficulties arise in different puzzles, such as, for instance, Freund’s puzzle of the two aces,
introduced by reference [9]. For other puzzles about conditional probability, see, for instance, reference
Gardner [10].

These puzzles have been widely used to discuss the concept of conditional probability. According
to reference [11], such a concept is justifiable only on the basis of “a set of rules that tell, at each step,
what can happen next”, which he calls “protocol”. For conditioning on an event B, he asserts that “we
are assuming B is in your probability model, i.e., in the field of events to which you assign probabilities.
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So it is implicit in the principle of total evidence that your probability model should include a model
for what you learn”. On the other hand, Hutchison [12,13] emphasizes that the updating process needs
to take into account the circumstances under which the truth of I was conveyed. Also, Bar–Hillel
and Falk [14] claims that knowing how knowledge was obtained is “a crucial ingredient to select the
appropriate model”. These authors present different views about the concept of conditionalization,
but all agree on the fact that there would not be a problem if it was known how the information I had
become available and therefore, one could build a model including I.

The concept of conditional probability distributions is certainly appropriate as a procedure to
update probabilities on the basis of any new information that has already been included in the
probability model. However, it can be difficult to construct a model that considers all possible relevant
information that could become available in the future. Therefore, a problem arises when one obtains
some new and possibly unexpected information and wants to use it to update a probability distribution.
Indeed, it does not seem appropriate to assess the probability of something which has been already
observed. Our basic assumption is that the information I can be connected to the outcome of interest
via a loss function l(ω, I). In this way, it is possible to update the probability P, even if I is some new
unexpected information that was not included in the probabilistic framework.

Clearly, we are dealing with information about outcomes of interest which take many forms.
It is well-known that Bayesian inference can rely on expert opinions which often take the form of
non-stochastic information. In particular, our framework allows coherent updates of probabilities
involving such information, and hence, the practical relevance of our framework to Bayesian inference.

2. Results

This section reports the current definition of conditional probability and presents and motivates
our definition for conditional probability with non-stochastic information.

2.1. The New Definition

If p(ω) represents prior beliefs about ω, then we argue that a valid and coherent update of p(·)
on the basis of I is the posterior, pI(·), where

pI(ω) =
exp{−λl(ω, I)} p(ω)

∑ω′∈Ω exp{−λl(ω′, I)} p(ω′)
, (3)

and λ is a positive constant.
Looking at this form, it seems that we are proposing the equivalent of a Bayes rule with

p(I|ω) = exp{−λl(ω, I)}. (4)

This is correct only if the piece of information I is an element of a known space of possible
outcomes. Indeed, only in such a case would it be possible to assess a probability distribution in
such a space.

In our proposal, a much less complex framework is considered, since it is required to just set the
loss l(ω, I) once I has been received. Our axioms which lead to (3) do not regard (4) as the probability.

We shall now go into the details of how some natural assumptions imply (3). The following
axioms are considered:

1. The posterior form is given by
pI(·) = ψ(l(·, I), p(·)),

for some function (ψ). Since l(·, I) and p(·) are all that are available and set, it is clear that the
update must solely depend on these functions. We are, hence, asking for the unique ψ which
provides the update for all Ω, i.e., Ω invariant. This is a reasonable requirement since how one
updates should not depend on Ω.
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2. If the piece of information (I) is made of two independent pieces of information, I1 and I2, in the
sense that l(ω, I) = l(ω, I1) + l(ω, I2), for every ω in Ω, then the posterior probability satisfies
the following:

ψ

(
l(·, I2), ψ

(
l(·, I1), p(·)

))
≡ ψ

(
l(·, I1) + l(·, I2), p(·)

)
. (5)

This ensures we end up with pI1,I2(ω) as the same object whether we update with (I1, I2) together
or {I1, I2} one after the other.

3. If l(ω, I) = ∞ for every ω ∈ Bc and some B ⊂ Ω, then

ψ(l(·, I), p(·))(ω) =

{
ψ(l(·, I)|B, pJ(B)(·))(ω) if ω ∈ B

0 if ω /∈ B,
(6)

where l(·, I)|B is the restriction of l(·, I) to B, J(B) is the information that B certainly occurs
or has occured, and pJ(B) is p restricted and normalized to B, i.e., pJ(B)(ω) = p(ω) 1(ω ∈
B)/ ∑ω∈B p(ω). In other words, outcomes with infinite loss are disregarded in the updating.

