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A B S T R A C T

When time series are observed with noise, the popular Augmented Dickey–Fuller (ADF) unit root test and
Johansen’s cointegration test are oversized: the ADF tends to conclude for stationarity too often and Johansen’s
test finds too many cointegrating relations. This fact is well-known but no simple solution has been proposed in
the literature. In this work, we show why this happens and prove theoretically and by Monte Carlo simulations
how three different filtering approaches can significantly improve the performance of the two tests applied to
noisy data without harming their properties when observations are free from noise. We show how conclusions
can change when using filtered time series in two real applications: one concerning wholesale electricity prices
in European countries, and the second warning against pairs trading strategies based on spurious cointegrating
relations among stock prices.
1. Introduction

1.1. Motivation

Tests for integration and cointegration of time series may fail and
lead to wrong conclusions when data are observed with noise. We show
that the popular Augmented Dickey–Fuller (ADF) and Johansen’s tests
are significantly oversized and their size gets worse as the amount of
noise increases. In this regard, the ADF finds stationarity too often and
Johansen’s test tends to suggest too many cointegrating relations.

We show why these tests are unable to cope with noisy time series
and propose three different filtering approaches as possible solutions to
the problem. The first approach is based on reducing the frequency of
the time series by simple averaging. The other two approaches exploit
a state-space representation of the time series containing a stochastic
trend and apply the tests on the trend component extracted by means
of the Kalman filter and smoother.

We provide theoretical results for the simple random walk plus noise
model that motivates our expectation that both the ADF and Johansen’s
tests applied to the filtered data should be much more reliable in terms
of size. A battery of Monte Carlo experiments confirms that the sizes
of the ADF test applied to the filtered time series remain at acceptable
levels, the best one being that based on state-space smoothing, while
the size of the same test applied to raw data increases quickly towards

∗ Corresponding author.
E-mail address: matteo.pelagatti@unimib.it (M. Pelagatti).

1. This robustness has a cost in terms of power. As for Johansen’s
sequential procedure, our results provide a very strong message: the
approach based on the Kalman filter is the one that selects the cor-
rect number of cointegrating relations with the highest probability.
Furthermore, all simulations show that, in absence of additive noise,
the tests applied to the state-space filtered or smoothed time series are
equivalent to the ones applied to raw data. This suggests that filtering
before testing should become a common practice when using the ADF
and Johansen’s procedure.

Beyond theoretical results, we provide empirical evidence on the
effectiveness of different filtering strategies by applying the technique
to real series. In this regard, financial, environmental and electricity
markets provide prominent examples of time series characterized by
the kind of features we want to deal with. However, it is important to
emphasize that the filtering technique is useful in all other cases when
data show similar characteristics.

1.2. Related work

The size distortion of the ADF test in the presence of measurement
errors or a moving average component in the data-generating process
(the first condition implies the second) has been known and enquired
about for many years, even though a simple general solution to the
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problem has never been found. Indeed, Said and Dickey (1984) proved
that if the number of lags 𝑘 in the ADF auxiliary regression grows
with 𝑛, being 𝑛 the length of the time series, but not too quickly
(i.e., 𝑘 = 𝑜(𝑛1∕3)), the asymptotic distribution of the ADF statistic under
the null is the usual one, even if the data generating process has a
moving average component. Schwert (1989) shows using Monte Carlo
experiments that in finite samples, especially when some roots of the
MA operators are close to unity, the size distortion of the ADF can
be substantial and the nonparametric correction proposed by Phillips
and Perron (1988) does not solve the problem. Gonzalo and Pitarakis
(1998) reach similar conclusions by deriving the distortion of the
first two moments of the ADF statistic when an MA(1) component is
present. Galbraith and Zinde-Walsh (1999) address the problem both
theoretically and by Monte Carlo simulation but, again, they conclude
that the size distortions are particularly difficult to control when the
moving average part contains a root near unity.

The article by Fischer (1990) is the first one to assess by Monte
Carlo methods the actual size of residual-based cointegration tests when
data are observed with measurement errors. They find that the tests are
oversized and, therefore, cointegration is found too often. Haug (1996)
considers a wider range of tests, including Johansen’s, and he concludes
that there is a trade-off between power and size-distortion.1 Hassler
and Kuzin (2009) derive the asymptotic distribution of Johansen’s test
when the process is observed with measurement error and propose
a nonparametric correction to the statistic that leads to the usual
asymptotic distribution of the test under the null. However, the simu-
lations they carry out to assess the finite-sample behaviour of their test
consider only relatively small noise-to-signal ratios (an MA component
with roots bounded away from the unit circle). Our conjecture is that
being their approach similar to Phillips and Perron (1988), it should
show similar size distortion issues as found by Schwert (1989). More
recently, Hong et al. (2016) carried out a Monte Carlo simulation
exercise that evaluates the finite-sample behaviour of Johansen’s se-
quential procedure when time series are observed with error and they
conclude that ‘‘the cointegrating rank is more likely overestimated
with measurement errors’’. Finally, Habimana et al. (2021) find size
distortion in Johansen’s test in the presence of observational noise
and propose to apply Johansen’s procedure after wavelet-denoising to
correct the size. Their method depends on a tuning parameter that has
to be fixed by the user and they propose a rule.

Thus, the size-distortion problems of ADF and Johanses’s test in the
presence of measurement errors are well known in the literature. The
only two solutions that have been proposed are based on nonparametric
adjustments of the test statistics and, very recently, wavelet denoising.
Note that the first solution seems to fail when the measurement error
is strong or, equivalently, when the root of the MA component is close
to the unit circle.

The solution proposed in this work is also based on prefiltering.
However, we use linear filters that should be more familiar to the
applied economist or econometrician and do not need any tuning by
the user. One of the three filtering techniques we propose has one
tuning parameter whose meaning is straightforward and, often, has a
natural value we can assign. However, we also provide an optimal way
to assign a value to this tuning parameter.

The idea of improving inference by eliminating a fixed number of
noisy Fourier frequencies goes back to Hannan (1969, point (c) on page
584) and has been enquired in various contexts by Watson (1993),
Diebold et al. (1998) and Christiano and Vigfusson (2003). Proietti
(2008) analyses the effect of band spectral estimation on signal extrac-
tion. However, to the best of our knowledge, there is no published work
on using band-filtered time series to improve the performance of the
unit root and cointegration tests.

1 This is not surprising as robustness usually comes with a cost in terms of
fficiency. The solutions we present in this work are no exception.
2

1.3. Some fields of application

Tests for integration and cointegration of time series are applied
in many real-world cases to highlight some long-run behaviour that
can be useful in designing appropriate investment and hedging strate-
gies. The issues of liberalized electricity markets as well as strategic
behaviour in trading strategies are both extremely relevant in times of
uncertainties and political instabilities. Then, the two considered case
studies strongly show the relevance of the developments proposed in
this paper.

The organized market platforms for the exchange of electricity
are probably one of the best examples of market architectures influ-
encing price time series. Since the beginning of the ’90, they have
become the standard mechanism used in all industrialized and emerg-
ing countries to govern the liberalization of previously monopolistic
markets. When competitive electricity markets started to be created in
several countries around the world, many scientific papers concluded
or assumed that electricity prices were mean-reverting (for instance
Huisman and Mahieu, 2003; Weron et al., 2004; Ricky Rambharat
et al., 2005; Geman and Roncoroni, 2006; Escribano et al., 2011;
Keles et al., 2012; Fernandes et al., 2021). However, in many mar-
kets, the most frequent (marginal) generation plants determining the
wholesale price are fuelled by hydrocarbons (carbon, gas, oil), whose
log-price dynamics are known to be well approximated by integrated
(thus, non-mean-reverting) processes. Therefore, the resulting electric-
ity price is a function of non-mean-reverting processes and should be
non-mean-reverting as well.

In the long run, electricity prices are determined mainly by de-
mand, available installed generating capacity and fuel prices. In the
short run, prices are influenced by many micro-structural factors such
as line congestions, bidding strategies, and plant (programmed and
unexpected) maintenance. More recently, price levels are influenced
by import/export flows due to a larger degree of integration of EU
electricity markets while price variability is positively affected by the
intermittent generation from Renewable Energy Sources (RES). For
these reasons, electricity prices are determined not only by their market
fundamentals but are also buried in high-variance noise. The influence
of short-run components is exacerbated during uncertain times charac-
terized by wars, such as the one in Ukraine, which is heavily influencing
the international dynamics of natural gas (and all other hydrocarbons’)
prices. Extreme movements in global fuel prices can be easily observed
at the time of writing, and these are immediately reflected in the bills
to final customers. This particular noise is responsible for the unreliable
results that least-squares-based techniques, such as ADF and Johansen’s
tests, tend to produce. Bosco et al. (2010) and Pelagatti and Sen (2013)
develop robust tests for stationarity and cointegration, whereas in some
other applied papers, the same problem was addressed by using simple
filtering techniques such as weekly means or medians (Bosco et al.,
2010; Gianfreda et al., 2016a) or extracting the long-run component
using unobserved component models (UCM) with Kalman filtering and
smoothing (Gianfreda et al., 2016a, 2019).

While electricity prices were the main reason for developing the
filtering techniques discussed in this paper, there are other interesting
applications for financial data. Indeed, also financial quantities can
often be seen as having a long-run component buried in some noise.
An example is represented by markets organized with order books
and continuous trades. Scholes and Williams (1977) consider the stale-
ness of prices or probability of a trade to describe the functioning of
these markets. In this regard, the applied research has stressed that
observed returns have different properties with respect to the true
return series (Ahn et al., 2015). Observed returns may show higher
variance, heteroskedasticity, negative autocorrelation, heavy tails and
positive cross-correlation among stocks when dealing with multiple
securities and portfolios. The bid/ask spread may also influence the
price variance and autocorrelation in markets where dealers post offers

and outsiders can trade accepting current prices (Glosten and Milgrom,
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1985). Kyle (1985) analyses a model of strategic trade in which the
information signal is buried into noise induced by the operation of
uninformed traders. When there are many competitive players in the
market, the price adjustment to order flow is low. Hence, Kyle’s (1985)
model is an example where the market structure and agents’ behaviour
may influence the price dynamics.