4. Lower evidence (larger loss) for a state should yield smaller posterior probabilities under the
same prior. So, if for some A ⊂ Ω, l(ω, I1) > l(ω, I2) for ω ∈ A ⊂ Ω and l(ω, I1) = l(ω, I2) < ∞
for ω ∈ Ac, then

∑ω∈A ψ(l(·, I1), p(·))(ω) < ∑ω∈A ψ(l(·, I2), p(·))(ω).

5. If l(ω, I) ≡ constant, then ψ(l(·, I), p(·)) ≡ p(·). That is, if the observation provides no
information about ω, since the loss function is a constant, then the posterior is the same as
the prior.

As a consequence of these, we have the following theorem:

Theorem 1. For |Ω| < ∞, with axioms 1 to 5, it is uniquely implied that

pI(ω) =
exp{−λl(ω, I)} p(ω)

∑ω′∈Ω exp{−λl(ω′, I)} p(ω′)
, (7)

for some λ > 0.

In order to prove Theorem 1, the following Lemma is useful.

Lemma 1. Let |Ω| < ∞. Axioms 1 to 5 imply:

6. If l̃(·, I) ≡ l(·, I) + c for some constant c, then ψ(l̃(·, I), p(·)) ≡ ψ(l(·, I), p(·)).
7. for any set B ⊂ Ω,

ψ(l(·, I), p(·))(ω)

∑ω′∈B ψ(l(·, I), p(·))(ω′) = ψ(l(·, I)|B, pJ(B)(·))(ω), (8)

for every ω in B. This means that whether we update the prior probability p(·) restricted to set B, or update
the prior probability p(·) and then restrict to set B, we obtain the same update.

Proof of Lemma 1. Combination of axioms 2 and 5 yield axiom 6. Indeed, one just needs to consider (5)
the case where the loss function l(·, I1) or l(·, I2) is constant.

Combining conditions 3 and 5, one obtains that updating with the loss (1) corresponding to
information J(B) yields the conditional probability pJ(B)(ω) = p(ω)IB(ω)/P(B) that is obtained
by restricting and normalizing the prior to B. Now, consider I1 = J(B) and let I2 be any piece of
information associated with a given loss function (l). The sum of the two corresponding losses is
infinite on Bc and coincides with l on B, which is the loss considered in condition 3. Therefore, based
on condition 2, condition 7 is obtained.
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Proof of Theorem 1. In the two points case, say Ω = {ω0, ω1}, the prior probability (p(·)) is
determined by a real number (z) in the unit interval (i.e., z = p(ω0)), and the loss l(ω, I) takes
only two values, say l0 and l1 (i.e., l(ω0, I) = l0, l(ω1, I) = l1). According to condition 6, we can replace
the pair (l1, l0) with (l1− l0, 0). Therefore, the posterior probability pI(·) is a function of l = l1− l0 and
z, say ψ̄(l, z). In order to proceed, it is convenient to think in terms of odds rather than probabilities.
So, if z = p(ω0), we can consider t = z/(1− z) (i.e., z = t/(1 + t)). We can do the same with the
posterior (pI(ω0)). The posterior odds, pI(ω0)/{1− pI(ω0)}, are a function of the loss difference (l)
and the prior odds (t), which we denote by φ(l, t).

To deal with the odds, (5) becomes

φ(l + h, t) = φ(l, φ(h, t)), (9)

where h is a replication of l with a possible different I. Moreover, with a constant loss, the posterior is
equal to the prior (condition 5), i.e.,