Filtering techniques may also be useful in the analysis of electronic
markets characterized by an increased number of transactions whose
average size is lower than those observed in traditional markets and
where the average holding period has shrunk. Information influences
prices which show rapid movements, called flash crashes, meaning that
they are short and relatively deep events with price movements in
excess with respect to the amplitude implied by fundamentals.

Another area of interest for the long-run analysis of financial price
series is related to the so-called statistical arbitrage and, in particu-
lar, pairs trading strategies. This trading strategy applies cointegration
analysis to identify pairs of stocks characterized by an equilibrium
price ratio. When price deviations are mean-reverting with a certain
degree of persistence, the consequent predictability allows for prof-
itable trades. Then, the ability to correctly determine the real degree of
cointegration is essential to avoid false trading signals.2 In Section 4.2
we will consider a pairs strategy case showing the usefulness of filtering
techniques to avoid false signals.

Finally, other examples of very noisy time series can be found in the
context of climate change and the environment. Time series for air qual-
ity and weather conditions have deeply different factors governing the
long- and short-run behaviour (Mudelsee, 2019). As stated by Horowitz
and Barakat (1979), air pollutant concentrations are not independently
and identically distributed, and are generated by non-stationary auto-
correlated stochastic processes.3 Also, environmental and climate data
an be affected by outliers and extreme values (Mudelsee, 2020), which
ct as confounders in the models.

All these fields of applications necessarily lead to considering the
se of appropriate and robust analytical tools with respect to the
arious characteristics of the data. Therefore, focusing on the integra-
ion/cointegration issue, the identification of the long-run components
f the data-generating process through pre-filtering procedures, such as
hose proposed in this paper, should make the analyses more reliable
nd lead to better conclusions.

The paper is structured as follows: Section 2 illustrates the theory
nderlying the problem using a simple random walk plus noise model
nd proves how three filtering techniques can solve it. In Section 3,
e present the results of Monte Carlo experiments that compare the
erformance of ADF and Johansen’s tests applied to raw and filtered
ata. In Section 4, the proposed methodologies are then applied to real-
ime series of electricity and financial prices, in the second case in the
ontext of pairs trading. Section 5 draws some conclusions.

2 Examples taken from financial and commodity markets include: Caldeira
nd Moura (2013), Girma and Paulson (1999), Simon (1999) and Wahab et al.
1994). Another application is presented by Miao (2014) who consider the pair
trategy for the U.S. equity market. The trading system was relatively market
eutral and unrelated to the S&P index; as such, results of out-of-sample testing
howed a good performance of the trading strategy in particular in periods
f low market performance. The same approach has been applied to ‘‘crush
pread’’, between soybeans and its derived products, to gold–silver spread and
n many other cases where an input–output relationship or a market arbitrage
inkage is in place. For a survey on statistical arbitrage and pairs trading refer
o Krauss (2017)

3 In general, air quality series are characterized by seasonality, strong
ersistence, long-memory (Chelani, 2013; Varotsos et al., 2005) or non-
tationarity (Ng and Yan, 2004), right skewness (Windsor and Toumi, 2001),
nd fractal behaviour (Lee, 2002).
3

e

Table 1
Actual ADF test size for different values of the
signal-to-noise ratio for a nominal size of 5%.
𝜆 𝜃 Size

0.001 0.97 1.00
0.010 0.90 0.89
0.100 0.73 0.34
1.000 0.38 0.10
10.000 0.08 0.05

2. Methodology

2.1. Why the ADF and related tests fail when integrated time series are
observed with strong noise

Let us consider a simple random walk plus white noise model: for
𝑡 = 1, 2,… , 𝑛,

𝑦𝑡 = 𝑥𝑡 + 𝜀𝑡, 𝜀𝑡 ∼ 𝖶𝖭(𝜎2𝜀 )

𝑥𝑡 = 𝑥𝑡−1 + 𝜂𝑡, 𝜂𝑡 ∼ 𝖶𝖭(𝜎2𝜂 ),
(1)

where the notation 𝜀𝑡 ∼ 𝖶𝖭(𝜎2𝜀 ) is to be read as ‘‘𝜀𝑡 is a white noise
equence with variance 𝜎2𝜀 ’’. Moreover, let

=
𝜎2𝜂
𝜎2𝜀

≥ 0

be the signal-to-noise ratio. In other words, 𝑦𝑡 is the observed noise-
corrupted process and 𝑥𝑡 is the true signal that evolves as a random
walk and the noise corruption is represented by 𝜀𝑡.

It is straightforward to prove (see in the Appendix) that the process
𝑦𝑡 has the reduced ARIMA(0, 1, 1) form

𝛥𝑦𝑡 = 𝜂𝑡 + 𝜀𝑡 − 𝜀𝑡−1 = 𝜁𝑡 − 𝜃𝜁𝑡−1, 𝜁𝑡 ∼ 𝖶𝖭(𝜎2) (2)

with

𝜃 = 1 + 𝜆 −
√

𝜆2 + 4𝜆
2

, 𝜎2 =
𝜎2𝜀
𝜃
, (3)

where 𝛥 is the difference operator (i.e., 𝛥𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−1). When the
ignal-to-noise ratio is zero the MA coefficient is 𝜃 = 1, the unit root
perator cancels out with the MA operator and 𝑦𝑡 turns out to be just
white noise sequence:

𝑦𝑡 = 𝛥𝜁𝑡 ⇔ 𝑦𝑡 = 𝜁𝑡.

When 𝜆 is close to zero, the MA coefficient approaches 1 from below. In
this case, the exact cancellation does not take place, however in small
samples the process 𝑦𝑡 is almost indistinguishable from white noise.
Such a MA process still has the purely AR representation

𝛥𝑦𝑡 = 𝜁𝑡 + 𝜃𝛥𝑦𝑡−1 + 𝜃2𝛥𝑦𝑡−2 + 𝜃3𝛥𝑦𝑡−3 +⋯ ,

however, this representation cannot be well approximated by an AR(𝑝)
process with small 𝑝 because 𝜃𝑗 approaches zero very slowly. Now, most
unit root tests deriving from the Dickey–Fuller test such as ADF (Said
and Dickey, 1984), ADF-GLS (Elliott et al., 1996), Johansen (Johansen,
1991) are based on autoregressive approximations and, if the 𝑦𝑡 is
enerated as above with 𝜆 close to zero, then they are severely over-
ized (see Galbraith and Zinde-Walsh, 1999, for example).

Table 1 gives an idea of the amount of size distortion as a function
f the signal-to-noise ratio and of the moving average coefficient. The
eported values are the results from a Monte Carlo experiment with the
ollowing characteristics: 10,000 replications of time series of length
00, the auxiliary AR(𝑝) model order selected according to the Akaike
nformation Criterion (AIC) with 𝑝 ranging from 0 to 20, the ADF test
pplied with a drift coefficient.

Model (1) is extremely simple and could be generalized by assuming
hat 𝜀𝑡 and 𝜂𝑡 are ARMA processes, for example. However, this gen-
ralization would come with a much more cumbersome algebra and
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lengthy proofs, without adding much insight to the problem. Indeed,
the feature of the process (1) that harms the ADF and Johansen’s test
is the close-to-unity coefficient 𝜃 in Eq. (2) that almost cancels out

ith the unit root in the difference operator. Thus, if 𝜀𝑡 and 𝜂𝑡 are
efined as ARMA processes with roots that are bounded away from the
nit circle, then 𝑦𝑡 becomes an ARIMA(𝑝, 1, 𝑞) process where the only
lose-to-unity root of the MA characteristic equation (which cannot be
ell approximated by an AR model) is due to the differenced noise

omponent as in Eq. (2). Low-pass filtering would have a similar effect
lso in this case because it annihilates the peak in high-frequency that
ominates the spectrum and AR models are not able to approximate.

.2. Filtering

We propose three simple time series filters that can improve the
erformance of unit root and cointegration tests:

1. reducing the frequency of the time series by taking averages, for
instance by working on weakly means of daily or hourly prices;

2. extracting the level component using the Kalman filter in an
unobserved component model (UCM) containing trend, noise
and, possibly, seasonal components;

3. extracting the level component using the smoother in a UCM
containing trend, noise and, possibly, seasonal components.

In this section, we analyse the effects of these filters on the reduced
orm of the model on time series generated by Eq. (1). The next section
ill illustrate the effect of these filters on the size and power of the ADF
nd Johansen tests by Monte Carlo experiments.

.2.1. Frequency reduction by averaging
The first filter reduces the sampling frequency of the time series

y averaging every 𝑚 non-overlapping consecutive observations. The
ollowing results show that this filter applied to a random walk plus
oise is able to annihilate the MA(1) component in the reduced form

heorem 1. For 𝑡 = 1, 2,…, let 𝑦𝑡 be defined as in (1) and let

�̄�𝑡 =
1
𝑚

𝑚−1
∑

𝑖=0
𝑦𝑡−𝑖, �̄�𝑡 =

1
𝑚

𝑚−1
∑

𝑖=0
𝜂𝑡−𝑖, �̄�𝑡 =

1
𝑚

𝑚−1
∑

𝑖=0
𝜀𝑡−𝑖, (4)

here �̄�𝑡 is sampled over the set of time points 𝑡 ∈  ∶= {𝑚, 2𝑚, 3𝑚,…}.
hen, over the time set  , we have

�̄�𝑡 − �̄�𝑡−𝑚 = �̄�𝑡 + �̄�𝑡 − �̄�𝑡−𝑚,

ith �̄�𝑡 white noise sequence with variance 𝜎2𝜀∕𝑚, and �̄�𝑡 MA(1) process with
he following moments

𝖠𝖱
(

�̄�𝑡
)

= 𝜎2𝜂

[

(𝑚 − 1)(2 𝑚 − 1)
3𝑚

+ 1
]

,

𝖢𝖮𝖵
(

�̄�𝑡, �̄�𝑡−𝑚
)

= 𝜎2𝜂
(𝑚 − 1)(𝑚 + 1)

6𝑚
,

𝖢𝖮𝖱
(

�̄�𝑡, �̄�𝑡−𝑚
)

=
(𝑚 − 1)(𝑚 + 1)

2(𝑚 − 1)(2𝑚 − 1) + 3𝑚
.

orollary 1.1. Under the hypotheses of Theorem 1, the process �̄�𝑡 is
ARIMA(0, 1, 1) for 𝑡 ∈  with first-order autocorrelation given by

= 𝖢𝖮𝖱
(

(�̄�𝑡 − �̄�𝑡−𝑚), (�̄�𝑡−𝑚 − �̄�𝑡−2𝑚)
)

=
𝜆 (𝑚−1)(𝑚+1)

6𝑚 − 1
𝑚

𝜆
(

(𝑚−1)(2𝑚−1)
3𝑚 + 1

)

+ 2
𝑚

(5)

and moving average coefficient given by

𝜃 =
−1 +

√

1 − 4𝜌2

2𝜌
.

The left panel of Fig. 1 depicts the value of the MA coefficient 𝜃 as a
function of the window size 𝑚, for various values of the noise-to-signal
ratio 𝜆−1. The right panel of the same figure depicts the locus of points
4

(𝜆−1, 𝑚) for which 𝜃 = 0. In principle, for any signal-to-noise ratio 𝜆,
here is a value 𝑚 that annihilates the MA component. Of course, since

can only take integer values, 𝜃 will be in general close to zero and
ot exactly equal to zero. If the noise is very strong, the original time
eries must be rather long as the length of �̄�𝑡 is given by ⌊𝑛∕𝑚⌋, where
is the length of the time series 𝑦𝑡.

When data show seasonal patterns, the value of 𝑚 can be set equal
o the seasonal period serving the scopes of annihilating the seasonal
omponent and shrinking the MA(1) coefficient. However, we can base
ur choice of 𝑚 plugging the estimated coefficient of an IMA(1, 1) model
n Eq. (5) of Corollary 1.1. In fact, by solving Eq. (3) for 𝜆, we can
stimate the signal-to-noise ratio from the estimate of 𝜃 as 𝜆 = (𝜃−1)2∕𝜃.
n estimate of the optimal value of 𝑚 can be obtained by setting 𝜌 = 0

n Eq. (5) and solving for 𝑚:

=
√

6 + 𝜆
𝜆

=
√

1 + 𝜃
(𝜃 − 1)2

. (6)

Notice, that the solution is real and, so, the actual 𝑚 can be fixed at the
earest integer.

.2.2. Signal extraction in an unobserved component model
An alternative way to reduce the noise in the process 𝑦𝑡 defined

in Eq. (1) is by estimating the random walk component 𝑥𝑡 by projecting
it on the linear span of 𝑦1, 𝑦2,… , 𝑦𝑠 where 𝑠 is either equal to 𝑡 or to 𝑛.

his operation can be easily carried out by stating the model in state-
pace form and running the Kalman filter (for 𝑠 = 𝑡) and smoother
for 𝑠 = 𝑛) on the level component 𝑥𝑡 (the volumes by Harvey, 1989;
urbin and Koopman, 2001; Pelagatti, 2015, are detailed references on

he subject).
Model (1) is already in state-space form: using the notation of Durbin

nd Koopman (2001), the transition matrix is 𝑻 = 1, the covariance
atrix of the disturbance is 𝑸 = 𝜎2𝜂 , the observation matrix is 𝒁 = 1 and

he covariance matrix of the measurement error is 𝑯 = 𝜎2𝜀 . Since the
tate variable 𝑥𝑡 is nonstationary this component is generally initialized
ith arbitrary mean and infinite variance. If the time series presents

easonal patterns, a seasonal component can be added to the model.
or example, using a seasonal dummy approach, the time series could
e modelled as

𝑦𝑡 =
[

1 1 0 … 0
]

𝜶𝑡 + 𝜀𝑡

𝜶𝑡 =
⎡

⎢

⎢

⎣

1 𝟎⊤ 0
0 −𝟏⊤ −1
𝟎 𝑰𝑠−2 𝟎

⎤

⎥

⎥

⎦

𝜶𝑡−1 +
⎡

⎢

⎢

⎣

𝜂𝑡
𝜁𝑡
𝟎

⎤

⎥

⎥

⎦

,

where 𝑠 is the seasonal period, 𝟎 is a column vector of zeros, and 𝟏
is a columns vectors of ones. The first element of the state vector 𝜶𝑡 is
he random walk, the second element is the seasonal component and
he remaining 𝑠−2 variables are lags of the seasonal component. If the
ariance of 𝜁𝑡 is positive, then the seasonal component evolves over
ime, while if it is zero the seasonal pattern is deterministic. In order
o keep the reasoning simple, we derive results for model (1), however,
e can reasonably expect that things would not change much if a

deterministic or slowly changing) seasonal component were present.
The Kalman filter projects the unobservable level 𝑥𝑡 on the obser-

ations 𝑦1, 𝑦2,… , 𝑦𝑡 up to time 𝑡; while the smoother projects 𝑥𝑡 on all
he observations 𝑦1, 𝑦2,… , 𝑦𝑛. The Kalman filter and smoother for 𝑥𝑡 are
inear filters whose weights are different for every 𝑡: the former is only
ackwards looking,

𝑡|𝑡 =
0
∑

𝑖=−𝑡+1
𝑤𝑡𝑖𝑦𝑡+𝑖, 𝑡 = 1, 2,… , 𝑛, (7)

hile the latter is two-sided,

𝑡|𝑛 =
𝑛−𝑡
∑

𝑖=−𝑡+1
𝜔𝑡𝑖𝑦𝑡+𝑖, 𝑡 = 1, 2,… , 𝑛. (8)

he reader interested in actual computation of the weights 𝑤𝑡𝑖 and 𝜔𝑡𝑖
hould refer to the work of Koopman and Harvey (2003). Nonetheless,
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Fig. 1. Left: MA coefficient of mean-filtered time series as a function of the window for different values of the noise-to-signal ratio. Right: the values of the window size 𝑚 that
achieve an MA coefficient equal to zero as a function of the noise-to-signal ratio.
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when 𝑡 is not too close to 1, the Kalman filter for the random walk plus
noise model can be well approximated by its steady state version, say
�̃�𝑡, given by the recursive filter4

�̃�𝑡 = 𝛾𝑦𝑡 + (1 − 𝛾)�̃�𝑡−1, (9)

where

𝛾 =

√

𝜆2 + 4𝜆 − 𝜆
2

. (10)

imilarly, when 𝑡 is not too close to 1 or 𝑛, the smoother can be well
pproximated by its steady-state version, say �̂�𝑡, which is given by the
ackward recursion on �̃�

̂ 𝑡 = 𝛾�̃�𝑡 + (1 − 𝛾)�̂�𝑡+1. (11)

The following result characterizes the processes followed by the
teady-state filter and smoother when applied to the data-generating
rocess (1).

heorem 2. Assume that the variances 𝜎2𝜀 and 𝜎2𝜂 of the process defined
n Eq. (1) are known and 𝜆 = 𝜎2𝜂∕𝜎

2
𝜀 is the signal-to-noise ratio. Then, �̃�𝑡

s a random walk and �̂�𝑡 is an ARIMA(1, 1, 0) process with autoregressive
oefficient 𝜙 = 1 − 𝛾.

In applications, the unknown variances are replaced with their
aussian (quasi) maximum likelihood estimates �̂�2𝜀 and �̂�2𝜂 and the
opulation signal-to-noise ratio with its estimate �̂� = �̂�2𝜂∕�̂�

2
𝜀 . At this

oint, we could try to provide a result that characterizes the processes
ollowed by the filter and smoother when the real parameters are
ubstituted by consistent estimates. However, that result would not
e very informative as, in practice, the practitioner uses the same
bservations to estimate the parameters and extract the signal. We
re afraid that characterizing the filter/smoother based on parameters
stimated on the same data is an almost impossible task. Fortunately,
e can rely on Monte Carlo simulation to assess the quality of the
rocedure we are proposing.

4 A simple derivation of this result can be found in Example 5.12 of Pela-
atti (2015) and this particular form of the coefficient 𝛾 in Harvey (2006,

Eq.13).
5

3. Results from Monte Carlo simulations

To verify the empirical effects of the frequency-reduction and UCM
filters on the ADF and Johansen tests, we performed a set of Monte
Carlo simulations. Each experiment evaluates the performances of ADF
and Johansen tests both under the null and alternative hypothesis, in
order to evaluate the size and power of the tests.

In our simulations, we consider values for the noise-to-signal ratio
in the range of 0–10. Indeed, by estimating UCMs on the 24 daily time
series of Italian day-ahead electricity prices for each hour of the day,
we obtain noise-to-signal ratios as high as 12.6 (at the 15th hour) and
as low as 0 (midnight and neighbouring hours).