φ(0, t) = t, (10)

for every t > 0.
At this stage, we consider a prior with three mass points, say Ω = {ω1, ω2, ω3}. The prior is given

by {z1, z2, 1− z1 − z2} (i.e., p(ω1) = z1 and p(ω2) = z2), with l(ωi, I) = li, for i = 1, 2, 3. The loss can
be zero at one point without loss of generality (condition 6), so it takes values into the set {l1, l2, 0}.
Let us consider the updating rule, φ, for priors with just two mass points. We can use this to update
the conditional probability of {ω1} given {ω1, ω3}, i.e., z1/(z1 + z3). To this aim, we update the prior
with masses z1/(z1 + z3) and z3/(z1 + z3) considering just the loss values, (l1, 0), i.e., disregarding
the point ω2 with its loss (l2). In other words, we aim to obtain the right-hand-side of (8) and apply
condition 7 given by Lemma 1. t1,3 denotes the odds corresponding to the conditional probability of
ω1 given {ω1, ω3}, that is t1,3 = z1/z3. t1,3 is updated on the basis of the loss values (l1) and zero, i.e.,
with φ(l1, t1,3). Similarly, we define t1,2 = z1/z2 and t2,3 = z2/z3. We update t1,2 on the basis of l1
and l2, i.e., with φ(l1 − l2, t1,2) and t2,3 with φ(l2, t2,3). Clearly, t1,3 = t1,2t2,3, and this factorization of
conditional odds has to hold also after updating, i.e.,

φ(l1, t1,3) = φ(l1 − l2, t1,2)φ(l2, t2,3), (11)

where t1,3 = t1,2 · t2,3. Formally, this identity is a consequence of (8), i.e., updating the conditional
probability is the same as conditioning the updated probability. Since (11) must hold for every
t2,3, t1,2 > 0, and for every l1, l2 ∈ R,

φ(l1, ts) = φ(l1 − l2, t)φ(l2, s),

for every t, s > 0 and l1, l2 ∈ R. If l2 = 0, and say l1 = l, recalling (10),

φ(l, ts) = φ(l, t)s,

for every t, s > 0 and every real l. Letting t = 1, we find that

φ(l, s) = φ(l, 1)s, (12)

for every s > 0 and every l ∈ R. A combination of (9) and (12) yields φ(l + h, 1) = φ(l, φ(h, 1)) =

φ(l, 1)φ(h, 1) for every h, l ∈ R which, in turn, implies by monotonicity that φ(l, 1) = exp(−λl) for
some λ ∈ R. Indeed, according to condition 4, φ(l, 1) is a monotone, not an increasing function of l.
This implies that λ must be positive. Hence,

φ(l, t) = exp(−λl)t, (13)
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for every l ∈ R and every t > 0. In this way, we are basically done with the two points case.
Let us now consider the general finite case. We want to update the prior p(·) with mass points

at {ω1, . . . , ωm} given by {z1, . . . , zm−1, 1 − (z1 + . . . , zm−1)}, where z1, . . . , zm−1 are non-negative
and their sum is less than or equal to one, and it is convenient to set zm := 1− (z1 + · · · + zm−1).
In terms of odds, the prior is given by the vector (t1, . . . , tm−1) (being ti = zi/(1− zi), or equivalently,
zi = ti/(1 + ti) = 1− 1/(1 + ti), i = 1, . . . , m − 1), where ti ≥ 0 and t1/(1 + t1) + · · · + tm−1/(1 +

tm−1) ≤ 1. Here, it is convenient to set tm := {{1− t1/(1 + t1) + . . . + tm−1/(1 + tm−1)}−1 − 1}−1.
Moreover, we consider an Rm−1 valued function φ(l, t) = (φ1(l, t), . . . , φm−1(l, t)), which provides
the vector of the updated odds as being l = (l1, . . . , lm) and t = (t1, . . . , tm−1). Now the question
is how we could recover φ from φ, where the latter gives the updating rule for the two points
case. Recall the notation used for the conditional odds, i.e., ti,j = zi/zj, is the odds corresponding
to the conditional probability of {ωi} given {ωi, ωj} for a distinct i, j = 1, . . . , m. We can see that
tj = zj/ ∑i 6=j zi = (∑i 6=j ti,j)

−1. According to (8), this identity will also have to be satisfied by the
updated odds. Since we update ti,j with φ(li − lj, ti,j), we must have

φj(l1, . . . , lm; t1, . . . , tm−1) = (∑i 6=j φ(li − lj, ti,j))
−1,

which by (13) becomes:

φj(l1, . . . , lm; t1, . . . , tm−1) = exp(−λlj)(∑i 6=j exp(−wli)ti,j)
−1. (14)

ti,j = zi/zj, (14) becomes

φj(l1, . . . , lm; t1, . . . , tm−1) =
exp(−λlj)zj

∑i 6=j exp(−λli)zi
,

and the updated probability of {ωj} is

1− (1 + φj(l1, . . . , lm; t1, . . . , tm−1))
−1 =

exp(−λlj)zj

∑m
i=1 exp(−λli)zi

.