3.1. ADF test

The first set of experiments aims at assessing the performance of
the ADF test under the random walk plus noise model. We simulate
time series from a random walk buried into leptokurtic noise and each
simulation experiment is characterized by a different combination of
noise-to-signal ratio and kurtosis. The data generating process (DGP)
for the observation 𝑦𝑡 is

𝑦𝑡 = 𝑥𝑡 +
√

𝑐 𝜀𝑡, 𝜀𝑡 ∼ i.i.d. 𝑡𝜈 ,

𝑡 = 𝑥𝑡−1 + 𝜂𝑡 𝜂𝑡 ∼ i.i.d. 𝑁(0, 1),

here 𝜀𝑡 is the leptokurtic noise generated by a standardized Student’s
with 𝜈 degrees of freedom (DF) and 𝑐 = 𝜆−1 is the fixed parameter

dentifying the noise-to-signal ratio. The number of DF governs the
hickness of the tails of the noise component: the lower the DF, the
arger the kurtosis.

For each experiment, we simulate 10,000 paths of length 1,095,
orresponding to 3 years of daily observations, for all of the possible
airs of noise-to-signal ratio 𝑐 in {0, 1, 2,… , 10} and degrees of freedom
in {3, 6, 9, 12}. On each of these time series, we apply the mean filter
mean), the Kalman filter (ucm_flt) and the smoother (ucm_smo).

The ADF statistic (with drift and the number of lags selected by AIC)
was computed on every simulated time series. The empirical rejection
rates for a nominal size of 5% are represented in Fig. 2.

Looking at the four graphs we can conclude that

1. the size of the test applied to raw data quickly drifts away from
its nominal size as the noise-to-signal ratio increases;

2. the ADF applied to any pre-filtered time series keeps acceptable

size;
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Fig. 2. Actual size of the ADF test for a nominal size of 5%. Note that 𝑛𝑜 represents the raw series, 𝑚𝑒𝑎𝑛 and 𝑢𝑐𝑚_𝑓𝑖𝑡 stand for the mean and Kalman filters, whereas 𝑢𝑐𝑚_𝑠𝑚𝑜
represents the smoother.
3. the size of the ADF test applied to the smoothed signal (ucm_smo)
time series is equal to the nominal size regardless of the noise-
to-signal ratio;

4. the thickness of the tails of the noise distribution has virtually
no effect on the size of the ADF.

The latter remark may sound surprising, however, the asymptotic dis-
tribution of the ADF test is derived under the hypothesis of finite second
moments and in our simulations, the variance of the noise 𝜀𝑡 is always
finite and the sample size large (𝑛 = 1095).

The size-adjusted power of the ADF test for a size of 5% and when
the data generating process is an AR(1) with Student’s 𝑡 noise and
autoregressive coefficient 𝜙 = 0.98 is shown in Fig. 3.

As noted by Haug (1996), there is some trade-off between power
and size distortion. Robustness comes at some costs in terms of power.
In particular,

1. the decrease in power observed for the frequency-reduction
method (mean) is due to the consequent smaller sample size and
it does not depend on the noise-to-signal ratio;

2. the power loss observed in tests applied to UCM-based filters
increases with the amount of noise;

3. tests run on UCM-based filtered signals show no power loss with
respect to the ADF applied on raw data, when no or moderate
noise is present;

4. the thickness of the tails of the noise distribution has virtually
no effect on the power.

The nice feature observed at point 3. is a natural consequence of
the fact that in UCM-based filters the ‘‘amount’’ of filtering is data-
dependent and, when no (or moderate) noise is present, the resulting
6

signal is identical (or very close) to the raw data.
Let us draw some conclusions from this first set of simulation ex-
periments. Despite the good power of the original ADF test even in the
presence of measurement errors, in this situation, the ADF on raw data
is unusable because of its potentially unlimited size distortion. All tests
based on filtered time series are much more reliable in terms of size,
with the one based on UCM smoothing maintaining a perfect size. This
size robustness has a cost in terms of power: the power is independent
of the quantity of noise, if one uses frequency reduction (mean), while
the power deficiency grows with the amount of noise for the UCM-
based filter and smoother. The latter filters show no power deficiency
when the noise is absent or moderate, making their use safe even if the
practitioner is not certain about the presence of observational noise in
the data. As long as the second moment’s requirement of the ADF test
is met by the data, the tail thickness does not seem to harm its size or
power.

3.2. Johansen test

Similarly to the univariate case, we developed simulation schemes
for multivariate time series, which include both integrated and coin-
tegrated processes, to evaluate the statistical properties of Johansen’s
test in the presence of noise.

Data are simulated according to a vector error correction model
(VECM) with 𝑟 cointegrating relations and 𝑘 = 4 underlying times series
augmented by a leptokurtic noise term. The noise is randomly gener-
ated by a standardized Student’s 𝑡 random variable with 𝜈 degrees of
freedom and affect directly the VECM through the noise-to-signal ratio.
We performed the simulation analysis on the number of cointegrating

relations detected by the test considering the case of 𝑟 = 1 and 𝑟 = 2.
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Fig. 3. Size-adjusted power of the ADF test for a size of 5% and data generating process being AR(1) plus Student’s 𝑡 noise with autoregressive coefficient 𝜙 = 0.98. Note that 𝑛𝑜
epresents the raw series, 𝑚𝑒𝑎𝑛 and 𝑢𝑐𝑚_𝑓𝑖𝑡 stand for the mean and Kalman filters, whereas 𝑢𝑐𝑚_𝑠𝑚𝑜 represents the smoother.
h
a

For the simulation experiments involving Johansen’s test, we used
he following two DGP: the first one with 𝑟 = 1 cointegrating relations
as representation

= 1 ∶ 𝛥𝑥𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0
0.1
−0.1
0.1

⎤

⎥

⎥

⎥

⎥

⎦

[

1 −1 1 −1
]

𝑥𝑡−1 + 𝜀𝑡, (12)

nd the second one with 𝑟 = 2 cointegrating relations has representation

= 2 ∶ 𝛥𝑥𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

0.0 0.0
0.1 0.0
0.2 0.0
0.0 0.2

⎤

⎥

⎥

⎥

⎥

⎦

[

1.0 −0.5 −0.5 0.0
0.0 1.0 0.0 −1.0

]

𝑥𝑡−1 + 𝜀𝑡. (13)

nd the noisy series are

𝑖𝑡 = 𝑥𝑖𝑡 + 𝛾𝑖𝑧𝑖𝑡 with 𝛾2𝑖 = 𝑐
𝑉 𝐴𝑅(𝛥𝑦𝑖𝑡)
𝑉 𝐴𝑅(𝑥𝑖𝑡)

(14)

here 𝑧𝑖𝑡 is a leptokurtic noise and 𝑐 is a fixed parameter representing
he noise-to-signal ratio. Transforming the previous models from VECM
o VAR(1) form, it is easy to assess that the characteristics roots of
he processes are (1, 1, 1, 0.7) for Eq. (12) and (1, 1, 0.85, 0.80)
or Eq. (13).

As in the previous experiment, we simulated 10,000 time series
aths of length 1,095 (= 365 × 3) for all the paired combinations of
oise-to-signal ratio 𝑐 = 0, 1, 2,… , 10 and degrees of freedom 𝜈 =
, 6, 9, 12. The three linear filters are then applied to the series, rising
hree further series sharing a common underlying process. The number
f cointegrating vectors is finally tested on each simulated quartet using
7

ohansen’s trace test.
Johansen’s trace test is a sequential procedure based on the null
ypotheses that the true number of cointegrating vectors, 𝑟, is equal to
given number, 𝑟∗ < 𝑘, i.e. 𝐻0 ∶ 𝑟 = 𝑟∗ < 𝑘, against the alternative

hypothesis 𝐻1 ∶ 𝑟 = 𝑘. The value 𝑟∗ = 0, 1,… , 𝑘 − 1 is updated
sequentially from 1 to 𝑘 − 1 producing a sequence of tests, whose first
non-rejection of the null hypothesis can be considered an estimate of 𝑟.
The test rejects H0 when the test statistic exceeds the tabulated critical
values.

For each pair of degrees of freedom and noise-to-signal ratios, and
for each sequential value 𝑟∗, we computed the test’s size (rejection rate)
as the proportion of tests rejecting the null hypothesis over the total
number of simulations. For values of 𝑟∗ lower than the real one, the
expected rejection rate should be the closest possible to 1; while it
should be equal to 0.05 when testing the true value of 𝑟∗. Johansen’s
procedure is generally used as a way to estimate the unknown number
of cointegrating relations and, thus, we can compare the performances
of the various versions of the test using the accuracy in estimating the
right cointegration rank.

Figs. 4 and 5 show the empirical selection rates when the real coin-
tegration rank is 𝑟 = 1 and 𝑟 = 2 respectively. When the noise-to-signal
ratio is zero, both filtered and raw data perform similarly. However, as
the noise increases its variance, the selection rates change considerably.
The Kalman filter is the clear winner with the highest accuracy rate
under all considered setups. In particular, the filter remains rather
stable with values above 90% for 𝑟 = 1 and over 80% when 𝑟 = 2.
The figures show also that for high noise-to-signal ratios, only the UCM-
based filter is able to maintain acceptable performances. The procedure
applied to raw data tends to select larger cointegration ranks, while
frequency reduction (mean) tends to underestimate the cointegration
rank. A similar, although less severe, tendency to underestimation is

present when the procedure is applied to UCM-smoothed time series.
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Fig. 4. Selection rate of Johansen’s procedure when 𝑟 = 1 and the nominal level of the tests is 5%.