In this way, we have shown how to extend our coherent updating rule from the two points case
to the general finite case.

The proof implies the existence of λ > 0, and this is no surprise since loss functions are only
defined up to scalar factors. Hence, the setting of λ is a calibration issue and to set this, we need
more information that is not associated with any specific information (I). So, l(ω) is set to be the loss
function that contains initial beliefs at the outset before any further information (I) is obtained, and this
l(ω) is defined to be on the same scale as any l(ω, I). We regard l(ω) = l(ω, I0), where I0 is the prior
information used to set p.

The prior expected loss is then defined by

L = λ ∑
ω∈Ω

l(ω) p(ω).

Now, entropy is also regarded as an expected loss based on the self-information loss function
−log p(ω). Hence, we also have expected loss/entropy which is measured as

E = − ∑
ω∈Ω

p(ω) log p(ω),
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and so calibration is achieved by matching these expected losses, so that

λ = −∑ω∈Ω p(ω) log p(ω)

∑ω∈Ω l(ω)p(ω)
.

Finally, in this section, we note that it is quite straightfoward to extend the uniqueness argument to
all countably infinite Ω, which replaces the uniqueness argument for all Ω. However, we need more
work to extend separate uniqueness to the general Ω.

2.2. An Illustration

The loss function l is chosen by the decision-maker on the basis of the available information.
Such information sometimes happens to be stochastic, i.e., belonging to a set B of outcomes to which
a probability is assigned. If this is the case, one should update the probability by means of the usual
conditional probability. It is tantamount to use the loss function (1) in (3). If the available information
is not stochastic, then one can resort to the approach described in the present paper to properly assess
the loss function l. A simple and very concrete example is now presented. Consider a horse race
in which six horses participate. In order to decide how to bet, one assesses the probability for each
horse to win. p(j) demotes the probability that horse number j wins for j ∈ {1, . . . , 6}. In this example,
the elements of Ω are the numbers corresponding to the horses participating in the race, of which one
will win.

Before the race begins, it starts raining. Since conditions have changed, the probabilities need to
be updated. It is problematic to pursue this aim by resorting to the current definition of conditional
probability. In fact, this requires knowledge of the probability that it rains and that the horse number j
wins. As an alternative, one could calculate the conditional probabilities of a win for each horse by
applying Bayes’ theorem, which requires the probability that it rains given the win of horse j. However,
it is raining and the race has not yet been run!

It is therefore appropriate to resort to the definition of a conditional probability distribution given
in this paper. So, p(j) is the prior probabilty that horse j wins and I = is the probability that “it is
raining”. l(j) be the loss function, i.e., the loss incurred to the bookmaker, that is, the governor of the
probabilities, if horse j wins. To elaborate, such an l(j) could be the assessed loss if the bookmaker
puts all the takings received or a fixed amount on horse j to win.

The bookmaker then, on the same scale, assesses l(j, I) for each j which adjusts the loss l(j).
Obviously, a higher score will be given to those horses whose ability to run is more affected by the rain.
In this way, one can use the ideas for setting λ to get l̃(j) = λ l(j, I). The updated probability that the
j-th horse wins is revised to

pI(j) =
exp{−l̃(j) p(j)}

∑6
i=1 exp{−l̃(i) p(i)}

,

for j = 1, . . . , 6.

3. Discussion

We have established a framework in which we can update probabilities in the light of general,
i.e., non-stochastic, information. Given that we cannot connect the information and the outcome of
interest via a probability model, we do so through a loss function. Minimizing a cumulative loss
function involving the information on one side and the probability distribution on the other yields the
updated probability distribution. When the information is stochastic, we employ the self information
loss function; the solution then reverts to the standard definition of conditional probability.

We believe the framework has direct implications for Bayesian inference where “word of mouth”
information from experts is often obtained. It is interesting to note that our framework allows this
information to update p at any point. Usually, the non-stochastic information I comes before the
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stochastic information given by an event B included in the probability framework, but in our approach,
we can have B before I.
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