Fig. 5. Selection rate of Johansen’s procedure when 𝑟 = 2 and the nominal level of the tests is 5%.
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In an additional online appendix, we provide Monte Carlo rejection
rates as a function of the noise-to-signal ratio for all the tests building
Johansen’s sequential procedure. The figures in that appendix show
the rejection rates for each of the alternative hypotheses of the test
when the true number of cointegration relationships are 𝑟 = 1 and
= 2 respectively. When the null hypothesis coincides with the truth,

.e. testing 𝑟 = 1 when 𝑟 = 1 and testing 𝑟 = 2 when 𝑟 = 2, the
ests applied to unfiltered series (no) tend to over-reject the hypothesis
ven in presence of weak noise, while the three filters tend to preserve
he nominal size of 5%, being the Kalman filter (ucm_flt) and the

smoother (ucm_smo) the most successful. As for the power of the test,
when the tested value is smaller than the true value of 𝑟, the test
applied to raw data has the highest power,5 while frequency reduction
(mean) performs the worst. The test applied to the UCM-filtered time
series starts losing power only for very high noise-to-signal ratios,
with a net improvement with respect to the test applied to the UCM-
smoothed time series. We also report the tests when the tested rank
(null hypothesis) is larger than the true cointegration rank. In this case,
both the null and the alternative are wrong, but within Johansen’s
procedure, we would be more satisfied with a rejection rate close to
zero as this implies a smaller bias in the estimation of the cointegration
rank. While all filters keep these rejection rates very close to zero, the
test applied to raw data sees rejection rates increase with the level of
noise.

4. Applications to real data

As mentioned in the introductory section, two main applications
motivated the development of the filtering-before-testing methods pro-
posed in this paper. The first one involves day-ahead electricity prices
observed in various European markets. The second one uses the prices
of the constituents of the S&P100 stock index to build statistical arbi-
trage strategies based on cointegration and pairs trading.

4.1. Electricity prices

Electricity prices are a prominent example of time series generated
in a bid/ask context organized as a centralized auction market. To
better understand their properties, we recall briefly the mechanisms
and facts governing electricity markets.

Non-storability and several types of seasonality affecting the de-
mand are perhaps the most relevant characteristics of electricity and
these require the coordination of several actors, like producers, buyers,
regulators and transmission system operators. Electricity is exchanged
in market platforms based on least cost dispatch and different time
schedules, starting many days ahead and ending in real-time delivery.
Market System Operators (MSOs) handle the power exchange and col-
lect demand and supply offers whereas Transmission System Operators
(TSOs) manage transmission, congestion and the balancing of demand
and supply close to real-time. Extreme prices generated by sudden
events (like grid congestion or blackouts), technical constraints and
potential market manipulation are only some of the issues that must
be addressed for a viable and welfare-maximizing operation.

Each market session determines a price varying according to the
hour of the day, locations and generating technologies. The most
important session is called day-ahead market since it closes the day
efore delivery, where the largest share of the electricity consumed is
raded in a series of 24 hourly auctions. For each hour bids and offers
re submitted and aggregated according to the merit order criterion
the cheapest and, in general, more clean energy plants enter the
upply curve before more costly and polluting technologies thanks

5 The exposed power is not size-adjusted.
9

E

to the priority of dispatch6). Market equilibrium is determined at the
intersection of hourly aggregated demand and supply curves and a
unique system marginal price (SMP) is set for all units that obtain a
positive allocation.7

Any imbalances between demand and supply and local congestion
are subsequently adjusted in intra-day sessions and in real-time balanc-
ing sessions. Additional details on properties and dynamics of intra-day
and balancing prices can be found in Gianfreda et al. (2016a, 2018,
2019).

In the first phase of liberalization, particular attention was devoted
to promoting the integration of EU national markets and the assessment
of convergence between electricity and/or fuel prices, as in Zachmann
(2008), Fezzi and Bunn (2009), Bunn and Gianfreda (2010), Bosco et al.
(2010), Aatola et al. (2013), Huisman and Kiliç (2013), de Menezes and
Houllier (2016) and de Menezes et al. (2016).

In Bosco et al. (2010) the main findings obtained through a robust
multivariate long-run dynamic analysis reveal the presence of four
highly integrated central European markets (France, Germany, the
Netherlands and Austria) with prices sharing a common trend also with
gas prices. de Menezes et al. (2016) analyse three markets (British,
French and Nordpool) with price series showing stationary and non-
stationary periods. The results highlight that British electricity spot
prices are associated with fuel prices and not with price developments
in connected markets, while the opposite is observed in the French and
Nordpool day-ahead markets. de Menezes and Houllier (2016) analyse
nine EU markets and observe that unit root tests for market integra-
tion are inadequate for assessing electricity spot market convergence
because spot prices are found to be fractionally integrated and mean-
reverting time series. Gugler et al. (2018) considered 25 EU markets
obtaining mixed results as they prove that market integration increased
from 2010 to 2012 and then decreased from 2012 to 2015, despite
new investments in interconnection and market coupling. Since all the
above empirical results are based on cointegration analysis, we believe
that the filtering techniques proposed in this paper can help assess the
correct degree of EU market integration avoiding spurious results.

The second phase of market restructuring and regulation starting in
the last decade put the focus on the integration of renewable energy
sources (RES) in the system and the best mix of market rules and
economic incentives8 able to foster RES deployment (Gianfreda et al.,
2016a; Argentiero et al., 2017).

From an empirical point of view, it has been observed that RES
reduce the level of day-ahead prices but increase their variability,
and modify their relationship with fossil fuel prices (Gianfreda et al.,
2016a,b). In particular, uncertainties and variability associated with
RES production challenge the functioning of day-ahead and real-time
sessions and introduce additional short-term noise in the price series,
switching and reducing their dependencies on fuel prices in the long
run. This has resulted in some EU countries becoming less integrated
as electricity generated by RES increases (Gianfreda et al., 2016b).

From the above considerations, it is clear that electricity prices
are determined by market outcomes but are subject to the influence

6 Priority dispatch implies that quantities produced from RES units are
upplied at a zero price. Thus the supply curve shifts to the right changing
he equilibrium allocation. This is known as the Merit Order Effect of RES Cló
t al., 2015; Hirth, 2018.

7 Infra-marginal units are those submitting bids below the SMP, while the
ast dispatched unit is called the marginal operator/technology since its bid
ets the market price.

8 The Renewable Energy Directive 2009/28/EC, revised in 2018, first
stablished a European framework for the promotion of renewable energy. The
ommission presented Europe’s new 2030 climate targets, including a proposal

or amending the Renewable Energy Directive, on 14 July 2021. It seeks to
ncrease the current target to at least 40% renewable energy sources in the
U’s overall energy mix by 2030.
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of many endogenous and exogenous factors. In this regard, it is im-
portant to recognize that energy price series show many peculiari-
ties and require specific statistical tools for estimation, filtering and
testing (Pelagatti and Sen, 2013).

Electricity market conditions tend to appear with regularity within
the day (nighttime vs light-time), across days of the week (weekdays
vs weekends for business activities) and seasons (summers vs winters),
determining typical seasonalities. Demand is indeed the main driver
of these prices, and it is largely predictable unless unexpected weather
conditions occur. Moreover, in the last fifteen years, non-programmable
RES introduced significant short-run variability into market equilibrium
and prices.

To take into account the known within-day periodicity of electricity
markets, in our analyses we have considered both peak and off-peak
day-ahead prices, together with the 24-hour daily average. Peak prices
are those determined from 8 AM to 8 PM and off-peak prices cover
the remaining hours. As for the countries, following previous investiga-
tions, our sample includes Germany, Belgium, France, The Netherlands,
Austria, Switzerland, Italy and Spain. The former six markets take part
in the EPEX platform, whereas Italy and Spain are included to test the
overall EU integration beyond the EPEX platform.9 Daily electricity
prices together with natural gas and oil prices were collected from
Datastream from 01/01/2007 to 31/12/2021. Note that our dataset
contains 5-day per week observations. The dynamic evolution for a
sample of countries is presented in Fig. 6, where we can observe
some of the stylized facts discussed in Escribano et al. (2011) among
others. Given the frequent spikes, the strong local noise, some volatility
clustering and seasonality, it is very hard to discern if a non-stationary
long-run component is present in the data. Common sense would
suggest that given the non-stationary nature of hydrocarbon fuel prices,
also electricity prices should manifest non-stationarity.

The considered countries show quite different generation mixes and
evolution during our sample period. Germany increased the share of
RES, solar PV and especially wind, lowering production from nuclear
and coal, with a stable presence of gas. Electricity generation in France
is largely based on nuclear technology, with a small share of wind,
hydro and gas, whereas Spain is characterized by an almost equal
share of gas, nuclear and wind. Austria mainly relies on hydro and
gas, with a low share of RES (wind and biomass), and Belgium shows
a mix of nuclear and gas, with a relatively significant introduction of
wind and solar PV in the last five years, accounting for almost 20%
of the generation. Natural gas and hydro are the most relevant source
of electricity production in Italy, with a notable increase in RES in
the last ten years at the expense of oil and coal. In the Netherlands,
the mix is dominated by gas, while coal has lost most of its share
since 2015, thanks to the introduction of RES. Finally, Switzerland
has a steady share of nuclear and hydro for the whole sample period.
However, even in countries where nuclear is the dominant generation
technology, like France, the equilibrium price is often determined by a
hydrocarbon-based generator.

To test these EU prices for integration and cointegration, we have
adopted a rolling window approach (with an estimation window of
260 × 3 = 780 observations) to depict the evolution of the ADF and
Johansen statistics for an empirical assessment over the full considered
sample. We chose a three-year window as it is not uncommon to carry
out statistical analysis of electricity prices on time series of this length.
Logarithmic average prices have been seasonally adjusted by using
sinusoidal regressors, and then four time series have been compared:
the (seasonally-adjusted) raw series, the time series of weekly means,
and the Kalman filtered and smoothed series. The ADF regressions

9 Note that we excluded the NordPool market (Denmark, Finland, Norway
nd Sweden) since its mix is substantially different and mainly based on
ydro generation. Moreover, Germany, France and The Netherlands have been
argely investigated as examples of a trilateral market.
10
contained a constant term and the number of lagged differences was
automatically selected using the Akaike Information Criterion. Results
were compared with the critical values at 1, 5 and 10% levels, that is,
−3.435, −2.863, −2.568 (Cheung and Lai, 1995).

Given the expected dependence of electricity prices on fossil fuels,
at least in some countries, and given the three-year window we used in
our tests, we thought it could be a good idea to examine the dynamics of
gas and oil prices during the same period we consider electricity prices.
Fig. 7 depicts gas and oil prices (first row), their moving standard de-
viation (second row) and inter-quartile range (third row). It is possible
to observe that there are two different regimes: one for high and one
for low volatility, with the sample of years 2011–2014 characterized
by some kind of local stationarity for both gas and oil. We expect this
feature to be reflected in the outcomes of the ADF applied to electricity
prices at least in those countries whose generation technology is based
on these fuels. Therefore, in what follows we undertake our analysis
on the whole sample 2010–2021 as well as on the stable years 2011–
2014. In the stable subsample, we expect electricity prices to ‘‘show
more stationary’’at least at off-peak hours.

ADF test results for all considered markets are reported in Tables 2–
4. In those tables, we report the rejection rates of the ADF tests
carried out on each three-year window rolling from the first to the last
observation of the considered time samples. The windows were updated
daily.

We can first observe that during the steady-price period of gas and
oil (years 2011–2014) the rejection rates for the null of integration are
higher compared to those computed over the whole sample, consis-
tently for daily average, peak and offpeak periods. We observe different
degrees of rejections across countries because of their substantially
different composition of the generation mix. In particular, we notice
lower rejection rates for countries characterized by important levels
of gas generation, like Italy, The Netherlands, Spain and Belgium.
Over the full sample, the rejection rates decrease substantially and
consistently across all three delivery periods (apart from Italy and
Spain).

Considering the performance of filters, both the UCM filter and
smoother perform almost equally for mean prices (which are averaged
over 24 h, hence with an ex-ante reduced noise). Exceptions are Italy
and Spain. When peak and offpeak prices are considered, we generally
observe that the smoother has lower rejection rates than the filter with
a few exceptions. This holds for peak prices except for France and
Switzerland (two countries with high shares of nuclear generation),
whereas for off-peak prices exceptions are Belgium and Spain.

In peak hours stationarity is more often detected on raw series (with
No filter = 65% vs UCM-filtered = 40% vs UCM-smoothed = 36%
in Belgium, and with No filter = 66% vs UCM-filtered = 63% vs
UCM-smoothed = 56% in Germany). Similar comments apply to results
in the off-peak period, when solar production, demand and electricity
prices are at their lower levels. The tests applied to the weekly means
reject non-stationarity much less often than all other tests.

Interestingly, we observe that all considered EU prices switch from
stationary to non-stationary according to the sample period used in the
rolling window and this confirms the contradictory results found in the
literature. These empirical findings confirm that results can differ sub-
stantially according to the periods and samples considered, especially
because changes in the local generation mixes were observed through
the years. As investigated by Gianfreda et al. (2016b), the advent of
RES has dramatically changed the stochastic nature of electricity prices
in the short run, whereas they are still exposed to the international
dynamics of fossil fuel prices in the long run. Therefore, these prices
need to be carefully handled with appropriate filters according to the
target of the analysis and with respect to periods under investigations10

10 It is worth noting that solar PV capacity increased in Germany from 11
to 49 GW in the last ten years, while in Spain it was equal to 10 GW in 2019.
Moving to wind power capacity, Germany, Spain and France were among the
top 10 world countries for additional capacity in 2019 (REN21, 2020).
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Fig. 6. Day-Ahead Electricity Prices for a Sample of Markets from 2006:01 to 2019:12 (daily averages). Please note that Germany allows for negative prices.

Fig. 7. Oil and gas price and their local volatility. The second and third rows report the centred moving standard deviation (SD) and inter-quartile range (IQR) based on moving
samples of one year. The shaded area represents a period of steady prices both for gas and oil ranging from 1st March 2011 to 1st September 2014.
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Table 2
Rejection rates at 5% for the ADF tests, for daily average Electricity Prices.

Filter Austria Belgium France Germany Italy Netherlands Spain Switzerland

2010–2021 (N = 3131)

UCM-filtered 46.89 40.21 55.76 55.61 25.23 24.69 39.83 55.25
UCM-smoothed 45.19 40.59 57.46 51.61 23.73 23.16 37.98 56.72
Weekly means 18.65 34.81 52.60 39.25 21.02 17.47 34.17 43.34
No filter 49.09 55.70 55.16 54.62 30.41 27.72 43.21 49.95

2011–2014 (N = 914)

UCM-filtered 57.55 74.29 81.84 68.49 2.08 70.79 43.98 70.46
UCM-smoothed 56.67 73.85 84.90 69.15 1.09 68.27 44.31 70.90
Weekly means 5.69 71.12 79.32 26.59 0.44 57.77 43.22 33.70
No filter 57.22 79.32 86.87 72.98 3.06 66.19 61.49 71.01
Table 3
Rejection rates at 5% for the ADF tests for Peak Electricity Prices.

Filter Austria Belgium France Germany Italy Netherlands Spain Switzerland

2010–2021 (N = 3131)

UCM-filtered 44.27 39.96 57.59 63.24 34.05 38.52 37.91 61.45
UCM-smoothed 41.84 36.25 59.63 56.40 21.46 25.68 36.31 62.22
Weekly means 16.35 35.23 50.65 37.69 19.39 21.24 33.47 45.32
No filter 51.93 64.52 56.85 66.24 36.03 34.78 37.59 55.80

2011–2014 (N = 914)

UCM-filtered 68.27 76.48 84.90 83.04 29.32 80.42 43.76 76.81
UCM-smoothed 64.22 72.98 86.21 80.42 3.83 76.15 44.31 78.99
Weekly means 3.94 72.10 79.21 33.15 3.72 69.58 41.14 44.64
No filter 71.44 86.76 87.09 81.95 21.55 74.40 41.47 76.15
Table 4
Rejection rates at 5% for the ADF tests, for Off-Peak Electricity Prices.

Filter Austria Belgium France Germany Italy Netherlands Spain Switzerland

2010–2021 (N = 3131)

UCM-filtered 55.16 48.87 66.24 58.67 38.26 43.34 53.82 67.26
UCM-smoothed 48.07 49.47 62.60 32.99 25.46 29.89 55.25 64.01
Weekly means 23.28 45.16 55.89 39.60 27.21 17.37 44.27 50.05
No filter 74.00 55.03 63.65 66.05 44.04 34.88 56.47 47.33

2011–2014 (N = 914)

UCM-filtered 70.13 87.20 96.28 75.60 16.41 57.55 53.50 66.19
UCM-smoothed 55.69 87.75 93.54 45.19 4.81 51.09 46.28 64.22
Weekly means 9.85 86.11 88.29 35.89 14.22 49.78 42.56 51.64
No filter 99.67 89.72 95.73 83.59 32.82 64.00 45.08 68.05
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Trying to draw some conclusions on the ‘‘mean-reversion feature’’
f electricity prices based on our filtering-before-testing approach,
e can affirm that unit roots are dominant at peak hours in Italy,
pain, Netherlands, Belgium and Austria, while France, Switzerland
nd Germany are found mean-reverting most of the times. At off-peak
ours only Italy and Netherlands still show a clear absence of mean-
eversion, remaining Spain and Austria more ambiguous among the
wo hypotheses. Finally, during the time of steady gas and oil prices,
ll countries excluding Italy and Spain, tend to show mean-reverting
lectricity prices. An interpretation of this fact is that, while in Austria,
elgium, and the Netherlands the non-stationarity of electricity prices

s only due to their dependence on hydrocarbon prices, in Italy and
pain there are other non-stationary factors driving electricity prices.
his said, given the substantial number of times ADF tests do not reject
he null of integration, the idea that all price time series could be
on-stationary seems quite reasonable.

Turning to Johansen’s cointegration tests, we expect the uncertainty
f the conclusions to be even stronger than for ADF tests. Indeed,
f we are uncertain about a set of time series showing a trending
ehaviour or being mean-reverting, we are even more uncertain about
he number of eventual common trends. The number of cointegrating
12
relationships identified by Johansen’s procedure (𝛼 = 0.05) on 3-
ear rolling windows11 is depicted in Figs. 8 (peak) 9 (off-peak) for
ll considered countries and for a smaller group of central European
ountries, in which only Germany, France, The Netherlands and Austria
re included (as in Bosco et al., 2010). Note that the EEX Phelix auction
aily prices were determined for delivery of electricity in both Germany
nd Austria until 30th September 2018. Thereafter, a zone market
plitting occurred between these two zones and the EEX Phelix prices
ere used for the delivery of electricity in Germany and Luxembourg.
ence, it is normal to expect these markets to be strictly connected by

heir participation in the EPEXspot. Recalling that simulation results
how that the UCM-based filter produces the most reliable estimates of
he cointegrating rank, we mainly look at these tests for the two groups
f markets.

Overall, on peak hours (Fig. 8), the UCM-based filter tends to select
cointegrating equations (CEs) for the eight-country sample and 2

Es for the four-country sample. However, in both samples, at the

11 The window size is 3 years of 260 daily observations, and the first estima-
tion window considers the years 2007–2009. At every new daily observation
a new test is carried out.
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Fig. 8. Number of cointegrating relationships identified in the rolling sample using average daily prices during peak period by the Kalman filter (in the first row), Kalman smoother
(in the second row), five-day moving average (in the third row) and unfiltered data (in the last row) for all countries (in the first column) and for a smaller sample (on the right
column).
beginning and at the end of the considered time spans the number of
cointegrating relations seems to increase to 5 and 3 CEs, respectively.
The UCM-based smoother leads to a similar conclusion with a tendency
to select a number of CEs slightly smaller (as expected from the
simulation exercise). The procedure applied to weekly means produces
conclusions that are similar to those of the UCM filter, however, its
variability (the dispersion of the green dots about the bold line in the
figures) is higher. The test applied to raw data tends to find a higher
number of CEs.

If we consider off-peak hours (Fig. 9), in the eight-country sample
the number of CEs is similar to that of peak hours, with an overall
tendency to select a slightly higher number of CEs more often. Turning
to the four-country sample, in the first part of the period (2010–2013)
13
all tests tend to select 3 CEs. After 2013 the number of CEs tend to
reduce to 2 when the procedure is applied to raw data and UCM-
smoother data. The tests applied to UCM-filtered data and weekly
means are more uncertain between 1 and 2 CEs. Considering the lower
noise-to-level ratio for off-peak prices, 2 CEs seems to be a reasonable
choice. The larger number of CEs at the beginning of our sample could
be an effect of the observed low volatility of gas and oil prices over that
period.

As a conclusion to this application, we can state that ADF results
seem to be more reasonable if one considers testing after filtering,
as suggested by our Monte Carlo experiments. However, electricity
markets are constantly evolving in many aspects (technologies, inter-

connections, regulation, incentives) and this makes any joint analysis
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Fig. 9. Number of cointegrating relationships identified in the rolling sample using average daily prices during offpeak period by the Kalman filter (in the first row), Kalman
smoother (in the second row), five-day moving average (in the third row) and unfiltered data (in the last row) for all countries (in the first column) and for a smaller sample (on
the right column).
intrinsically unstable over time, as our cointegration analyses reveal.
Thus, the robustification of ADF and Johansen’s test thorough filter-
ing is certainly a good practice when working on electricity prices,
however, all changes in technologies, interconnections, regulations
and incentives should be monitored and, possibly, modelled, when
analysing prices of a pool of markets over a relatively long period.
14
4.2. Financial prices and pairs trading

As mentioned in the introductory section, an important field of
application of integration and cointegration tests in finance is that of
statistical arbitrage and, in particular, pairs trading. If a linear combi-
nation of the prices of two or more financial assets (stocks, currencies,
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Algorithm 1 Statistical arbitrage algorithm for cointegrated price pairs
𝑉1 ← 100, 𝑝1 ← 0, 𝑡 ← 1
while (t < n) do

if (𝑝𝑡 = 0) & (𝑧𝑡 > 𝜃) then
𝑝𝑡+1 ← −1

else if (𝑝𝑡 == −1) & (𝑧𝑡 ≤ 0) then
𝑝𝑡+1 ← 0

else if (𝑝𝑡 == 0) & (𝑧𝑡 < −𝜃) then
𝑝𝑡+1 ← 1

else if (𝑝𝑡 == 1) & (𝑧𝑡 ≥ 0) then
𝑝𝑡+1 ← 0

else
𝑝𝑡+1 ← 𝑝𝑡

end if
𝑉𝑡+1 ← 𝑉𝑡

[

0.5
(

𝑦𝑡+1
𝑦𝑡

)𝑝𝑡+1
+ 0.5

(

𝑥𝑡
𝑥𝑡−1

)𝑝𝑡+1]

𝑡 ← 𝑡 + 1
end while
commodities, etc.) is found mean-reverting and persistent and, thus,
predictable, then it is possible to apply statistical arbitrage strategies.
The same holds if the ratio of the prices of two financial activities is
mean-reverting and persistent and, thus, predictable.

To understand if filtering before (co)integration testing brings bene-
fits also when working with financial data, we consider 96 constituents
of the S&P100 index for the 10 years 14th March 2008 to 14th March
2018. Financial theory suggests that there should be no persistent
cointegration relationship among stock prices. Indeed, there is no eco-
nomic reason for the value of two companies to evolve proportionally
and the efficiency of financial markets should rule out any arbitrage
opportunity. Thus, we can assume that the truth is that no cointegration
is present among pairs of stock log prices. However, to keep an agnostic
approach, we look at cointegrated pairs of log prices by applying
cointegration tests on the first half of the sample and we check if the
same result is found on the second half of the sample. Moreover, using
the second half of the sample, on those stock pairs that in the first half
of the sample have been found cointegrated, we apply a trading strategy
that produces positive returns on pairs of persistently cointegrated log
prices.

In summary, this is how we proceed.

1. We split the ten-year sample into two 5-year sub-samples.
2. We consider all pairs of the 96 stocks (i.e., all 4560 pairs).
3. In the first experiment, using the first half of the sample, we

use the ADF to test on each pair if the difference of log prices
is integrated or stationary. In the second experiment, using the
first half of the sample, we use Johansen’s test to determine if
the number of cointegrating relations in the time series pairs of
log prices is zero or one. In both experiments, we use the tests
on raw and filtered data.

4. We repeat the same tests on the second half of the sample and
asses how often the decisions based on the tests are homoge-
neous in the two samples.

5. On those pairs that were selected as cointegrated in the first half
of the sample, we apply the trading strategy on the second half
of the sample and compare its returns with the same strategy
applied to non-cointegrated pairs. If most of the pairs that were
found cointegrated are really cointegrated, then the returns gen-
erated on these pairs should be larger than those found on the
rest of the pairs.

The statistical arbitrage strategy we set up is very simple. Let 𝑦𝑡
and 𝑥𝑡 be the prices of the two stocks in the pair, and let 𝑧𝑡 = log(𝑦𝑡) −
𝛽 log(𝑥𝑡) be the cointegrating relations among the two log prices (in the
ADF case 𝛽 = 1, in the Johansen’s case 𝛽 is estimated). Algorithm 1
15

describes the trading strategy, for a given positive threshold value 𝜃.
In simple words, we sell 𝑦𝑡 and buy 𝑥𝑡 if 𝑧𝑡 is above a positive
threshold, we buy 𝑦𝑡 and sell 𝑥𝑡 if 𝑧𝑡 is below a negative threshold
and stay out of the investment if 𝑧𝑡 is between the two thresholds. The
algorithm has been tested on simulated time series from vector error
correction models estimated on pairs that were found cointegrated
obtaining annualized returns above 5%.

As mentioned above, there are no reasons for the log prices of liquid
stocks such as S&P100 constituents to be cointegrated and, thus, by
commenting on the results of our experiment we assume that the truth
is no cointegration among all pairs. Under this assumption, some 1% of
the tests should find cointegrating relations as we fixed the nominal
significance level at 1%. However, since we do not want to rule out
the possibility of statistical arbitrage at once, we compare the outcome
of the trading strategy applied to the cointegrated and not cointegrated
pairs according to the ADF and Johansen test.

Table 5 summarizes the results of this experiment. Using the ADF
applied to the difference between pairs of log prices, the test on filtered
series finds only a slightly smaller number of cointegrated pairs. If we
look at Johansen’s procedure applied to log-price pairs, the tests on
filtered time series find half the number of cointegrating relations with
respect to the same test on raw data. If the theory is correct and no
statistical arbitrage relations are present, the tests based on filtered
time series are preferable even though they find cointegrating relations
in more than 1% of the cases (nominal size). Furthermore, coherence
between the test outcomes in the two sub-samples is higher when the
UCM filter or smoother is used before testing.

The annualized returns of the strategy applied to time series pairs
in the second sub-sample are approximately the same for pairs that
were found cointegrated and pairs that were found not cointegrated.
This confirms that the pairs trading strategy works identically on
cointegrated and not cointegrated pairs. Notice that, to assess if the
trading strategy worked on cointegrated pairs, we estimated a cointe-
grated vector error correction model (CVECM) on pairs that were found
cointegrated by the tests and by simulating from the estimated CVECM
and applying the test strategy on each simulated path, we found much
higher average returns (above 5% for the Johansen’s case and above
20% for the ADF case).

5. Conclusions

For many years, applied econometricians have known that the
popular ADF and Johansen’s tests have serious size problems when time
series are observed with noise (measurement error) or when the data-
generating process has a MA component with a root that almost cancels
with the unit root of the difference operator. However, no universal
simple-to-use solutions have been proposed. In this paper, we test three

different linear filtering strategies that the authors have informally been
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Table 5
Results of the application of the ADF and Johansen tests to all the pairs of the S&P100 constituents and of the trading strategy.

RAW FLT SMO MEAN

ADF test

Pairs found cointegrated in sample 1 (%) 4.2 4.0 4.0 3.1
Coherence rate between samples (%) 94.8 95.0 95.0 95.5
Mean return of strategy on cointegrated pairs (%) 0.2 0.2 0.2 −0.2
Mean return of strategy on not cointegrated pairs (%) 0.2 0.2 0.2 0.2
𝑝-value for t-test for equality of means (%) 83.8 97.4 86.4 0.2

Johansen test

Pairs found cointegrated in sample 1 (%) 12.1 6.8 5.1 6.1
Coherence rate between samples (%) 79.2 84.6 86.3 76.1
Mean return of strategy on cointegrated pairs (%) 0.1 0.0 −0.1 0.1
Mean return of strategy on not cointegrated pairs (%) 0.1 0.1 0.1 0.1
𝑝-value for t-test for equality of means (%) 37.0 29.1 2.4 67.4
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using on electricity price data for years. Theoretical considerations sug-
gest that reducing the frequency of observation by taking means every
𝑚-observations can be successful, as well as applying the test statistics
to the filtered or smoothed level of an unobserved component model
whose trend is a random walk observed with noise (and, possibly,
seasonal components).

Monte Carlo simulations confirm that filtering before testing assures
an appropriate size of the ADF test also in the presence of very strong
measurement error. In particular, the filter based on UCM-smoothing
keeps the size of the test exactly at its nominal level regardless of
the amount of noise. Robustness comes at the cost of some power:
for frequency reduction, the power deficiency is independent of the
quantity of noise, while for UCM-based filtering and smoothing the
power loss increases with the noise-to-signal ratio.

Our simulations suggest a clear winner when Johansen’s sequential
procedure is used to estimate the number of cointegrating relations.
UCM-based filtering provides the most accurate estimates for both data-
generating processes considered in our experiments. Of course, this
does not guarantee that the same result holds for all data-generating
processes, but there is no way to test the whole universe of DGPs.

A very important feature of UCM-based filtering is that filters are
data-driven and when no observational noise is present, the time series
are left virtually unchanged and the properties of integration and
cointegration tests are identical to those applied to raw data.

We use the proposed filtering techniques in two real applications:
one to European electricity prices and one to stock prices. In the
first case, the ADF based on filtered data seems to provide more
reliable results by revealing unit roots more often than the ADF on raw
data. Despite some authors holding electricity prices as mean-reverting,
common sense suggests that electricity prices should have a long-run
component following the price of hydrocarbon fuels, at least in those
countries where hydrocarbon-based generation prevails. At the moment
of writing, the world is witnessing a period of extremely high gas and
oil prices because of the war in Ukraine and other international matters
and the relationship between electricity prices with gas and oil prices
is more than evident. Results on the number of cointegrating relations
among European electricity prices are less clear to interpret. On one
side, this larger uncertainty was expected since uncertainty about the
presence of unit roots in a pool of time series implies uncertainty about
the number of common trends. Furthermore, the continuous evolution
of electricity markets due to technological change, green policies, grid
and interconnection expansions, etc. makes the relation among prices
in different countries time-varying.

The application of cointegration testing finalized to the selection of
pairs of stock prices that should allow for statistical arbitrage strategies
(pairs trading) enhances the higher level of reliability of Johansen’s test
when applied to filtered time series. The test after filtering approaches
reveals a halved number of cointegrated pairs and out-of-sample eval-
uations confirm that pair trading is not possible among S&P100 con-
stituents. Practitioners looking for this kind of trading strategy should
16

benefit from using our filters before cointegration testing.
Data and codes

All results presented in this paper can be reproduced using the
R software (R Core Team, 2018). All scripts and the data of the
financial application (electricity prices were provided by Datastream
and we have no permission to republish them) are available at the
following GitHub web page: https://github.com/PaoloMaranzano/AG_
PM_MP_LVP_FilterCointStat.
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Appendix. Proofs

Derivation of Eq. (2). Even though the result is well-known in the
time series literature, for self-completeness we derive Eq. (2). Since
there is a one-to-one mapping of a MA process with its autocovariance
function (ACF), we just need to show that the ACF of 𝜂𝑡+𝜀𝑡−𝜀𝑡−1 is that
f a MA(1) process, say 𝜁𝑡−𝜃𝜁𝑡−1, and equate their values. The following
able displays the quantities of interest (the symbol 2+ stands for any
nteger equal to or larger than 2).

Equating the first two autocovariances, we get the system

𝜎2(1 + 𝜃2) = 𝜎2𝜂 + 2𝜎2𝜀
−𝜃𝜎2 = −𝜎2𝜀

hose solution is

= 1 + 𝜆 −
√

𝜆2 + 4𝜆
2

, 𝜎2 =
𝜎2𝜀
𝜃
,

where 𝜆 ∶= 𝜎2𝜂∕𝜎
2
𝜀 . □

ACF Generic MA(1) 𝜂𝑡 + 𝜀𝑡 − 𝜀𝑡−1
𝛾(0) 𝜎2(1 + 𝜃2) 𝖤

(

(𝜂𝑡 + 𝜀𝑡 − 𝜀𝑡)2
)

= 𝜎2𝜂 + 2𝜎2𝜀
𝛾(1) −𝜃𝜎2 𝖤

(

(𝜂𝑡 + 𝜀𝑡 − 𝜀𝑡−1)(𝜂𝑡−1 + 𝜀𝑡−1 − 𝜀𝑡−2)
)

= −𝜎2𝜀
+ ( )
𝛾(2 ) 0 𝖤 (𝜂𝑡 + 𝜀𝑡 − 𝜀𝑡−1)(𝜂𝑡−2+ + 𝜀𝑡−2+ − 𝜀𝑡−3+ ) = 0
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Proof of Theorem 1 and Corollary 1.1. Let 𝑦𝑡 be a random walk plus
noise with 𝑡 ∈ {1, 2, 3,… , } with given starting value 𝑥0:

𝑦𝑡 = 𝑥𝑡 + 𝜀𝑡, 𝜀𝑡 ∼ 𝖶𝖭(𝜎2𝜀 )

𝑥𝑡 = 𝑥𝑡−1 + 𝜂𝑡, 𝜂𝑡 ∼ 𝖶𝖭(𝜎2𝜂 ).

We can rewrite the random walk as

𝑥𝑡 = 𝑥𝑡−𝑚 +
𝑚−1
∑

𝑗=0
𝜂𝑡−𝑗 ,

and taking the average over 𝑚 subsequent observations, we obtain

1
𝑚

𝑚−1
∑

𝑖=0
𝑥𝑡−𝑖 =

1
𝑚

𝑚−1
∑

𝑖=0
𝑥𝑡−𝑚 + 1

𝑚

𝑚−1
∑

𝑖=0

𝑚−1
∑

𝑗=0
𝜂𝑡−𝑗−𝑖,

which we can restate as

̄ 𝑡 = �̄�𝑡−𝑚 + �̄�𝑡,

where �̄�𝑡 =
1
𝑚
∑𝑛−1

𝑖=0 𝑥𝑡−𝑖 and

�̄�𝑡 =
1
𝑚

𝑛−1
∑

𝑖=0

𝑚−1
∑

𝑗=0
𝜂𝑡−𝑗−𝑖 =

1
𝑚

[

𝜂𝑡 + 2𝜂𝑡−1 + 3𝜂𝑡−2 +⋯ + 𝑚𝜂𝑡−𝑚+1+

(𝑚 − 1)𝜂𝑡−𝑚 + (𝑚 − 2)𝜂𝑡−𝑚−1 +⋯

+ 2𝜂𝑡−2𝑚+1 + 𝜂𝑡−2𝑚+2
]

.

Now, let us consider the process for 𝑡 ∈  ∶= {𝑚, 2 𝑚, 3 𝑚,…}. Using
the above formulae, it is simple to derive the autocovariance function
(ACF) of �̄�𝑡 over the set  :

𝖤
(

�̄�𝑡�̄�𝑡−𝑘𝑚
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

(𝑚−1)(2𝑚−1)
3𝑚 + 1

]

𝜎2𝜂 for 𝑘 = 0,

(𝑚−1)(𝑚+1)
6𝑚 𝜎2𝜂 for |𝑘| = 1,

0 for |𝑘| = 2, 3,… ,

hich is the ACF of a MA(1) process. Consequently, the process

�̄�𝑡 − �̄�𝑡−𝑚 = �̄�𝑡 + �̄�𝑡 − �̄�𝑡−1,

ith �̄�𝑡 ∶=
1
𝑚
∑𝑚−1

𝑖=0 𝜀𝑡−𝑖, is also MA(1) with ACF
[

(𝑚−1)(2𝑚−1)
3𝑚 + 1

]

𝜎2𝜂 +
2
𝑚𝜎

2
𝜀 for 𝑘 = 0,

(𝑚−1)(𝑚+1)
6𝑚 𝜎2𝜂 +

1
𝑚𝜎

2
𝜀 for |𝑘| = 1,

0 for |𝑘| = 2, 3,… .

Therefore, its order-1 autocorrelation over  is

𝜌 ∶=
(𝑚−1)(𝑚+1)

6𝑚 𝜎2𝜂 +
1
𝑚𝜎

2
𝜀

[

(𝑚−1)(2𝑚−1)
3𝑚 + 1

]

𝜎2𝜂 +
2
𝑚𝜎

2
𝜀

=
(𝑚−1)(𝑚+1)

6𝑚 𝜆 − 1
𝑚

[

(𝑚−1)(2𝑚−1)
3𝑚 + 1

]

𝜆 + 2
𝑚

,

here 𝜆 ∶= 𝜎2𝜂∕𝜎
2
𝜀 is the signal-to-noise ratio.

We can conclude that over the set  , �̄�𝑡 is ARIMA(0, 1, 1) and the
A coefficient can be easily obtained from 𝜌 using the formula in
orollary 1.1. □

roof of Theorem 2. By assumption 𝑦𝑡 is defined by the ARIMA(0, 1, 1)
rocess in Eq. (2). Thus, indicating with 𝐿 the lag operator (i.e., 𝐿𝑥𝑡 =
𝑡−1),

�̃�𝑡 = 𝛾𝑦𝑡 + (1 − 𝛾)�̃�𝑡−1
(

1 − (1 − 𝛾)𝐿
)

�̃�𝑡 = 𝛾𝑦𝑡
1 − (1 − 𝛾)𝐿

)

(1 − 𝐿)�̃�𝑡 = 𝛾(1 − 𝜃𝐿)𝜁𝑡.

It is straightforward to check that 𝜃 = 1 − 𝛾, which implies that the
operator

(

1 − (1 − 𝛾)𝐿
)

annihilates (1 − 𝜃𝐿) and

(1 − 𝐿)�̃�𝑡 = 𝛾𝜁𝑡,

defines a random walk.
17
To obtain the approximate smoother �̂�𝑡 one has to pass a backward
utoregressive filter on 𝑥𝑡. The second-order properties of the resulting
rocess are the same if the filter is run backwards or forward and, thus,
he process �̂�𝑡 has the same autocorrelation function as

1 − (1 − 𝛾)𝐿
)

(1 − 𝐿)�̃�𝑡 = 𝛾𝜁𝑡,

which defines an 𝐴𝑅𝐼𝑀𝐴(1, 1, 0) process with autoregressive coeffi-
cient 𝜙 = 1 − 𝛾. □
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